Publications 2019

  1. ATLAS and D∅ LHCb and BaBar ALICE eEDM
  2. Neutrino Telescopes Gravitational Waves Cosmic Rays Dark Matter
  3. Theoretical Physics Detector R&D Astrophysics Miscellaneous

ATLAS/D0

ATLAS Collaboration: M. Aaboud (et al.); S. Alderweireldt, I. Angelozzi, P.J. Bakker, M. Bedegnetti, S. Bentvelsen, D. Berge, G.J. Bobbink, L. Brenner, C.D. Burgard, S. Caron, R. Castelijn, W.S. Chan, L. Colasurdo, A.P. Colijn, I. Deigaard, P.C. Van Der Deijl, D. Duda, V. Fabiani, P. Ferrari, F. Filthaut, C. Galea, H. van der Graaf, N. de Groot, O. Igonkina, P. de Jong, P. Kluit, A.C. König, E. Koffeman, F. Linde, J. Meyer, M Morgenstern, S. Nektarijevic, K.P. Oussoren, G. Sabato, D. Salek, J. Schouwenberg, B.S. Stapf, P. Vankov, W. Verkerke, A.T. Vermeulen, J.C. Vermeulen, M. Vreeswijk, I. van Vulpen, S. Williams, M.C. van Woerden, T.M.H. Wolf, W. Van Den Wollenberg

  1. Measurement of K0S and Λ0 production in tt̅ dileptonic events in pp collisions at √s = 7 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019) 1017
    https://dx.doi.org/10.1140/epjc/s10052-019-7512-y
  2. Measurements of top-quark pair differential and double-differential cross-sections in the ℓ + jets channel with pp collisions at √s = 13 TeV using the ATLAS detector
    Eur. Phys. J. C 79 (2019) 1028
    https://dx.doi.org/10.1140/epjc/s10052-019-7525-6
  3. A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment
    Eur. Phys. J. C 79 (2019)120
    https://dx.doi.org/10.1140/epjc/s10052-019-6540-y
  4. Measurements of W and Z boson production in pp collisions at √s=5.02 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)128
    https://dx.doi.org/10.1140/epjc/s10052-019-6622-x
  5. In situ calibration of large-radius jet energy and mass in 13 TeV proton proton collisions with the ATLAS detector
    Eur. Phys. J. C 79 (2019)135
    https://dx.doi.org/10.1140/epjc/s10052-019-6632-8
  6. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016
    Eur. Phys. J. C 79 (2019)205
    https://dx.doi.org/10.1140/epjc/s10052-019-6650-6
  7. Measurement of the top quark mass in the tt̅→ lepton+jets channel from √s=8 TeV ATLAS data and combination with previous results
    Eur. Phys. J. C 79 (2019)290
    https://dx.doi.org/10.1140/epjc/s10052-019-6757-9
  8. Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC
    Eur. Phys. J. C 79 (2019)375
    https://dx.doi.org/10.1140/epjc/s10052-019-6847-8
  9. Measurements of inclusive and differential fiducial cross-sections of tt̅γ production in leptonic final states at √s = 13 TeV in ATLAS
    Eur. Phys. J. C 79 (2019)382
    https://dx.doi.org/10.1140/epjc/s10052-019-6849-6
  10. Search for long-lived neutral particles in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter
    Eur. Phys. J. C 79 (2019)481
    https://dx.doi.org/10.1140/epjc/s10052-019-6962-6
  11. Measurement of W± Z production cross sections and gauge boson polarisation in pp collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)535
    https://dx.doi.org/10.1140/epjc/s10052-019-7027-6
  12. Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector
    Eur. Phys. J. C 79 (2019)58
    https://dx.doi.org/10.1140/epjc/s10052-018-6500-y
  13. Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at √s = 13 TeV
    Eur. Phys. J. C 79 (2019)639
    https://dx.doi.org/10.1140/epjc/s10052-019-7140-6
  14. Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)666
    https://dx.doi.org/10.1140/epjc/s10052-019-7162-0
  15. Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV with the ATLAS experiment
    Eur. Phys. J. C 79 (2019)733
    https://dx.doi.org/10.1140/epjc/s10052-019-7181-x
  16. Measurement of the cross-section and charge asymmetry of W bosons produced in proton proton collisions at √s=8 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)760
