Publications 2022

  1. ATLAS and D∅ LHCb and BaBar ALICE Accelerator-related Physics
  2. Neutrino Telescopes Gravitational Waves Cosmic Rays Dark Matter
  3. Theoretical Physics Detector R&D Astrophysics Miscellaneous

{c}: Conference Paper, {nOA}: non-Open Access


ATLAS

ATLAS Collaboration: G. Aad (et al.); A. Aggarwal, S. Caron, N. De Groot, V. Fabiani, F. Filthaut, C. A. Gottardo, O. Igonkina, N. Ilic, A. C. König, C. Nellist, L. Pedraza Diaz, J. F. P. Schouwenberg, A. Alfonsi, H. Arnold, P. J. Bakker, M. Bedognetti, S. Bentvelsen, G. J. Bobbink, L. S. Bruni, C. D. Burgard, W. S. Chan, Y. S. Chow, A. P. Colijn, M. De Beurs, P. de Jong, F. A. Dias, T. A. du Pree, P. Ferrari, O. Igonkina, P. Kluit, S. Manzoni, B. Moser, F. Pasquali, A. Perrevoort, A. Pizzini, H. L. Snoek, M. Stamenkovic, B. Stapf, J. J. Teoh, I. Van Vulpen, M. J. Veen, W. Verkerke, A. T. Vermeulen, J. C. Vermeulen, M. Vreeswijk

  1. Emulating the impact of additional proton-proton interactions in the ATLAS simulation by presampling sets of inelastic Monte Carlo events
    Softw. Big Sci. 6 (2022) 3
    https://dx.doi.org/10.1007/s41781-021-00062-2
  2. AtlFast3: the next generation of fast simulation in ATLAS
    Softw. Big Sci. 6 (2022) 7
    https://dx.doi.org/10.1007/s41781-021-00079-7
  3. Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector
    Phys. J. C 82 (2022) 105
    https://dx.doi.org/10.1140/epjc/s10052-021-09878-z
  4. The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2
    Phys. J. C 82 (2022) 206
    https://dx.doi.org/10.1140/epjc/s10052-021-09920-0
  5. Measurement of the energy response of the ATLAS calorimeter to charged pions from W± → τ ± (→ π ± ν ττ events in Run 2 data
    Phys. J. C 82 (2022) 223
    https://dx.doi.org/10.1140/epjc/s10052-022-10117-2
  6. Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. J. C 82 (2022) 334
    https://dx.doi.org/10.1140/epjc/s10052-022-10182-7
  7. Measurement of the energy asymmetry in tt̅j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework
    Phys. J. C 82 (2022) 374
    https://dx.doi.org/10.1140/epjc/s10052-022-10101-w
  8. Determination of the parton distribution functions of the proton using diverse ATLAS data from pp collisions at √s = 7, 8 and 13 TeV
    Phys. J. C 82 (2022) 438
    https://dx.doi.org/10.1140/epjc/s10052-022-10217-z
  9. Search for long-lived charginos based on a disappearing-track signature using 136 fb–1 of pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. J. C 82 (2022) 606
    https://dx.doi.org/10.1140/epjc/s10052-022-10489-5
  10. Two-particle Bose-Einstein correlations in pp collisions at √s = 13 TeV measured with the ATLAS detector at the LHC
    Phys. J. C 82 (2022) 608
    https://dx.doi.org/10.1140/epjc/s10052-022-10472-0
  11. Constraints on Higgs boson properties using WW*(→ eνμν )jj production in 36.1fb–1 of √s = 13 TeV pp collisions with the ATLAS detector
    Phys. J. C 82 (2022) 622
    https://dx.doi.org/10.1140/epjc/s10052-022-10366-1
  12. Performance of the ATLAS Level-1 topological trigger in Run 2
    Phys. J. C 82 (2022) 7
    https://dx.doi.org/10.1140/epjc/s10052-021-09807-0
  13. Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector
    Phys. J. C 82 (2022) 717
    https://dx.doi.org/10.1140/epjc/s10052-022-10588-3
  14. Measurement of the c-jet mistagging efficiency in tt̅ events using pp collision data at √s = 13 TeV collected with the ATLAS detector
    Phys. J. C 82 (2022) 95
    https://dx.doi.org/10.1140/epjc/s10052-021-09843-w
  15. Search for type-III seesaw heavy leptons in leptonic final states in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. J. C 82 (2022) 988
    https://dx.doi.org/10.1140/epjc/s10052-022-10785-0
  16. Search for exotic decays of the Higgs boson into b b̅ and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector
    High Energy Phys. 01 (2022) 063
    https://dx.doi.org/10.1007/JHEP01(2022)063
  17. Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb–1 of pp collision data at √s = 13 TeV
    High Energy Phys. 03 (2022) 041
    https://dx.doi.org/10.1007/JHEP03(2022)041
  18. Search for neutral long-lived particles in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter
    High Energy Phys. 06 (2022) 005
    https://dx.doi.org/10.1007/JHEP06(2022)005
  19. Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV
    High Energy Phys. 06 (2022) 063
    https://dx.doi.org/10.1007/JHEP06(2022)063
  20. Measurement of Higgs boson decay into b-quarks in associated production with a top-quark pair in pp collisions at √s = 13 TeV with the ATLAS detector
    High Energy Phys. 06 (2022) 097
    https://dx.doi.org/10.1007/JHEP06(2022)097
  21. Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with pp collisions at √s = 13 TeV with the ATLAS detector
    High Energy Phys. 08 (2022) 027
    https://dx.doi.org/10.1007/JHEP08(2022)027
  22. Study of Bc+→ J/ψ Ds+ and Bc+→ J/ψ Ds*+ decays in pp collisions at √s = 13 TeV with the ATLAS detector
    High Energy Phys. 08 (2022) 087
    https://dx.doi.org/10.1007/JHEP08(2022)087
  23. Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment
    High Energy Phys. 08 (2022) 089
    https://dx.doi.org/10.1007/JHEP08(2022)089
  24. Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 fb–1 of proton-proton data recorded by the ATLAS experiment
    High Energy Phys. 08 (2022) 104
    https://dx.doi.org/10.1007/JHEP08(2022)104
  25. Measurements of Higgs boson production cross-sections in the H→τ+τ decay channel in pp collisions at √s = 13 TeV with the ATLAS detector
    High Energy Phys. 08 (2022) 175
    https://dx.doi.org/10.1007/JHEP08(2022)175
  26. Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment
    High Energy Phys. 11 (2022) 040
    https://dx.doi.org/10.1007/JHEP11(2022)040
  27. Operation and performance of the ATLAS semiconductor tracker in LHC Run 2
    Instr. 17 (2022) P01013
    https://dx.doi.org/10.1088/1748-0221/17/01/P01013
  28. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery
    Nature 607 (2022) 52
    https://dx.doi.org/10.1038/s41586-022-04893-w
  29. Search for new phenomena in three or four-lepton events in pp collisions at √s = 13 TeV with the ATLAS detector
    Lett. B 824 (2022) 136832
    https://dx.doi.org/10.1016/j.physletb.2021.136832
  30. Search for associated production of a Z boson with an invisibly decaying Higgs boson or dark matter candidates at √s = 13 TeV with the ATLAS detector
    Lett. B 829 (2022) 137066
    https://dx.doi.org/10.1016/j.physletb.2022.137066
  31. Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb-Pb collisions at 5.02 TeV with the ATLAS detector
    Lett. B 829 (2022) 137077
    https://dx.doi.org/10.1016/j.physletb.2022.137077
  32. A search for an unexpected asymmetry in the production of e+μ and eμ+ pairs in proton-proton collisions recorded by the ATLAS detector at √s = 13 TeV
    Lett. B 830 (2022) 137106
    https://dx.doi.org/10.1016/j.physletb.2022.137106
  33. Measurements of azimuthal anisotropies of jet production in Pb-Pb collisions at √sNN = 5.02 TeV with the ATLAS detector
    Rev. C 105 (2022) 064903
    https://dx.doi.org/10.1103/PhysRevC.105.064903
  34. Search for heavy particles in the b-tagged dijet mass distribution with additional b-tagged jets in proton-proton collisions at √s= 13 TeV with the ATLAS experiment
    Rev. D 105 (2022) 012001
    https://dx.doi.org/10.1103/PhysRevD.105.012001
  35. Search for Higgs boson decays into a pair of pseudoscalar particles in the bbμμ final state with the ATLAS detector in pp collisions at √s = 13 TeV
    Rev. D 105 (2022) 012006
    https://dx.doi.org/10.1103/PhysRevD.105.012006
  36. Search for resonant pair production of Higgs bosons in the bb̅bb̅ final state using pp collisions at √s = 13 TeV with the ATLAS detector
    Rev. D 105 (2022) 092002
    https://dx.doi.org/10.1103/PhysRevD.105.092002
  37. Constraints on Higgs boson production with large transverse momentum using H→ bb̅ decays in the ATLAS detector
    Rev. D 105 (2022) 092003
    https://dx.doi.org/10.1103/PhysRevD.105.092003
  38. Search for single production of a vectorlike T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector
    Rev. D 105 (2022) 092012
    https://dx.doi.org/10.1103/PhysRevD.105.092012
  39. Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at √s = 13 TeV
    Rev. D 106 (2022) 032005
    https://dx.doi.org/10.1103/PhysRevD.106.032005
  40. Measurements of jet observables sensitive to b-quark fragmentation in tt̅ events at the LHC with the ATLAS detector
    Rev. D 106 (2022) 032008
    https://dx.doi.org/10.1103/PhysRevD.106.032008
  41. Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at √s = 13 TeV with the ATLAS detector
    Rev. D 106 (2022) 052001
    https://dx.doi.org/10.1103/PhysRevD.106.052001
  42. Search for lepton-flavor-violation in Z-boson decays with τ-leptons with the ATLAS detector
    Rev. Lett. 127 (2022) 271801
    https://dx.doi.org/10.1103/PhysRevLett.127.271801
  43. Observation of WWW Production in pp Collisions at √s = 13 TeV with the ATLAS Detector
    Rev. Lett. 129 (2022) 061803
    https://dx.doi.org/10.1103/PhysRevLett.129.061803
  44. Vasile, S. Martoiu, N. Boukadida, M. Antonescu, A. Ulmamei, G. Stoicea, R. Hobincu, C. Iordache
    FPGA implementation of RDMA for ATLAS readout with FELIX at high luminosity LHC
    J. Instr. 17 (2022) C05022 {c} {nOA}
    https://dx.doi.org/10.1088/1748-0221/17/05/C05022
  45. Goldfarb, K. Anthony, R. Gonzalez Suarez, M. Hutinet, S. Mehlhase, C. Nellist, M. Velho
    The ATLAS public website-Evolution to Drupal 8
    PoS EPS-HEP2021 (2022) 888 {c}
    https://dx.doi.org/10.22323/1.398.0888
  46. A-K. Perrevoort
    ATLAS Results with Beauty Mesons
    SciPost Phys. 8 (2022) 099 {c}
    https://dx.doi.org/10.21468/SciPostPhysProc.8.099
  47. Bogomilov, F. Filthaut (et al.)
    Multiple Coulomb scattering of muons in lithium hydride
    Phys. Rev. D 106 (2022)
    https://dx.doi.org/10.1103/PhysRevD.106.092003
  48. Aarrestad, C. Nellist (et al.)
    The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
    SciPost Phys. 12 (2022) 043
    https://dx.doi.org/10.21468/SciPostPhys.12.1.043

LHCb/BaBar

LHCb Collaboration: R. Aaij (et al.); J. S. Butter, K. Carvalho Akiba, S. Ferreres Sole, E. Gabriel, R. E. Geertsema, L. M. Greeven, K. Heijhoff, W. Hulsbergen, D. Hynds, E. Jans, S. Klaver, P. Koppenburg, I. Kostiuk, H. S. Kuindersma, M. Lucio Martinez, V. Lukashenko, A. Mauri, M. Merk, A. Pellegrino, C. Sanchez Gras, M. Schubiger, A. Snoch, N. Tuning, A. Usachov, M. van Beuzekom, M. Veronesi, T. Ketel, H. S. Kuindersma, G. Raven,  M. Senghi Soares, J. A. de Vries, C. J. Pawley,  K. Vos, K. De Bruyn, C. J. G. Onderwater, M. van Veghel

  1. A Comparison of CPU and GPU Implementations for the LHCb Experiment Run 3 Trigger
    Softw. Big Sci. 6 (2022) 1
    https://dx.doi.org/10.1007/s41781-021-00070-2
  2. Search for massive long-lived particles decaying semileptonically at √s = 13 TeV
    Phys. J. C 82 (2022) 373
    https://dx.doi.org/10.1140/epjc/s10052-022-10186-3
  3. Measurement of the W boson mass
    High Energy Phys. 01 (2022) 036
    https://dx.doi.org/10.1007/JHEP01(2022)036
  4. Study of Bc+ decays to charmonia and three light hadrons
    High Energy Phys. 01 (2022) 065
    https://dx.doi.org/10.1007/JHEP01(2022)065
  5. Search for the radiative Ξb→Ξγ decay
    High Energy Phys. 01 (2022) 069
    https://dx.doi.org/10.1007/JHEP01(2022)069
  6. Measurement of χc1(3872) production in proton-proton collisions at √s = 8 and 13 TeV
    High Energy Phys. 01 (2022) 131
    https://dx.doi.org/10.1007/JHEP01(2022)131
  7. Measurement of prompt charged-particle production in pp collisions at √s = 13 TeV
    High Energy Phys. 01 (2022) 166
    https://dx.doi.org/10.1007/JHEP01(2022)166
  8. Searches for rare Bs0 and B0 decays into four muons
    High Energy Phys. 03 (2022) 109
    https://dx.doi.org/10.1007/JHEP03(2022)109
  9. Observation of Λb0→ D+ p ππ and Λb0→ D*+ p ππ decays
    High Energy Phys. 03 (2022) 153
    https://dx.doi.org/10.1007/JHEP03(2022)153
  10. Observation of the doubly charmed baryon decay Ξcc++→ Ξc+π+
    High Energy Phys. 05 (2022) 038
    https://dx.doi.org/10.1007/JHEP05(2022)038
  11. Constraints on the CKM angle γ from B±→ Dh± decays using D→ h± h’*π0 final states
    High Energy Phys. 07 (2022) 099
    https://dx.doi.org/10.1007/JHEP07(2022)099
  12. Study of coherent J/ψ production in lead-lead collisions at √sNN = 5 TeV
    High Energy Phys. 07 (2022) 117
    https://dx.doi.org/10.1007/JHEP07(2022)117
  13. Identification of charm jets at LHCb
    Instr. 17 (2022) P02028
    https://dx.doi.org/10.1088/1748-0221/17/02/P02028
  14. Centrality determination in heavy-ion collisions with the LHCb detector
    Instr. 17 (2022) P05009
    https://dx.doi.org/10.1088/1748-0221/17/05/P05009
  15. Study of the doubly charmed tetraquark Tc+
    Nature Commun. 13 (2022) 3351
    https://dx.doi.org/10.1038/s41467-022-30206-w
  16. Precise determination of the Bs0 – B̅s0 oscillation frequency
    Nature Phys. 18 (2022) 1
    https://dx.doi.org/10.1038/s41567-021-01394-x
  17. Test of lepton universality in beauty-quark decays
    Nature Phys. 18 (2022) 277
    https://dx.doi.org/10.1038/s41567-021-01478-8
  18. Observation of an exotic narrow doubly charmed tetraquark
    Nature Phys. 18 (2022) 751
    https://dx.doi.org/10.1038/s41567-022-01614-y
  19. J/ψ photoproduction in Pb-Pb peripheral collisions at √sNN= 5 TeV
    Rev. C 105 (2022) L032201
    https://dx.doi.org/10.1103/PhysRevC.105.L032201
  20. Measurement of the B0s→μ+μ decay properties and search for the B0→μ+μ and B0s→μ+μγ decays
    Rev. D 105 (2022) 012010
    https://dx.doi.org/10.1103/PhysRevD.105.012010
  21. Observation of the B0→ D̅*0K+π and Bs0→ D̅*0Kπ+ decays
    Rev. D 105 (2022) 072005
    https://dx.doi.org/10.1103/PhysRevD.105.072005
  22. Measurement of the charm mixing parameter yCP – yCPKπ using two-body D0 meson decays
    Rev. D 105 (2022) 092013
    https://dx.doi.org/10.1103/PhysRevD.105.092013
  23. Measurement of the photon polarization in Λb0→ Λγ decays
    Rev. D 105 (2022) L051104
    https://dx.doi.org/10.1103/PhysRevD.105.L051104
  24. Analysis of Neutral B-Meson Decays into Two Muons
    Rev. Lett. 128 (2022) 041801
    https://dx.doi.org/10.1103/PhysRevLett.128.041801
  25. Evidence for a new structure in the J/ψ p and J/ψ p̅ systems in Bs0→ J/ψ p p̅ decays
    Rev. Lett. 128 (2022) 062001
    https://dx.doi.org/10.1103/PhysRevLett.128.062001
  26. Study of Z Bosons Produced in Association with Charm in the Forward Region
    Rev. Lett. 128 (2022) 082001
    https://dx.doi.org/10.1103/PhysRevLett.128.082001
  27. Measurement of the Nuclear Modification Factor and Prompt Charged Particle Production in p-Pb and pp Collisions at √sNN=5 TeV
    Rev. Lett. 128 (2022) 142004
    https://dx.doi.org/10.1103/PhysRevLett.128.142004
  28. Observation of Two New Excited Ξb0 States Decaying to Λb0 Kπ+
    Rev. Lett. 128 (2022) 162001
    https://dx.doi.org/10.1103/PhysRevLett.128.162001
  29. Tests of lepton universality using B0→ K0S+ and B+→ K*++ decays
    Rev. Lett. 128 (2022) 191802
    https://dx.doi.org/10.1103/PhysRevLett.128.191802
  30. Observation of the decay Λb0→ Λc+τ ντ
    Rev. Lett. 128 (2022) 191803
    https://dx.doi.org/10.1103/PhysRevLett.128.191803
  31. Angular Analysis of D0→ π+πμ+μ and D0→ K+Kμ+μ Decays and Search for CP Violation
    Rev. Lett. 128 (2022) 221801
    https://dx.doi.org/10.1103/PhysRevLett.128.221801
  32. First Measurement of the Z→ μ+μ- Angular Coefficients in the Forward Region of pp Collisions at √s = 13 TeV
    Rev. Lett. 129 (2022) 091801
    https://dx.doi.org/10.1103/PhysRevLett.129.091801
  33. Measurement of the lifetimes of promptly produced Ω0c and Ξ0c baryons
    Bull. 67 (2022) 479
    https://dx.doi.org/10.1016/j.scib.2021.11.022
  34. Buchanan (et al.)
    Spatial resolution and efficiency of prototype sensors for the LHCb VELO Upgrade
    J. Instr. 17 (2022) P06038
    https://dx.doi.org/10.1088/1748-0221/17/06/P06038
  35. Collins (et al.)
    Microchannel Cooling for the LHCb VELO Upgrade I
    Nucl. Instrum. Meth. A 1039 (2022) 166874
    https://dx.doi.org/10.1016/j.nima.2022.166874
  36. Lukashenko
    Recent LHCb results on CP violation in beauty decays to charmonia
    PoS EPS-HEP2021 (2022) 550 {c}
    https://dx.doi.org/10.22323/1.398.0550
  37. Skidmore, E. Rodrigues, P. Koppenburg
    Run-3 offline data processing and analysis at LHCb
    PoS EPS-HEP2021 (2022) 792 {c}
    https://dx.doi.org/10.22323/1.398.0792
  38. Borsato (et al.)
    Unleashing the full power of LHCb to probe stealth new physics
    Rept. Prog. Phys. 85 (2022) 024201
    https://dx.doi.org/10.1088/1361-6633/ac4649
  39. Albouy, A. Usachov (et al.)
    Theory, phenomenology, and experimental avenues for dark showers: a Snowmass 2021 report
    Eur. Phys. J. C 82 (2022) 1132
    https://dx.doi.org/10.1140/epjc/s10052-022-11048-8
  40. van Dyk, K. Vos (et al.)
    EOS: a software for flavor physics phenomenology
    Eur. Phys. J. C 82 (2022) 569
    https://dx.doi.org/10.1140/epjc/s10052-022-10177-4
  41. Gianelle, P. Koppenburg, D. Lucchesi, D. Nicotra, E. Rodrigues, L. Sestini, J. de Vries, D. Zuliani
    Quantum Machine Learning for b-jet charge identification
    J. High Energy Phys. 08 (2022) 014
    https://dx.doi.org/10.1007/JHEP08(2022)014
  42. Beneke, P. Boer, J-N. Toelstede, K. K. Vos
    Light-cone distribution amplitudes of heavy mesons with QED effects
    J. High Energy Phys. 08 (2022) 020
    https://dx.doi.org/10.1007/JHEP08(2022)020
  43. Bernlochner, M. Fael, K. Olschewsky, E. Persson, R. van Tonder, K. K. Vos, M. Welsch
    First extraction of inclusive Vcb from q2 moments
    J. High Energy Phys. 10 (2022) 068
    https://dx.doi.org/10.1007/JHEP10(2022)068
  44. Rahimi, K. K. Vos
    Standard Model predictions for lepton flavour universality ratios of inclusive semileptonic B decays
    J. High Energy Phys. 11 (2022) 007
    https://dx.doi.org/10.1007/JHEP11(2022)007
  45. D. Ball, A. Candido, J. Cruz-Martinez, S. Forte, T. Giani, F. Hekhorn, K. Kudashkin, G. Magni (et al.)
    Evidence for intrinsic charm quarks in the proton
    Nature 608 (2022) 483
    https://dx.doi.org/10.1038/s41586-022-04998-2
  46. S. AbdusSalam, M. Martinez (et al.)
    Simple and statistically sound recommendations for analysing physical theories
    Rept. Prog. Phys. 85 (2022) 052201
    https://dx.doi.org/10.1088/1361-6633/ac60ac
  47. Buytaert, P. Collins, A. A. Abud, P. Allport, A. P. Alvarez, K. Akiba, O. A. de Aguiar Francisco, A. Bay (et al.)
    The HEV Ventilator: at the interface between particle physics and biomedical engineering
    R. Soc. Open Sci. 9 (2022)
    https://dx.doi.org/10.1098/rsos.211519