    https://dx.doi.org/10.1140/epjc/s10052-019-7199-0
  17. Search for excited electrons singly produced in proton proton collisions at √s = 13 TeV with the ATLAS experiment at the LHC
    Eur. Phys. J. C 79 (2019)803
    https://dx.doi.org/10.1140/epjc/s10052-019-7295-1
  18. Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13 TeV
    Eur. Phys. J. C 79 (2019)836
    https://dx.doi.org/10.1140/epjc/s10052-019-7335-x
  19. Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector
    Eur. Phys. J. C 79 (2019)847
    https://dx.doi.org/10.1140/epjc/s10052-019-7321-3
  20. Measurement of fiducial and differential W+W production cross-sections at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)884
    https://dx.doi.org/10.1140/epjc/s10052-019-7371-6
  21. Measurement of W± -boson and Z-boson production cross-sections in pp collisions at √s = 2.76 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)901
    https://dx.doi.org/10.1140/epjc/s10052-019-7399-7
  22. Measurement of W± boson production in Pb-Pb collisions at √sNN = 5.02 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)935
    https://dx.doi.org/10.1140/epjc/s10052-019-7439-3
  23. ATLAS b-jet identification performance and efficiency measurement with tt̅ events in pp collisions at √s = 13 TeV
    Eur. Phys. J. C 79 (2019)970
    https://dx.doi.org/10.1140/epjc/s10052-019-7450-8
  24. Measurement of flow harmonics correlations with mean transverse momentum in lead-lead and proton-lead collisions at √sNN=5.02 TeV with the ATLAS detector
    Eur. Phys. J. C 79 (2019)985
    https://dx.doi.org/10.1140/epjc/s10052-019-7489-6
  25. Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 01 (2019)016
    https://dx.doi.org/10.1007/JHEP01(2019)016
  26. Search for pair production of Higgs bosons in the bb̅ bb̅ final state using proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 01 (2019)030
    https://dx.doi.org/10.1007/JHEP01(2019)030
  27. Measurements of inclusive and differential fiducial cross-sections of tt̅ production with additional heavy-flavour jets in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 04 (2019)046
    https://dx.doi.org/10.1007/JHEP04(2019)046
  28. Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector
    J. High Energy Phys. 04 (2019)048
    https://dx.doi.org/10.1007/JHEP04(2019)048
  29. Search for Higgs boson pair production in the bb̅ WW* decay mode at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 04 (2019)092
    https://dx.doi.org/10.1007/JHEP04(2019)092
  30. Measurement of the ratio of cross sections for inclusive isolated-photon production in pp collisions at √s = 13 and 8 TeV with the ATLAS detector
    J. High Energy Phys. 04 (2019)093
    https://dx.doi.org/10.1007/JHEP04(2019)093
  31. Study of the rare decays of B0s and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector
    J. High Energy Phys. 04 (2019)098
    https://dx.doi.org/10.1007/JHEP04(2019)098
  32. Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 05 (2019)041
    https://dx.doi.org/10.1007/JHEP05(2019)041
  33. Combinations of single-top-quark production cross-section measurements and |fLV Vtb| determinations at √s = 7 and 8 TeV with the ATLAS and CMS experiments
    J. High Energy Phys. 05 (2019)088
    https://dx.doi.org/10.1007/JHEP05(2019)088
  34. Search for top-quark decays t → Hq with 36 fb–1 of pp collision data at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 05 (2019)123
    https://dx.doi.org/10.1007/JHEP05(2019)123
  35. Search for Higgs boson pair production in the WW(*)WW(*) decay channel using ATLAS data recorded at √s = 13 TeV
    J. High Energy Phys. 05 (2019)124
    https://dx.doi.org/10.1007/JHEP05(2019)124
  36. Measurement of VH, H → bb̅ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector
    J. High Energy Phys. 05 (2019)141
    https://dx.doi.org/10.1007/JHEP05(2019)141
  37. Constraints on mediator-based dark matter and scalar dark energy models using √s = 13 TeV pp collision data collected by the ATLAS detector
    J. High Energy Phys. 05 (2019)142
    https://dx.doi.org/10.1007/JHEP05(2019)142
  38. Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 05 (2019)164
    https://dx.doi.org/10.1007/JHEP05(2019)164
  39. Searches for third-generation scalar leptoquarks in √s = 13 TeV pp collisions with the ATLAS detector
    J. High Energy Phys. 06 (2019)144
    https://dx.doi.org/10.1007/JHEP06(2019)144
  40. Search for scalar resonances decaying into μ+μ in events with and without b-tagged jets produced in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 07 (2019)117
    https://dx.doi.org/10.1007/JHEP07(2019)117
  41. Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 08 (2019)033
    https://dx.doi.org/10.1007/JHEP08(2019)033
  42. Search for diboson resonances in hadronic final states in 139 fb–1 of pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 09 (2019)091
    https://dx.doi.org/10.1007/JHEP09(2019)091
  43. Measurement of ZZ production in the ℓℓνν final state with the ATLAS detector in pp collisions at √s = 13 TeV
    J. High Energy Phys. 10 (2019)127
    https://dx.doi.org/10.1007/JHEP10(2019)127
  44. Measurement of the inclusive isolated-photon cross section in pp collisions at √s = 13 TeV using 36 fb–1 of ATLAS data
    J. High Energy Phys. 10 (2019)203
    https://dx.doi.org/10.1007/JHEP10(2019)203
  45. Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector
    J. High Energy Phys. 10 (2019)265
    https://dx.doi.org/10.1007/JHEP10(2019)265
  46. Measurement of the top-quark mass in tt̅+1-jet events collected with the ATLAS detector in pp collisions at √s=8 TeV
    J. High Energy Phys. 11 (2019)150
    https://dx.doi.org/10.1007/JHEP11(2019)150
  47. Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum
    J. High Energy Phys. 12 (2019)060
    https://dx.doi.org/10.1007/JHEP12(2019)060
  48. Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data
    J. Instr. 14 (2019)P03017
    https://dx.doi.org/10.1088/1748-0221/14/03/P03017
  49. Modelling radiation damage to pixel sensors in the ATLAS detector
    J. Instr. 14 (2019)P06012
    https://dx.doi.org/10.1088/1748-0221/14/06/P06012
  50. Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2
    J. Instr. 14 (2019)P09011
    https://dx.doi.org/10.1088/1748-0221/14/09/P09011
  51. Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data
    J. Instr. 14 (2019)P12006
    https://dx.doi.org/10.1088/1748-0221/14/12/P12006
  52. Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 788 (2019)347
    https://dx.doi.org/10.1016/j.physletb.2018.11.032
  53. Search for heavy charged long-lived particles in proton-proton collisions at √s = 13 TeV using an ionisation measurement with the ATLAS detector
    Phys. Lett. B 788 (2019)96
    https://dx.doi.org/10.1016/j.physletb.2018.10.055
  54. Measurement of photon jet transverse momentum correlations in 5.02 TeV Pb+Pb and pp collisions with ATLAS
    Phys. Lett. B 789 (2019)167
    https://dx.doi.org/10.1016/j.physletb.2018.12.023
  55. Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb-Pb collisions with the ATLAS detector
    Phys. Lett. B 789 (2019)444
    https://dx.doi.org/10.1016/j.physletb.2018.11.065
  56. Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the H to WW* to eνμν decay channel in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 789 (2019)508
    https://dx.doi.org/10.1016/j.physletb.2018.11.064
  57. Measurement of the nuclear modification factor for inclusive jets in Pb-Pb collisions at √sNN = 5.02 TeV with the ATLAS detector
    Phys. Lett. B 790 (2019)108
    https://dx.doi.org/10.1016/j.physletb.2018.10.076