BaBar Collaboration: J. Lees (et al.); G. Raven

  1. Search for Darkonium in e+e Collisions
    Rev. Lett. 128 (2022) 021802
    https://dx.doi.org/10.1103/PhysRevLett.128.021802
  2. Search for Lepton Flavor Violation in Υ(3S)→ e±μ*
    Rev. Lett. 128 (2022) 091804
    https://dx.doi.org/10.1103/PhysRevLett.128.091804
  3. Search for an Axionlike Particle in B Meson Decays
    Rev. Lett. 128 (2022) 131802
    https://dx.doi.org/10.1103/PhysRevLett.128.131802

ALICE

ALICE Collaboration: S. Acharya (et al.); A. Grelli, B. Hofman, S. Jaelani, D. L. D. Keijdener, A. P. Mohanty, T. Peitzmann, R. J. M. Snellings, N. van der Kolk, L. V. R. van Doremalen, L. Vermunt, M. Verweij, H. Yokoyama , H. J. C. Zanoli, D. Andreou, P. Christakoglou, A. Dubla, B. Hohlweger, Z. Khabanova, P. G. Kuijer, S. Qiu, I. Ravasenga, R. Russo, C. P. Stylianidis, M. van Leeuwen , R. J. G. V. Weelden

  1. Production of light (anti)nuclei in pp collisions at √s = 5.02 TeV
    Phys. J. C 82 (2022) 289
    https://dx.doi.org/10.1140/epjc/s10052-022-10241-z
  2. Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at √ s = 13 TeV
    Phys. J. C 82 (2022) 335
    https://dx.doi.org/10.1140/epjc/s10052-022-10267-3
  3. Multiplicity dependence of charged-particle jet production in pp collisions at √s= 13 TeV
    Phys. J. C 82 (2022) 514
    https://dx.doi.org/10.1140/epjc/s10052-022-10405-x
  4. Production of light (anti)nuclei in pp collisions at √s = 13 TeV
    High Energy Phys. 01 (2022) 106
    https://dx.doi.org/10.1007/JHEP01(2022)106
  5. Prompt D0, D+, and D*+ production in Pb-Pb collisions at √sNN = 5.02 TeV
    High Energy Phys. 01 (2022) 174
    https://dx.doi.org/10.1007/JHEP01(2022)174
  6. Measurement of inclusive charged-particle b-jet production in pp and p-Pb collisions at √sNN = 5.02 TeV
    High Energy Phys. 01 (2022) 178
    https://dx.doi.org/10.1007/JHEP01(2022)178
  7. Prompt and non-prompt J/ψ production cross sections at midrapidity in proton-proton collisions at √s = 5.02 and 13 TeV
    High Energy Phys. 03 (2022) 190
    https://dx.doi.org/10.1007/JHEP03(2022)190
  8. Measurements of the groomed and ungroomed jet angularities in pp collisions at √s = 5.02 TeV
    High Energy Phys. 05 (2022) 061
    https://dx.doi.org/10.1007/JHEP05(2022)061
  9. Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at √s = 5.02 and 13 TeV
    High Energy Phys. 06 (2022) 015
    https://dx.doi.org/10.1007/JHEP06(2022)015
  10. Study of very forward energy and its correlation with particle production at midrapidity in pp and p-Pb collisions at the LHC
    High Energy Phys. 08 (2022) 086
    https://dx.doi.org/10.1007/JHEP08(2022)086
  11. Measurement of beauty production via non-prompt D0 mesons in Pb-Pb collisions at √sNN = 5.02 TeV
    High Energy Phys. 12 (2022) 126
    https://dx.doi.org/10.1007/JHEP12(2022)126
  12. Direct observation of the dead-cone effect in quantum chromodynamics
    Nature 605 (2022) 440
    https://dx.doi.org/10.1038/s41586-022-04572-w
  13. Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at √sNN =8.16 TeV
    Lett. B 827 (2022) 136943
    https://dx.doi.org/10.1016/j.physletb.2022.136943
  14. Production of Λ and K0s in jets in p-Pb collisions at √sNN=5.02 TeV and pp collisions at √s=7 TeV
    Lett. B 827 (2022) 136984
    https://dx.doi.org/10.1016/j.physletb.2022.136984
  15. Measurement of prompt Ds+-meson production and azimuthal anisotropy in Pb-Pb collisions at √sNN=5.02 TeV
    Lett. B 827 (2022) 136986
    https://dx.doi.org/10.1016/j.physletb.2022.136986
  16. Measurement of K*(892)± production in inelastic pp collisions at the LHC
    Lett. B 828 (2022) 137013
    https://dx.doi.org/10.1016/j.physletb.2022.137013
  17. Investigating the role of strangeness in baryon-antibaryon annihilation at the LHC
    Lett. B 829 (2022) 137060
    https://dx.doi.org/10.1016/j.physletb.2022.137060
  18. Observation of a multiplicity dependence in the pT-differential charm baryon-to-meson ratios in proton-proton collisions at √s = 13 TeV
    Lett. B 829 (2022) 137065
    https://dx.doi.org/10.1016/j.physletb.2022.137065
  19. Neutral to charged kaon yield fluctuations in Pb – Pb collisions at √sNN =2.76 TeV
    Lett. B 832 (2022) 137242
    https://dx.doi.org/10.1016/j.physletb.2022.137242
  20. Exploring the NΛ-NΣ coupled system with high precision correlation techniques at the LHC
    Lett. B 833 (2022) 137272
    https://dx.doi.org/10.1016/j.physletb.2022.137272
  21. K0SK0S and K0SK± femtoscopy in pp collisions at √s=5.02 and 13 TeV
    Lett. B 833 (2022) 137335
    https://dx.doi.org/10.1016/j.physletb.2022.137335
  22. General balance functions of identified charged hadron pairs of (π,K,p) in Pb-Pb collisions at √sNN = 2.76 TeV
    Lett. B 833 (2022) 137338
    https://dx.doi.org/10.1016/j.physletb.2022.137338
  23. Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations
    Lett. B 834 (2022) 137393
    https://dx.doi.org/10.1016/j.physletb.2022.137393
  24. Production of K*(892)0 and φ(1020) in pp and Pb-Pb collisions at √sNN = 5.02 TeV
    Rev. C 106 (2022) 034907
    https://dx.doi.org/10.1103/PhysRevC.106.034907
  25. Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC
    Rev. D 105 (2022) L011103
    https://dx.doi.org/10.1103/PhysRevD.105.L011103
  26. First study of the two-body scattering involving charm hadrons
    Rev. D 106 (2022) 052010
    https://dx.doi.org/10.1103/PhysRevD.106.052010
  27. Measurement of Prompt D0, Λc+, and Σc0,++(2455) Production in Proton-Proton Collisions at √s = 13 TeV
    Rev. Lett. 128 (2022) 012001
    https://dx.doi.org/10.1103/PhysRevLett.128.012001
  28. Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb-Pb collisions at √sNN = 5.02 TeV
    Rev. Lett. 128 (2022) 102001
    https://dx.doi.org/10.1103/PhysRevLett.128.102001
  29. Polarization of Λ and Λ̅ Hyperons along the Beam Direction in Pb-Pb Collisions at √sNN=5.02 TeV
    Rev. Lett. 128 (2022) 172005
    https://dx.doi.org/10.1103/PhysRevLett.128.172005
  30. Hypertriton Production in p-Pb Collisions at √sNN=5.02 TeV
    Rev. Lett. 128 (2022) 252003
    https://dx.doi.org/10.1103/PhysRevLett.128.252003
  31. Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy. (2022)
    https://dx.doi.org/10.1038/s41567-022-01804-8
  32. Qiu
    Studying the Chiral Magnetic Effect in Pb-Pb and Xe-Xe collisions using the AVFD model
    Epj Web Conf. 274 (2022) 02005 {c}
    https://dx.doi.org/10.1051/epjconf/202227402005
  33. Qiu
    Rapidity-dependent charge-dependent flow, global polarisation and chiral magnetic effect in heavy ion collisions
    Epj Web Conf. 274 (2022) 05001 {c}
    https://dx.doi.org/10.1051/epjconf/202227405001
  34. A. Rinella, P. Kuijer (et al.)
    First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors
    Nucl. Instrum. Meth. A 1028 (2022) 166280
    https://dx.doi.org/10.1016/j.nima.2021.166280