  58. Search for Higgs boson decays into a pair of light bosons in the bb μμ final state in pp collision at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 790 (2019)1
    https://dx.doi.org/10.1016/j.physletb.2018.10.073
  59. Study of the hard double-parton scattering contribution to inclusive four-lepton production in pp collisions at √s= 8 TeV with the ATLAS detector
    Phys. Lett. B 790 (2019)595
    https://dx.doi.org/10.1016/j.physletb.2019.01.062
  60. Observation of electroweak W± Z boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 793 (2019)469
    https://dx.doi.org/10.1016/j.physletb.2019.05.012
  61. Search for invisible Higgs boson decays in vector boson fusion at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 793 (2019)499
    https://dx.doi.org/10.1016/j.physletb.2019.04.024
  62. Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 795 (2019)56
    https://dx.doi.org/10.1016/j.physletb.2019.03.067
  63. Measurement of prompt photon production in √sNN = 8.16 TeV p+Pb collisions with ATLAS
    Phys. Lett. B 796 (2019)230
    https://dx.doi.org/10.1016/j.physletb.2019.07.031
  64. Search for high-mass dilepton resonances using 139 fb–1 of pp collision data collected at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 796 (2019)68
    https://dx.doi.org/10.1016/j.physletb.2019.07.016
  65. Evidence for the production of three massive vector bosons with the ATLAS detector
    Phys. Lett. B 798 (2019)134913
    https://dx.doi.org/10.1016/j.physletb.2019.134913
  66. Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at √s = 13 TeV
    Phys. Lett. B 798 (2019)134942
    https://dx.doi.org/10.1016/j.physletb.2019.134942
  67. Measurement of the production cross section for a Higgs boson in association with a vector boson in the H → WW* to ℓνℓν channel in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 798 (2019)134949
    https://dx.doi.org/10.1016/j.physletb.2019.134949
  68. Dijet azimuthal correlations and conditional yields in pp and p+Pb collisions at √sNN = 5.02 TeV with the ATLAS detector
    Phys. Rev. C 100 (2019)034903
    https://dx.doi.org/10.1103/PhysRevC.100.034903
  69. Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector
    Phys. Rev. C 100 (2019)064901
    https://dx.doi.org/10.1103/PhysRevC.100.064901
  70. Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 100 (2019)012006
    https://dx.doi.org/10.1103/PhysRevD.100.012006
  71. Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 100 (2019)032007
    https://dx.doi.org/10.1103/PhysRevD.100.032007
  72. Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at √s = 13 TeV
    Phys. Rev. D. 100 (2019)052011
    https://dx.doi.org/10.1103/PhysRevD.100.052011
  73. Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 100 (2019)052013
    https://dx.doi.org/10.1103/PhysRevD.100.052013
  74. Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at √s= 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)012001
    https://dx.doi.org/10.1103/PhysRevD.99.012001
  75. A search for pairs of highly collimated photon-jets in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)012008
    https://dx.doi.org/10.1103/PhysRevD.99.012008
  76. Search for squarks and gluinos in final states with hadronically decaying τ leptons, jets, and missing transverse momentum using pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)012009
    https://dx.doi.org/10.1103/PhysRevD.99.012009
  77. Search for heavy long-lived multicharged particles in proton-proton collisions at √s = 13 TeV using the ATLAS detector
    Phys. Rev. D. 99 (2019)052003
    https://dx.doi.org/10.1103/PhysRevD.99.052003
  78. Properties of g → bb̅ at small opening angles in pp collisions with the ATLAS detector at √s = 13 TeV
    Phys. Rev. D. 99 (2019)052004