Neutrino Telescopes

ANTARES Collaboration: A. Albert(et al.); M. C. Bouwhuis, R. Bruijn, A. Domi, T. van Eeden, D. van Eijk, R. Gracia Ruiz, A. J. Heijboer, B. Jisse-Jung, M. de Jong, P. de Jong, K. Melis, R. Muller, L. Nauta, B. Ó Fearraigh, V. Pestel, D. F. E. Samtleben,  J. Seneca, R. Bruijn, A. Domi, P. de Jong , K. Melis, H. van Haren, M. de Jong, D. F. E. Samtleben

  1. Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic-Rays
    J. 934 (2022) 164
    https://dx.doi.org/10.3847/1538-4357/ac6def
  2. Search for solar atmospheric neutrinos with the ANTARES neutrino telescope
    Cosmol. Astropart. Phys. 06 (2022) 018
    https://dx.doi.org/10.1088/1475-7516/2022/06/018
  3. Search for secluded dark matter towards the Galactic Centre with the ANTARES neutrino telescope
    Cosmol. Astropart. Phys. 06 (2022) 028
    https://dx.doi.org/10.1088/1475-7516/2022/06/028
  4. Search for magnetic monopoles with ten years of the ANTARES neutrino telescope
    JHEAp 34 (2022) 1
    https://dx.doi.org/10.1016/j.jheap.2022.03.001
  5. Search for non-standard neutrino interactions with 10 years of ANTARES data
    High Energy Phys. 07 (2022) 048
    https://dx.doi.org/10.1007/JHEP07(2022)048
  6. V. Cappellen, M. Bouwhuis (et al.)
    Apertif: Phased array feeds for the Westerbork Synthesis Radio Telescope: System overview and performance characteristics
    Astron. Astrophys. 658 (2022)
    https://dx.doi.org/10.1051/0004-6361/202141739
  7. Adams, M. Bouwhuis (et al.)
    First release of Apertif imaging survey data
    Astron. Astrophys. 667 (2022)
    https://dx.doi.org/10.1051/0004-6361/202244007
  8. Ackermann, A. Heijboer (et al.)
    High-energy and ultra-high-energy neutrinos: A Snowmass white paper
    JHEAp 36 (2022) 55
    https://dx.doi.org/10.1016/j.jheap.2022.08.001

KM3NeT Collaboration: S. Aiello (et al.); S. Basegmez du Pree, E. Berbee, M. Bouwhuis, R. Bruijn, A. Domi, T. van Eeden, D. van Eijk, C. Gatius, R. Gracia, A. Heijboer, M. de Jong, P. de Jong, B. J. Jung, J. Majumdar, K. W. Melis, R. Muller, L. Nauta, B. Ó Fearraigh, V. Pestel, D. F. E. Samtleben, J. Seneca , E. de Wolf, A. M. van den Berg

  1. Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA
    Phys. J. C 82 (2022) 26
    https://dx.doi.org/10.1140/epjc/s10052-021-09893-0
  2. Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search
    Phys. J. C 82 (2022) 317
    https://dx.doi.org/10.1140/epjc/s10052-022-10137-y
  3. Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering
    High Energy Phys. 03 (2022) 055
    https://dx.doi.org/10.1007/JHEP03(2022)055
  4. The KM3NeT multi-PMT optical module
    Instr. 17 (2022) P07038
    https://dx.doi.org/10.1088/1748-0221/17/07/P07038
  5. Nanobeacon: A time calibration device for the KM3NeT neutrino telescope
    Instrum. Meth. A 1040 (2022) 167132
    https://dx.doi.org/10.1016/j.nima.2022.167132
  6. Pestel, L. Nauta, Z. Aly
    First neutrino oscillation measurement with KM3NeT/ORCA
    PoS NuFact2021 (2022) 064 {c}
    https://dx.doi.org/10.22323/1.402.0064
  7. Ameli, S. Biagi, R. Cocimano, A. D’Amico, E. Giorgio, K. Leismuller, G. Larosa, J-W. Schmelling (et al.)
    Underwater node for electrical power distribution and optical data transmission for multidisciplinary science in the Mediterranean Sea
    2022 IEEE Int. Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea) (2022) {c} {nOA}
    https://dx.doi.org/10.1109/metrosea55331.2022.9950925
  8. Ameli, C. A. Nicolau, E. Giorgio, G. Riccobene, E. Leonora, S. Pulvirenti, R. Cocimano, J-W. Schmelling (et al.)
    The ICE board: a Hi-Rel electronics board for sub-nanosecond synchronization of submarine instrumentation
    2022 IEEE Int. Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea) (2022) {c} {nOA}
    https://dx.doi.org/10.1109/metrosea55331.2022.9950906
  9. Pulvirenti, J-W. Schmelling, A. D’Amico, E. Giorgio, S. Aurnia
    IDMAR Infrastructure: the Junction Box and shore station optical network
    2022 IEEE Int. Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea) (2022) {c} {nOA}
    https://dx.doi.org/10.1109/metrosea55331.2022.9950737
  10. Biggio, A. Domi, S. Tosi, G. Vernardos, D. Ricci, L. Paganin, G. Bracco
    Time-delay estimation in unresolved lensed quasars
    Mon. Not. R. Astron. Soc. 515 (2022) 5665
    https://dx.doi.org/10.1093/mnras/stac2034
  11. Leonova, P. A. Oesch, Y. Qin, R. P. Naidu, J. S. B. Wyithe, S. de Barros , R. J. Bouwens, R. S. Ellis (et al.)
    The prevalence of galaxy overdensities around UV-luminous Lyman emitters in the Epoch of Reionization
    Mon. Not. R. Astron. Soc. 515 (2022) 5790
    https://dx.doi.org/10.1093/mnras/stac1908

DUNE Collaboration: A. Abed Abud (et al.); M.P. Decowski, P. de Jong, F. Filthaut, T. Miedema, M.A. Vermeulen