    https://dx.doi.org/10.1103/PhysRevD.99.052004
  79. Search for long-lived particles produced in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer
    Phys. Rev. D. 99 (2019)052005
    https://dx.doi.org/10.1103/PhysRevD.99.052005
  80. Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)052009
    https://dx.doi.org/10.1103/PhysRevD.99.052009
  81. Cross-section measurements of the Higgs boson decaying into a pair of τ leptons in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)072001
    https://dx.doi.org/10.1103/PhysRevD.99.072001
  82. Measurement of the tt̅Z and tt̅W cross sections in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)072009
    https://dx.doi.org/10.1103/PhysRevD.99.072009
  83. Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 99 (2019)092004
    https://dx.doi.org/10.1103/PhysRevD.99.092004
  84. Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb–1 of proton-proton collision data at √s = 13 TeV
    Phys. Rev. D. 99 (2019)092007
    https://dx.doi.org/10.1103/PhysRevD.99.092007
  85. Search for the Production of a Long-Lived Neutral Particle Decaying within the ATLAS Hadronic Calorimeter in Association with a Z Boson from pp Collisions at √s = 13 TeV
    Phys. Rev. Lett. 122 (2019)151801
    https://dx.doi.org/10.1103/PhysRevLett.122.151801
  86. Combination of searches for invisible Higgs boson decays with the ATLAS experiment
    Phys. Rev. Lett. 122 (2019)231801
    https://dx.doi.org/10.1103/PhysRevLett.122.231801
  87. Comparison of Fragmentation Functions for Jets Dominated by Light Quarks and Gluons from pp and Pb+Pb Collisions in ATLAS
    Phys. Rev. Lett. 123 (2019)042001
    https://dx.doi.org/10.1103/PhysRevLett.123.042001
  88. Observation of light-by-light scattering in ultraperipheral Pb-Pb collisions with the ATLAS detector
    Phys. Rev. Lett. 123 (2019)052001
    https://dx.doi.org/10.1103/PhysRevLett.123.052001
  89. Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. Lett. 123 (2019)161801
    https://dx.doi.org/10.1103/PhysRevLett.123.161801
  90. Evidence for the production of three massive vectorbosons in pp collisions with the ATLAS detector
    PoS DIS2019(2019)135
    https://dx.doi.org/10.22323/1.352.0135
  91. Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 788 (2019) 316
    https://doi.org/10.1016/j.physletb.2018.09.062
  92. N. Ilic, J. Vermeulen, S. Kolos
    FELIX: the new detector interface for the ATLAS experiment
    EPJ Web Conf. 214 (2019)01023
    https://dx.doi.org/10.1051/epjconf/201921401023
  93. W. Leight, P.F. Giraud, P. Kluit (et al.)
    New fitting concept in ATLAS muon tracking for the LHC Run-2
    EPJ Web Conf. 214 (2019)06006
    https://dx.doi.org/10.1051/epjconf/201921406006
  94. A. Blue, L.S. Bruni (et al.)
    Test beam evaluation of silicon strip modules for ATLAS phase-II strip tracker upgrade
    Nucl. Instr. Meth. A 924 (2019) 108
    https://dx.doi.org/10.1016/j.nima.2018.09.041
  95. D. Salek (et al.)
    Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum
    Phys. Dark. Univ. 26 (2019) 100371
    https://doi.org/10.1016/j.dark.2019.100371
  96. W. S. Chan
    Search for lepton-flavour-violating decays of the Z boson into a τ lepton and a light lepton with the ATLAS detector
    SciPost Phys. Proc. 1 (2019)048
    https://dx.doi.org/10.21468/SciPostPhysProc.1.048
  97. S. Manzoni
    Physics with Photons Using the ATLAS Run 2 Data
    Springer (2019) 978-3-030-24369
    https://doi.org/10.1007/978-3-030-24370-8
  98. A. Borga (et al.)
    Felix Based Readout of The Single-Phase Protodune Detector
    EPJ Web Conf. 214 (2019)01013
    https://dx.doi.org/10.1051/epjconf/201921401013
  99. MICE Collaboration: D. Adams (et al.), F. Filthaut
    First particle-by-particle measurement of emittance in the Muon Ionization Cooling Experiment
    Eur. Phys. J. C 79 (2019) 257
    https://doi.org/10.1140/epjc/s10052-019-6674-y
  100. S. Caron, T. Heskes, S. Otten, B. Stienen
    Constraining the Parameters of High-Dimensional Models with Active Learning
    Eur. Phys. J. C 79 (2019) 944
    https://doi.org/10.1140/epjc/s10052-019-7437-5
  101. A. Borga (et al.)
    FELIX based readout of the Single-Phase ProtoDUNE detector
    IEEE Trans. Nucl. Sci. 66 (2019)993
    https://dx.doi.org/10.1109/TNS.2019.2904660
  102. S. Caron (et al.)
    Estimating QCD uncertainties in Monte Carlo event generators for γ-ray dark matter searches
    J. Cosmol. Astropart. Phys. 05 (2019) 007
    https://doi.org/10.1088/1475-7516/2019/05/007
  103. G. Busoni, D. Salek (et al.)
    Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter
    Phys. Dark Univ. (2019)100365
    https://dx.doi.org/10.1016/j.dark.2019.100365
  104. T. DuPree (et al.)
    Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels
    Phys. Dark. Univ. 26 (2019) 100377
    https://doi.org/10.1016/j.dark.2019.100377
  105. A.-K. Perrevoort
    The Rare and Forbidden: Testing Physics Beyond the Standard Model with Mu3e
    SciPost Phys. Proc. 1 (2019)052
    https://dx.doi.org/10.21468/SciPostPhysProc.1.052
  106. F. Diblen, J. Attema, S. Caron (et al.)
    Spot: Open Source framework for scientific data repository and interactive visualization
    SoftwareX 9 (2019)328
    https://dx.doi.org/10.1016/j.softx.2019.04.006

D0 Collaboration:

  1. Properties of Zc± (3900) Produced in p p̅ collisions
    Phys. Rev. D. 100 (2019)012005
    https://dx.doi.org/10.1103/PhysRevD.100.012005

 


LHCb/BaBar

LHCb Collaboration: R. Aaij (et al.); S. Ali, L.J. Bel, M. van Beuzekom, G. Ciezarek, E. Dall’Occo, P.N.Y. David, L. Dufour, W. Hulsbergen, E. Jans, T. Ketel, Koopman. R., P. Koppenburg, J. van Leerdam, M. Merk, M. Mulder, C.J.G. Onderwater, A. Pellegrino, G. Raven, H. Snoek, V. Syropoulos, J. van Tilburg, P. Tsopelas, N. Tuning, M. van Veghel, J.A. de Vries

  1. Measurement of the branching fraction and CP asymmetry in B+→ J/ψρ+ decays Eur. Phys. J. C 79 (2019) 537
    https://doi.org/10.1140/epjc/s10052-019-6698-3
  2. Search for the rare decay B+→ μ+μμ+νμ
    Eur. Phys. J. C 79 (2019) 675
    https://doi.org/10.1140/epjc/s10052-019-7112-x
  3. Updated measurement of time-dependent CP-violating observables in B0s→ J/ψ K+ K decays
    Eur. Phys. J. C 79 (2019) 706
    https://doi.org/10.1140/epjc/s10052-019-7159-8
  4. Measurements of CP asymmetries in charmless four-body Λb0 and Ξb0 decays
    Eur. Phys. J. C 79 (2019) 745
    https://doi.org/10.1140/epjc/s10052-019-7218-1
  5. Prompt Λ+c production in p-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 02 (2019) 102
    https://doi.org/10.1007/JHEP02%282019%29102
  6. Search for CP violation through an amplitude analysis of D0→ K+ Kπ+π decays
    J. High Energy Phys. 02 (2019) 126
    https://doi.org/10.1007/JHEP02%282019%29126
  7. Measurement of the ratio of branching fractions of the decays Λ0b→ψ(2S) Λ and Λ0b→ J/ψΛ
    J. High Energy Phys. 03 (2019) 126
    https://doi.org/10.1007/JHEP03%282019%29126
  8. Measurement of the branching fractions of the decays D+→ KK+K+, D+→ KK+K+ D+→ ππ+K+ and D+s→ πK+K+