  1. Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC
    Instr. 17 (2022) P01005
    https://dx.doi.org/10.1088/1748-0221/17/01/P01005
  2. Abed Abud (et al.)
    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
    Eur. Phys. J. C 82 (2022) 618
    https://dx.doi.org/10.1140/epjc/s10052-022-10549-w
  3. Abed Abud (et al.)
    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
    Eur. Phys. J. C 82 (2022) 903
    https://dx.doi.org/10.1140/epjc/s10052-022-10791-2
  4. Abud Abed (et al.)
    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
    Phys. Rev. D 105 (2022) 072006
    https://dx.doi.org/10.1103/PhysRevD.105.072006

Gravitational Waves

Virgo Collaboration: F. Acernese (et al.); M. Bader, A. Bertolini, U Bhardwaj, H J Bulten, S Caudill, S Danilishin, T Dietrich, Y Guo, P Gupta, O Hannuksela, K. Haris,   E. Hennes, S. Hild, J. Janquart, R. Jonker, G. Koekoek, P. Kuijer, F. Linde, S. Nissanke,  B.Miller, P. Pang, D. Pascucci, K. Phukon, A.Puecher, G. Raaijmakers, A.Samajdar, A.Singha, V. Spagnuolo, J. Steinlechner, S. Steinlechner, B. Swinkels, M. Tacca, E. Tapia San Martin, K. Tsang, A. Utina, N. van Bakel, M. van Beuzekom, J. van den Brand, C. van den Broeck, L. van der Schaaf, M. Vardaro, R. Walet

  1. Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3
    Quant. Grav. 39 (2022) 045006
    https://dx.doi.org/10.1088/1361-6382/ac3c8e
  2. The Virgo O3 run and the impact of the environment
    Quant. Grav. 39 (2022) 235009
    https://dx.doi.org/10.1088/1361-6382/ac776a
  3. van Dael, G. Witvoet, B. Swinkels, T. Oomen
    Systematic feedback control design for scattered light noise mitigation in Virgo’s MultiSAS
    2022 IEEE 17th Int. Conf. on Advanced Motion Control (AMC) (2022) {c}{nOA}
    https://dx.doi.org/10.1109/amc51637.2022.9729313
  4. Bersanetti
    Simulations for the Locking and Alignment Strategy of the DRMI Configuration of the Advanced Virgo Plus Detector
    Galaxies 10 (2022)
    https://dx.doi.org/10.3390/galaxies10060115
  5. Verma, A. Reza, D. Krishnaswamy, S. Caudill, G. Gaur
    Employing deep learning for detection of gravitational waves from compact binary coalescences
    Aip Conf. Proc. 2555 (2022) 020010 {c}
    https://dx.doi.org/10.1063/5.0108682
  6. S. Ubhi, L. Prokhorov, S. Cooper, C. D. Fronzo, J. Bryant, D. Hoyland, A. Mitchell, J. van Dongen (et al.)
    Active platform stabilization with a 6D seismometer
    Appl. Phys. Lett. 121 (2022) 174101
    https://dx.doi.org/10.1063/5.0118606
  7. Gossan, E. Hall, S. Nissanke
    Optimizing the Third Generation of Gravitational-wave Observatories for Galactic Astrophysics
    Astrophys. J. 926 (2022)
    https://dx.doi.org/10.3847/1538-4357/ac4164
  8. Basak, K. Haris (et al.)
    Constraints on Compact Dark Matter from Gravitational Wave Microlensing
    Astrophys. J. Lett. 926 (2022)
    https://dx.doi.org/10.3847/2041-8213/ac4dfa
  9. Shiralilou, T. Hinderer, S. M. Nissanke, N. Ortiz, H. Witek
    Post-Newtonian gravitational and scalar waves in scalar-Gauss-Bonnet gravity
    Class. Quant. Grav. 39 (2022) 035002
    https://dx.doi.org/10.1088/1361-6382/ac4196
  10. Utina (et al.)
    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors
    Class. Quant. Grav. 39 (2022) 215008
    https://dx.doi.org/10.1088/1361-6382/ac8fdb
  11. Janquart, A. More, C. Van Den Broeck
    Ordering the confusion: a study of the impact of lens models on gravitational-wave strong lensing detection capabilities
    Mon. Not. R. Astron. Soc. 519 (2022) 2046
    https://dx.doi.org/10.1093/mnras/stac3660
  12. Lopez, P. Bonizzi, K. Driessens, G. Koekoek, J. A. de Vries , R. Westra
    Searching for ring-like structures in the cosmic microwave background
    Mon. Not. R. Astron. Soc. 519 (2022) 922
    https://dx.doi.org/10.1093/mnras/stac3485
  13. Huth, P. Pang (et al.)
    Constraining neutron-star matter with microscopic and macroscopic collisions
    Nature 606 (2022) 276
    https://dx.doi.org/10.1038/s41586-022-04750-w
  14. Andreoni, P. Pang (et al.)
    A very luminous jet from the disruption of a star by a massive black hole
    Nature 612 (2022) 430
    https://dx.doi.org/10.1038/s41586-022-05465-8
  15. Steinlechner
    Coatings for Gravitational Wave Detectors
    Optics InfoBase Conf. Papers (2022) {c}{nOA}
    https://doi.org/10.1364/OIC.2022.WA.4
  16. Kunert, P. Pang (et al.)
    Quantifying modeling uncertainties when combining multiple gravitational-wave detections from binary neutron star sources
    Phys. Rev. D 105 (2022)
    https://dx.doi.org/10.1103/PhysRevD.105.L061301
  17. Baltus, G. , Lopez (et al.)
    Convolutional neural network for gravitational-wave early alert: Going down in frequency
    Phys. Rev. D 106 (2022)
    https://dx.doi.org/10.1103/PhysRevD.106.042002
  18. Hanna, S. Caudill (et al.)
    Metric assisted stochastic sampling search for gravitational waves from binary black hole mergers
    Phys. Rev. D 106 (2022)
    https://dx.doi.org/10.1103/PhysRevD.106.084033
  19. Mukherjee, K. Phukon (et al.)
    Toward establishing the presence or absence of horizons in coalescing binaries of compact objects by using their gravitational wave signals
    Phys. Rev. D 106 (2022)
    https://dx.doi.org/10.1103/PhysRevD.106.104032
  20. Puecher, C. Van Den Broeck (et al.)
    Testing general relativity using higher-order modes of gravitational waves from binary black holes
    Phys. Rev. D 106 (2022)
    https://dx.doi.org/10.1103/PhysRevD.106.082003
  21. Kolmus, G. Baltus, J. Janquart, T. van Laarhoven, S. Caudill, T. Heskes
    Fast sky localization of gravitational waves using deep learning seeded importance sampling
    Phys. Rev. D 106 (2022) 023032
    https://dx.doi.org/10.1103/PhysRevD.106.023032
  22. H. T. Cheung, K. W. K. Wong, O. A. Hannuksela, T. G. F. Li, S. Ho
    Testing the robustness of simulation-based gravitational-wave population inference
    Phys. Rev. D 106 (2022) 083014
    https://dx.doi.org/10.1103/PhysRevD.106.083014
  23. Ebersold, S. Tiwari, L. Smith, Y-B. Bae, G. Kang, D. Williams, A. Gopakumar, M. Haney (et al.)
    Observational limits on the rate of radiation-driven binary black hole capture events
    Phys. Rev. D 106 (2022) 104014
    https://dx.doi.org/10.1103/PhysRevD.106.104014
  24. Roy
    Nonorthogonal wavelet transformation for reconstructing gravitational wave signals
    Phys. Rev. Res. 4 (2022) 033078
    https://dx.doi.org/10.1103/PhysRevResearch.4.033078
  25. Kiessling, J. Steinlechner (et al.)
    Quasi-monocrystalline silicon for low-noise end mirrors in cryogenic gravitational-wave detectors
    Phys. Rev. Research 4 (2022)
    https://dx.doi.org/10.1103/PhysRevResearch.4.043043
  26. Agayeva, S. Caudill (et al.)
    The GRANDMA network in preparation for the fourth gravitational-wave observing run
    Proc. SPIE-Int. Soc. Opt. Eng. 12186 (2022) {c}
    https://dx.doi.org/10.1117/12.2630240
  27. Aritomi, M. van Beuzekom (et al.)
    Demonstration of length control for a filter cavity with coherent control sidebands
    Phys. Rev. D 106 (2022) 102003 {nOA}
    https://dx.doi.org/10.1103/PhysRevD.106.102003
  28. Zhao (et al.), Y. Guo, M. Tacca
    Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing
    Phys. Rev. D 105 (2022) 082003
    https://dx.doi.org/10.1103/PhysRevD.105.082003

LIGO Scientific Collaboration and Virgo Collaboration

  1. Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo
    Astrophys. 659 (2022) A84
    https://dx.doi.org/10.1051/0004-6361/202141452
  2. Search for Gravitational Waves Associated with Γ-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
    J. 928 (2022)
    https://dx.doi.org/10.3847/1538-4357/ac532b
  3. Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
    J. 932 (2022) 133
    https://dx.doi.org/10.3847/1538-4357/ac6ad0
  4. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs
    J. 935 (2022)
    https://dx.doi.org/10.3847/1538-4357/ac6acf
  5. Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data
    J. Lett. 941 (2022) L30
    https://dx.doi.org/10.3847/2041-8213/aca1b0
  6. All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs
    Rev. D 105 (2022)
    https://dx.doi.org/10.1103/PhysRevD.105.122001
  7. All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data
    Rev. D 105 (2022)
    https://dx.doi.org/10.1103/PhysRevD.105.102001
  8. Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data
    Rev. D 105 (2022)
    https://dx.doi.org/10.1103/PhysRevD.105.022002
  9. Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants
    Rev. D 105 (2022)
    https://dx.doi.org/10.1103/PhysRevD.105.082005
  10. Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run
    Rev. D 105 (2022) 063030
    https://dx.doi.org/10.1103/PhysRevD.105.063030
  11. Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data
    Rev. D 106 (2022) 042003
    https://dx.doi.org/10.1103/PhysRevD.106.042003
  12. Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data
    Rev. D 106 (2022) 062002
    https://dx.doi.org/10.1103/PhysRevD.106.062002
  13. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data
    Rev. D 106 (2022) 102008
    https://dx.doi.org/10.1103/PhysRevD.106.102008
  14. Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run
    Rev. Lett. 129 (2022) 061104
    https://dx.doi.org/10.1103/PhysRevLett.129.061104
  15. First joint observation by the underground gravitational-wave detector KAGRA with GEO 600
    Theor. Exp. Phys. 2022 (2022) 063F01
    https://dx.doi.org/10.1093/ptep/ptac073
  16. Lopez, V. Boudart, K. Buijsman, A. Reza, S. Caudill
    Simulating transient noise bursts in LIGO with generative adversarial networks
    Phys. Rev. D 106 (2022) 023027
    https://dx.doi.org/10.1103/PhysRevD.106.023027

Einstein Consortium

  1. Bader, S. Koley, J. van den Brand, X. Campman, Henk J. Bulten, F. Linde, B. Vink
    Newtonian-noise characterization at Terziet in Limburg – The Euregio Meuse-Rhine candidate site for Einstein Telescope
    Class. Quant. Grav. 39 (2022) {nOA}
    https://dx.doi.org/10.1088/1361-6382/ac1be4
  2. Koley, M. Bader, J. van den Brand, X. Campman, H. J. Bulten, F. Linde, B. Vink
    Surface and underground seismic characterization at Terziet in Limburgthe Euregio Meuse-Rhine candidate site for Einstein Telescope
    Class. Quant. Grav. 39 (2022) 025008 {nOA}
    https://dx.doi.org/10.1088/1361-6382/ac2b08
  3. Di Pace (et al.)
    Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope
    Galaxies 10 (2022) 65
    https://dx.doi.org/10.3390/galaxies10030065

Cosmic Rays

Pierre Auger Collaboration: P. Abreu (et al.), A. Bwembya, S. de Jong, M. Eman, H. Falcke, J. Horandel, K. Mulrey, M. Pothast, H. Schoorlemmer,  C. Timmermans

  1. Arrival Directions of Cosmic-Rays above 32 EeV from Phase One of the Pierre Auger Observatory
    J. 935 (2022) 170
    https://dx.doi.org/10.3847/1538-4357/ac7d4e
  2. A Search for Photons with Energies Above 2 x 1017 eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
    J. 933 (2022) 125
    https://dx.doi.org/10.3847/1538-4357/ac7393
  3. Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
    Universe 8 (2022) 579
    https://dx.doi.org/10.3390/universe8110579
  4. Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory
    Cosmol. Astropart. Phys. 01 (2022) 023
    https://dx.doi.org/10.1088/1475-7516/2022/01/023
  5. Breuhaus, H. Schoorlemmer (et al.)
    Galactic γ-ray and neutrino emission from interacting cosmic-ray nuclei
    Astron. Astrophys. 661 (2022)
    https://dx.doi.org/10.1051/0004-6361/202141318
  6. Filimonova, S. Junius, L. Lopez Honorez, S. Westhoff
    Inelastic Dirac dark matter
    J. High Energy Phys. 06 (2022) 048
    https://dx.doi.org/10.1007/JHEP06(2022)048
  7. Bechtol, K. Mulrey (et al.)
    SLAC T-510 experiment for radio emission from particle showers: Detailed simulation study and interpretation
    Phys. Rev. D 105 (2022) 063025
    https://dx.doi.org/10.1103/PhysRevD.105.063025
  8. Fodran (et al.)
    First results from the AugerPrime Radio Detector
    PoS ICRC2021 395 (2022) {c}
    https://doi.org/10.22323/1.395.0270

Dark Matter

XENON Collaboration: E. Aprile (et al.); S. Bruenner, A.P. Colijn, M.P. Decowski, S. Di Pede, P.  Gaemers

  1. Material radiopurity control in the XENONnT experiment
    Phys. J. C 82 (2022) 599
    https://dx.doi.org/10.1140/epjc/s10052-022-10345-6
  2. An approximate likelihood for nuclear recoil searches with XENON1T data
    Phys. J. C 82 (2022) 989
    https://dx.doi.org/10.1140/epjc/s10052-022-10913-w
  3. Double-Weak Decays of 124Xe and 136Xe in the XENON1T and XENONnT Experiments
    Rev. C 106 (2022) 024328
    https://dx.doi.org/10.1103/PhysRevC.106.024328
  4. Emission of single and few electrons in XENON1T and limits on light dark matter
    Rev. D 106 (2022) 022001
    https://dx.doi.org/10.1103/PhysRevD.106.022001
  5. Search for New Physics in Electronic Recoil Data from XENONnT
    Rev. Lett. 129 (2022) 161805
    https://dx.doi.org/10.1103/PhysRevLett.129.161805
  6. Application and modeling of an online distillation method to reduce krypton and argon in XENON1T
    Theor. Exp. Phys. 2022 (2022) 053H01
    https://dx.doi.org/10.1093/ptep/ptac074
  7. R. Angevaare, G. Bertone, A. P. Colijn, M. P. Decowski, B. J. Kavanagh
    Complementarity of direct detection experiments in search of light Dark Matter
    J. Cosmol. Astropart. Phys. 10 (2022) 004
    https://dx.doi.org/10.1088/1475-7516/2022/10/004
  8. Ellingwood, T. Pollmann (et al.)
    Ultraviolet-induced fluorescence of poly(methyl methacrylate) compared to 1,1,4,4-tetraphenyl-1,3-butadiene down to 4 K
    Nucl. Instrum. Meth. A 1039 (2022) 167119
    https://dx.doi.org/10.1016/j.nima.2022.167119
  9. Abe, M. P. Decowski (et al.)
    KamLAND’s search for correlated low-energy electron antineutrinos with astrophysical neutrinos from IceCube
    Astropart. Phys. 143 (2022)
    https://dx.doi.org/10.1016/j.astropartphys.2022.102758
  10. Abe, M. P. Decowski (et al.)
    Search for Solar Flare Neutrinos with the KamLAND Detector
    Astrophys. J. 924 (2022)
    https://dx.doi.org/10.3847/1538-4357/ac35d1
  11. Abe, M. P. Decowski (et al.)
    Limits on Astrophysical Antineutrinos with the KamLAND Experiment
    Astrophys. J. 925 (2022) 14
    https://dx.doi.org/10.3847/1538-4357/ac32c1
  12. Abe, M. P. Decowski (et al.)
    A Search for Correlated Low-energy Electron Antineutrinos in KamLAND with Γ-Ray Bursts
    Astrophys. J. 927 (2022) 69
    https://dx.doi.org/10.3847/1538-4357/ac4e7e
  13. Obara, M. P. Decowski (et al.)
    Search for Supernova Relic Neutrinos at KamLAND
    J. Phys: Conf. Ser. 2156 (2022) {c}
    https://dx.doi.org/10.1088/1742-6596/2156/1/012138
  14. Abe, M. P. Decowski (et al.)
    Abundances of Uranium and Thorium Elements in Earth Estimated by Geoneutrino Spectroscopy
    Geophys. Res. Lett. 49 (2022)
    https://dx.doi.org/10.1029/2022gl099566

DARWIN Consortium: L. Althueser (et al.); A.P. Colijn

  1. GPU-based optical simulation of the DARWIN detector
    Instr. 17 (2022) P07018
    https://dx.doi.org/10.1088/1748-0221/17/07/P07018

PTOLEMY Collaboration: A.Apponi (et al.); A.P. Colijn, U. Zeitler

  1. Implementation and optimization of the PTOLEMY transverse drift electromagnetic filter
    Instrum. 17 (2022)
    https://dx.doi.org/10.1088/1748-0221/17/05/P05021
  2. Heisenberg’s uncertainty principle in the PTOLEMY project: A theory update
    Rev. D 106 (2022) 053002
    https://dx.doi.org/10.1103/PhysRevD.106.053002