    J. High Energy Phys. 03 (2019) 176
    https://doi.org/10.1007/JHEP03%282019%29176
  9. Dalitz plot analysis of the D+→ KK+K+ decay
    J. High Energy Phys. 04 (2019) 063
    https://doi.org/10.1007/JHEP04%282019%29063
  10. Observation of the doubly Cabibbo-suppressed decay Ξc+→ p φ
    J. High Energy Phys. 04 (2019) 084
    https://doi.org/10.1007/JHEP04%282019%29084
  11. Study of the B0→ ρ(770)0 K*(892)0 decay with an amplitude analysis of B0→ (π+π) (K+π) decays
    J. High Energy Phys. 05 (2019)026
    https://dx.doi.org/10.1007/JHEP05(2019)026
  12. Amplitude analysis of B0s→ K0S K±π decays
    J. High Energy Phys. 06 (2019) 114
    https://doi.org/10.1007/JHEP06%282019%29114
  13. Amplitude analysis of the B0(s)→ K*0*0 decays and measurement of the branching fraction of the B0→ K*0*0 decay
    J. High Energy Phys. 07 (2019) 032
    https://doi.org/10.1007/JHEP07%2182019%29032
  14. Near-threshold D̅D spectroscopy and observation of a new charmonium state
    J. High Energy Phys. 07 (2019) 035
    https://doi.org/10.1007/JHEP07%282019%29035
  15. Measurement of CP observables in the process B0→ DK*0 with two- and four-body D decays
    J. High Energy Phys. 08 (2019) 041
    https://doi.org/10.1007/JHEP08%282019%29041
  16. Observation of the Λb0→ χc1(3872)pK decay
    J. High Energy Phys. 09 (2019) 028
    https://doi.org/10.1007/JHEP09%282019%29028
  17. A search for Ξ++cc→ D+ p Kπ+ decays
    J. High Energy Phys. 10 (2019) 124
    https://doi.org/10.1007/JHEP10%282019%29124
  18. Measurement of CP violation in the Bs0→ φφ decay and search for the B0→ φφ decay
    J. High Energy Phys. 12 (2019) 155
    https://dx.doi.org/10.1007/JHEP12(2019)155
  19. Design and Performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC
    J. Instr. 14 (2019) P04013
    https://doi.org/10.1088/1748-0221/14/04/P04013
  20. Measurement of b hadron fractions in 13 TeV pp collisions
    Phys. Rev. D. 100 (2019)031102
    https://dx.doi.org/10.1103/PhysRevD.100.031102
  21. Precision measurement of the Λc+, Λc+ and Ξc0 baryon lifetimes
    Phys. Rev. D. 100 (2019) 032001
    https://doi.org/10.1103/PhysRevD.100.032001
  22. Measurement of the Bc meson production fraction and asymmetry in 7 and 13 TeV pp collisions
    Phys. Rev. D. 100 (2019)112006
    https://dx.doi.org/10.1103/PhysRevD.100.112006
  23. Measurement of the mass and production rate of Ξb baryons
    Phys. Rev. D. 99 (2019) 052006
    https://doi.org/10.1103/PhysRevD.99.052006
  24. Measurement of B+, B0 and Λb0 production in pPb collisions at √sNN = 8.16 TeV
    Phys. Rev. D. 99 (2019) 052011
    https://doi.org/10.1103/PhysRevD.99.052011
  25. Measurement of the relative B→ D0 / D*0 / D**0μν̅μ branching fractions using B mesons from B̅s2*0 decays
    Phys. Rev. D. 99 (2019) 092009
    https://doi.org/10.1103/PhysRevD.99.092009
  26. Measurement of the charm-mixing parameter yCP
    Phys. Rev. Lett. 122 (2019) 011802
    https://doi.org/10.1103/PhysRevLett.122.011802
  27. Observation of two resonances in the Λb0π± systems and precise measurement of Σb± and Σb*± properties
    Phys. Rev. Lett. 122 (2019) 012001
    https://doi.org/10.1103/PhysRevLett.122.012001