Theory

  1. D. Ball, J. Rojo (et al.)
    The path to proton structure at 1% accuracy
    Eur. Phys. J. C 82 (2022) 428
    https://dx.doi.org/10.1140/epjc/s10052-022-10328-7
  2. Heredia, I. Kolar, J. Llosa, F. J. M. Torralba, A. Mazumdar
    Infinite-derivative linearized gravity in convolutional form
    Class. Quant. Grav. 39 (2022) 085001
    https://dx.doi.org/10.1088/1361-6382/ac5a14
  3. Borinsky, O. Schnetz
    Graphical functions in even dimensions
    Commun. Num. Theor. Phys. 16 (2022) 515
    https://dx.doi.org/10.4310/CNTP.2022.v16.n3.a3
  4. D. Ball, A. Candido, S. Forte, F. Hekhorn, E. R. Nocera, J. Rojo, C. Schwan
    Parton distributions and new physics searches: the Drell-Yan forward-backward asymmetry as a case study
    Eur. Phys. J. C 82 (2022) 1160
    https://dx.doi.org/10.1140/epjc/s10052-022-11133-y
  5. Kouda, T. Kon, Y. Kurihara, T. Ueda
    Higgs triplet extension of GRACE
    Eur. Phys. J. C 82 (2022) 148
    https://dx.doi.org/10.1140/epjc/s10052-021-09903-1
  6. Del Debbio, T. Giani, M. Wilson
    Bayesian approach to inverse problems: an application to NNPDF closure testing
    Eur. Phys. J. C 82 (2022) 330
    https://dx.doi.org/10.1140/epjc/s10052-022-10297-x
  7. Abdul Khalek, R. Gauld, T. Giani, E. R. Nocera, T. R. Rabemananjara, J. Rojo
    nNNPDF3.0: evidence for a modified partonic structure in heavy nuclei
    Eur. Phys. J. C 82 (2022) 507
    https://dx.doi.org/10.1140/epjc/s10052-022-10417-7
  8. Candido, F. Hekhorn, G. Magni
    EKO: evolution kernel operators
    Eur. Phys. J. C 82 (2022) 976
    https://dx.doi.org/10.1140/epjc/s10052-022-10878-w
  9. Y-P. Wu, E. Pinetti, K. Petraki, J. Silk
    Baryogenesis from ultra-slow-roll inflation
    High Energy Phys. 01 (2022) 015
    https://dx.doi.org/10.1007/JHEP01(2022)015
  10. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A. Huss, I. Majer
    VH + jet production in hadron-hadron collisions up to order αs3 in perturbative QCD
    J. High Energy Phys. 03 (2022) 008
    https://dx.doi.org/10.1007/JHEP03(2022)008
  11. Chen, C. Ma, G. Wang, L. L. Yang, X. Ye
    Two-loop infrared singularities in the production of a Higgs boson associated with a top-quark pair
    J. High Energy Phys. 04 (2022) 025
    https://dx.doi.org/10.1007/JHEP04(2022)025
  12. Zhou, J. Y. Gunther, Z. S. Wang, J. de Vries, H. K. Dreiner
    Long-lived sterile neutrinos at Belle II in effective field theory
    J. High Energy Phys. 04 (2022) 057
    https://dx.doi.org/10.1007/JHEP04(2022)057
  13. Zhou
    Light sterile neutrinos and lepton-number-violating kaon decays in effective field theory
    J. High Energy Phys. 06 (2022) 127
    https://dx.doi.org/10.1007/JHEP06(2022)127
  14. Jaarsma, Y. Li, I. Moult, W. Waalewijn, H. X. Zhu
    Renormalization group flows for track function moments
    J. High Energy Phys. 06 (2022) 139
    https://dx.doi.org/10.1007/JHEP06(2022)139
  15. Dekens, J. de Vries, S. Shain
    CP-violating axion interactions in effective field theory
    J. High Energy Phys. 07 (2022) 014
    https://dx.doi.org/10.1007/JHEP07(2022)014
  16. Beneke, M. Garny, S. Jaskiewicz, J. Strohm, R. Szafron, L. Vernazza, J. Wang
    Next-to-leading power endpoint factorization and resummation for off-diagonal quotedblleftgluon quotedblright thrust
    J. High Energy Phys. 07 (2022) 144
    https://dx.doi.org/10.1007/JHEP07(2022)144
  17. Cal, J. Thaler, W. J. Waalewijn
    Power counting energy flow polynomials
    J. High Energy Phys. 09 (2022) 021
    https://dx.doi.org/10.1007/JHEP09(2022)021
  18. de Vries, G. Li, M. J. Ramsey-Musolf, J. C. Vasquez
    Light sterile neutrinos, left-right symmetry, and 0νββ decay
    J. High Energy Phys. 11 (2022) 056
    https://dx.doi.org/10.1007/JHEP11(2022)056
  19. Postma, J. van de Vis, G. White
    Resummation and cancellation of the VIA source in electroweak baryogenesis
    J. High Energy Phys. 12 (2022) 121
    https://dx.doi.org/10.1007/JHEP12(2022)121
  20. Arratia, J. Rojo (et al.)
    Publishing unbinned differential cross section results
    J. Instr. 17 (2022) P01024
    https://dx.doi.org/10.1088/1748-0221/17/01/P01024
  21. Brokkelkamp, J. ter Hoeve, I. Postmes, S. E. van Heijst, L. Maduro, A. V. Davydov, S. Krylyuk, J. Rojo (et al.)
    Spatially Resolved Band Gap and Dielectric Function in Two-Dimensional Materials from Electron Energy Loss Spectroscopy
    J. Phys. Chem. A 126 (2022) 1255
    https://dx.doi.org/10.1021/acs.jpca.1c09566
  22. D. Ball, J. Rojo (et al.)
    The PDF4LHC21 combination of global PDF fits for the LHC Run III
    J. Phys. G 49 (2022) 080501
    https://dx.doi.org/10.1088/1361-6471/ac7216
  23. Abdul Khalek (et al.)
    Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report
    Nucl. Phys. A 1026 (2022) 122447
    https://dx.doi.org/10.1016/j.nuclphysa.2022.122447
  24. Bose, A. Mazumdar, M. Toros
    Infrared scaling for a graviton condensate
    Nucl. Phys. B 977 (2022) 115730
    https://dx.doi.org/10.1016/j.nuclphysb.2022.115730
  25. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, A. Vogt
    Low moments of the four-loop splitting functions in QCD
    Phys. Lett. B 825 (2022) 136853
    https://dx.doi.org/10.1016/j.physletb.2021.136853
  26. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, I. Majer, A. Rodriguez Garcia
    Transverse momentum distributions in low-mass Drell-Yan lepton pair production at NNLO QCD
    Phys. Lett. B 829 (2022) 137111
    https://dx.doi.org/10.1016/j.physletb.2022.137111
  27. Binder, A. Filimonova, K. Petraki, G. White
    Saha equilibrium for metastable bound states and dark matter freeze-out
    Phys. Lett. B 833 (2022) 137323
    https://dx.doi.org/10.1016/j.physletb.2022.137323
  28. Cal, K. Lee, F. Ringer, W. J. Waalewijn
    The soft drop momentum sharing fraction zg beyond leading-logarithmic accuracy
    Phys. Lett. B 833 (2022) 137390
    https://dx.doi.org/10.1016/j.physletb.2022.137390
  29. Schut, J. Tilly, R. J. Marshman, S. Bose, A. Mazumdar
    Improving resilience of quantum-gravity-induced entanglement of masses to decoherence using three superpositions
    Phys. Rev. A 105 (2022) 032411
    https://dx.doi.org/10.1103/PhysRevA.105.032411
  30. B. Amado, B. C. da Cunha, E. Pallante
    Quasinormal modes of scalar fields on small Reissner-Nordstrom-AdS5 black holes
    Phys. Rev. D 105 (2022) 044028
    https://dx.doi.org/10.1103/PhysRevD.105.044028
  31. Kolar, F. J. M. Torralba, A. Mazumdar
    New nonsingular cosmological solution of nonlocal gravity
    Phys. Rev. D 105 (2022) 044045
    https://dx.doi.org/10.1103/PhysRevD.105.044045
  32. Unal, D. Severt, J. de Vries, C. Hanhart, U-G. Meissner
    Electric dipole moments of baryons with bottom quarks
    Phys. Rev. D 105 (2022) 055026
    https://dx.doi.org/10.1103/PhysRevD.105.055026
  33. Bose, A. Mazumdar, M. Schut, M. Toros
    Mechanism for the quantum natured gravitons to entangle masses
    Phys. Rev. D 105 (2022) 106028
    https://dx.doi.org/10.1103/PhysRevD.105.106028
  34. Bor, D. Boer
    TMD evolution study of the cos2φ azimuthal asymmetry in unpolarized J/ψ production at EIC
    Phys. Rev. D 106 (2022) 014030
    https://dx.doi.org/10.1103/PhysRevD.106.014030
  35. Chakraborty, E. Maggio, A. Mazumdar, P. Pani
    Implications of the quantum nature of the black hole horizon on the gravitational-wave ringdown
    Phys. Rev. D 106 (2022) 024041
    https://dx.doi.org/10.1103/PhysRevD.106.024041
  36. Fleischer, E. Malami
    Using B0s→ Dsmp K± Decays as a Portal to New Physics
    Phys. Rev. D 106 (2022) 056004
    https://dx.doi.org/10.1103/PhysRevD.106.056004
  37. K. B. Vinckers, A. de la Cruz-Dombriz, I. Kolar, F. J. Maldonado Torralba, A. Mazumdar
    Ghost-free infinite-derivative dilaton gravity in two dimensions
    Phys. Rev. D 106 (2022) 064037
    https://dx.doi.org/10.1103/PhysRevD.106.064037
  38. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, T. Tong
    Beta-decay implications for the W-boson mass anomaly
    Phys. Rev. D 106 (2022) 075001
    https://dx.doi.org/10.1103/PhysRevD.106.075001
  39. Dasgupta, P. S. B. Dev, A. Ghoshal, A. Mazumdar
    Gravitational wave pathway to testable leptogenesis
    Phys. Rev. D 106 (2022) 075027
    https://dx.doi.org/10.1103/PhysRevD.106.075027
  40. Van Dissel, E. I. Sfakianakis
    Symmetric multifield oscillons
    Phys. Rev. D 106 (2022) 096018
    https://dx.doi.org/10.1103/PhysRevD.106.096018
  41. F. Barker, S. Bose, R. J. Marshman, A. Mazumdar
    Entanglement based tomography to probe new macroscopic forces
    Phys. Rev. D 106 (2022) L041901
    https://dx.doi.org/10.1103/PhysRevD.106.L041901
  42. Li, I. Moult, S. S. van Velzen, W. J. Waalewijn, H. X. Zhu
    Extending Precision Perturbative QCD with Track Functions
    Phys. Rev. Lett. 128 (2022) 182001
    https://dx.doi.org/10.1103/PhysRevLett.128.182001
  43. Cirigliano, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud
    Pion-Induced Radiative Corrections to Neutron β Decay
    Phys. Rev. Lett. 129 (2022) 121801
    https://dx.doi.org/10.1103/PhysRevLett.129.121801
  44. J. Marshman, A. Mazumdar, R. Folman, S. Bose
    Constructing nano-object quantum superpositions with a Stern-Gerlach interferometer
    Phys. Rev. Res. 4 (2022) 023087
    https://dx.doi.org/10.1103/PhysRevResearch.4.023087
  45. Zhou, R. J. Marshman, S. Bose, A. Mazumdar
    Catapulting towards massive and large spatial quantum superposition
    Phys. Rev. Res. 4 (2022) 043157
    https://dx.doi.org/10.1103/PhysRevResearch.4.043157
  46. Fleischer
    CP violation in non-leptonic B decays as a portal to New Physics
    PoS DISCRETE2020-2021 (2022) 008 {c}
    https://dx.doi.org/10.22323/1.405.0008
  47. Magni, R. Gomez-Ambrosio
    SMEFT analysis of the electroweak sector: challenges beyond dimension 6
    PoS EPS-HEP2021 (2022) 475 {c}
    https://dx.doi.org/10.22323/1.398.0475
  48. Del Debbio, T. Giani, C. Monahan
    Lattice Observables for Parton Distributions
    PoS LATTICE2021 (2022) 366 {c}
    https://dx.doi.org/10.22323/1.396.0366
  49. S-O. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, A. Vogt
    DIS coefficient functions at four loops in QCD and beyond
    PoS LL2022 (2022) 047 {c}
    https://dx.doi.org/10.22323/1.416.0047
  50. Beneke, M. Garny, S. Jaskiewicz, J. Strohm, R. Szafron, L. Vernazza, J. Wang
    Endpoint factorization and next-to-leading power resummation of gluon thrust
    PoS LL2022 (2022) 068 {c}
    https://dx.doi.org/10.22323/1.416.0068
  51. Malami, R. Fleischer
    Searching for New Physics with B0s→ Ds± K* Decays
    PoS PANIC2021 (2022) 159 {c}
    https://dx.doi.org/10.22323/1.380.0159
  52. Cranmer, J. Rojo (et al.)
    Publishing statistical models: Getting the most out of particle physics experiments
    SciPost Phys. 12 (2022)
    https://dx.doi.org/10.21468/SciPostPhys.12.1.037
  53. Gauld
    A massive variable flavour number scheme for the Drell-Yan process
    SciPost Phys. 12 (2022) 024
    https://dx.doi.org/10.21468/SciPostPhys.12.1.024
  54. Abdul Khalek
    Impact of LHC dijet production in pp and pPb collisions on the nNNPDF2.0 nuclear PDFs
    SciPost Phys. Proc. 8 (2022) 135 {c}
    https://dx.doi.org/10.21468/SciPostPhysProc.8.135
  55. Basdew-Sharma
    Towards DIS at N4LO
    SciPost Phys. . 8 (2022) 153 {c}
    https://dx.doi.org/10.21468/SciPostPhysProc.8.153
  56. J. Pap, D. Boer, H. Waalkens
    A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics
    SIGMA 18 (2022) 003
    https://dx.doi.org/10.3842/SIGMA.2022.003


Detector R&D

  1. Llopart, A. Vitkovskiy (et al.)
    Timepix4, a large area pixel detector readout chip which can be tiled on 4 sides providing sub-200 ps timestamp binning {c}
    J. Instr. 17 (2022) C01044
    https://dx.doi.org/10.1088/1748-0221/17/01/C01044
  2. Heijhoff, K. Akiba, R. Ballabriga, M. van Beuzekom, M. Campbell, A. P. Colijn, M. Fransen, R. Geertsema (et al.)
    Timing performance of the Timepix4 front-end
    J. Instr. 17 (2022) P07006
    https://dx.doi.org/10.1088/1748-0221/17/07/P07006
  3. M. M. G. Theulings, S. X. Tao, C. W. Hagen, H. Van der Graaf
    Monte Carlo simulation of the secondary electron yield of silicon rich silicon nitride
    J. Instr. 17 (2022) P03008
    https://dx.doi.org/10.1088/1748-0221/17/03/P03008
  4. W. Chan, V. Prodanovic, A. M. M. G. Theulings, T. t. Bruggencate, C. W. Hagen, P. M. Sarro, H. van der Graaf
    Ultra-thin corrugated metamaterial film as large-area transmission dynode
    J. Instr. 17 (2022) P09027
    https://dx.doi.org/10.1088/1748-0221/17/09/P09027
  5. Aoki, P. Kluit, J. Timmermans (et al.)
    Double-hit separation and dE/dx resolution of a time projection chamber with GEM readout
    J. Instr. 17 (2022) P11027
    https://dx.doi.org/10.1088/1748-0221/17/11/P11027
  6. Geertsema, M. van Beuzekom (et al.)
    Charge and temporal characterisation of silicon sensors using a two-photon absorption laser
    J. Instrum. 17 (2022)
    https://dx.doi.org/10.1088/1748-0221/17/02/P02023
  7. Kulkov, M. van Beuzekom (et al.)
    Detection of runaway electrons at the COMPASS tokamak using a Timepix3-based semiconductor detector
    J. Instrum. 17 (2022) {nOA}
    https://dx.doi.org/10.1088/1748-0221/17/02/P02030
  8. Bugiel, R. Russo (et al.)
    Charge sensing properties of monolithic CMOS pixel sensors fabricated in a 65 nm technology
    Nucl. Instrum. Meth. A 1040 (2022) 167213 {nOA}
    https://dx.doi.org/10.1016/j.nima.2022.167213
  9. Klyukhin, H. Boterenbrood (et al.)
    The CMS Magnetic Field Measuring and Monitoring Systems
    Symmetry 14 (2022) 169
    https://dx.doi.org/10.3390/sym14010169


eEDM

  1. Denis, S. Hoekstra (et al.)
    Benchmarking of the Fock-space coupled-cluster method and uncertainty estimation: Magnetic hyperfine interaction in the excited state of BaF
    Phys. Rev. A 105 (2022) 052811
    https://dx.doi.org/10.1103/PhysRevA.105.052811
  2. Chamorro, A. Borschevsky, E. Eliav, S. Hoekstra, N. R. Hutzler, L. F. Pasteka
    Molecular enhancement factors for the P,T-violating electric dipole moment of the electron in BaCH3 and YbCH3 symmetric top molecules
    Phys. Rev. A 106 (2022) 052811 {nOA}
    https://dx.doi.org/10.1103/PhysRevA.106.052811

Astrophysics

  1. G. O. Machado, B. M. Hare, O. Scholten, S. Buitink, A. Corstanje, H. Falcke, J. R. Horandel, T. Huege (et al.)
    The Relationship of Lightning Radio Pulse Amplitudes and Source Altitudes as Observed by LOFAR
    Earth Space Sci. 9 (2022)
    https://dx.doi.org/10.1029/2021ea001958
  2. Corstanje, J. R. Horandel (et al.)
    Results on mass composition of cosmic rays as measured with LOFAR
    PoS ICRC2021 395 (2022) {c}
    https://doi.org/10.22323/1.395.0322
  3. Buitink
    Performance of SKA as an air shower observatory
    PoS ICRC2021 395 (2022) {c}
  4. Addazi, T. Hinderer (et al.)
    Quantum gravity phenomenology at the dawn of the multi-messenger eraA review
    Prog. Part. Nucl. Phys. 125 (2022) 103948
    https://dx.doi.org/10.1016/j.ppnp.2022.103948

Miscellaneous

  1. van Dam, B. van Eijk, J. Steijger
    Reconstructing the cosmic ray energy spectrum with HiSPARC
    Astropart. Phys. 143 (2022)
    https://dx.doi.org/10.1016/j.astropartphys.2022.102747
  2. L. Workman, P. de Jong (et al.)
    Review of Particle Physics
    Prog. Theor. Exp. Phys. 2022 (2022) 083C01
    https://dx.doi.org/10.1093/ptep/ptac097