  28. First Measurement of Charm Production in its Fixed-Target Configuration at the LHC
    Phys. Rev. Lett. 122 (2019) 132002
    https://doi.org/10.1103/PhysRevLett.122.132002
  29. Model-independent observation of exotic contributions to B0→ J/ψ K+π decays
    Phys. Rev. Lett. 122 (2019) 152002
    https://doi.org/10.1103/PhysRevLett.122.152002
  30. Search for lepton-universality violation in B+→ K++ decays
    Phys. Rev. Lett. 122 (2019) 191801
    https://doi.org/10.1103/PhysRevLett.122.191801
  31. Search for CP violation in Ds+→ K0Sπ+, D+→ K0S K+ and D+→ φπ+ decays
    Phys. Rev. Lett. 122 (2019) 191803
    https://doi.org/10.1103/PhysRevLett.122.191803
  32. Observation of B0(s)→ J/ψ p p̅ decays and precision measurements of the B0(s) masses
    Phys. Rev. Lett. 122 (2019) 191804
    https://doi.org/10.1103/PhysRevLett.122.191804
  33. Observation of CP Violation in Charm Decays
    Phys. Rev. Lett. 122 (2019) 211803
    https://doi.org/10.1103/PhysRevLett.122.211803
  34. Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+
    Phys. Rev. Lett. 122 (2019) 222001
    https://doi.org/10.1103/PhysRevLett.122.222001
  35. Measurement of the mass difference between neutral charm-meson eigenstates
    Phys. Rev. Lett. 122 (2019) 231802
    https://doi.org/10.1103/PhysRevLett.122.231802
  36. Observation of an excited B+c state
    Phys. Rev. Lett. 122 (2019) 232001
    https://doi.org/10.1103/PhysRevLett.122.232001
  37. First observation of the radiative decay Λb0→ Λγ
    Phys. Rev. Lett. 123 (2019) 031801
    https://doi.org/10.1103/PhysRevLett.123.031801
  38. Measurement of CP-violating and mixing-induced observables in Bs0→ φγ decays
    Phys. Rev. Lett. 123 (2019)081802
    https://dx.doi.org/10.1103/PhysRevLett.123.081802
  39. Observation of new resonances in the Λb0π+π system
    Phys. Rev. Lett. 123 (2019) 152001
    https://doi.org/10.1103/PhysRevLett.123.152001
  40. Search for the lepton-flavour-violating decays B0s→ τ±μ*
    Phys. Rev. Lett. 123 (2019) 211801
    https://doi.org/10.1103/PhysRevLett.123.211801
  41. Amplitude analysis of B±→ π± K+ K decays
    Phys. Rev. Lett. 123 (2019) 231802
    https://doi.org/10.1103/PhysRevLett.123.231802
  42. Measurement of charged hadron production in Z-tagged jets in proton-proton collisions at √s=8 TeV
    Phys. Rev. Lett. 123 (2019)232001
    https://dx.doi.org/10.1103/PhysRevLett.123.232001
  43. Search for the lepton-flavour violating decays B+→ K+μ± e
    Phys. Rev. Lett. 123 (2019)241802
    https://dx.doi.org/10.1103/PhysRevLett.123.241802
  44. Measurement of the CP-violating phase φs from Bs0→ J/ψπ+π decays in 13 TeV pp collisions
    Phys. Lett. B 797 (2019) 134789
    https://doi.org/10.1016/j.physletb.2019.07.036
  45. R. Aaij, S. Benson (et al.)
    Selection and processing of calibration samples to measure the particle identification performance of the LHCb experiment in Run 2
    EPJ Techn.Instr. 6 (2019) 1
    https://doi.org/10.1140/epjti/s40485-019-0050-z
  46. R. Gauld (et al.)
    Asymmetric heavy-quark hadroproduction at LHCb: Predictions and applications
    J. High Energy Phys. 03 (2019) 166
    https://doi.org/10.1007/JHEP03%282019%29166
  47. R. Aaij, S. Benson (et al.)
    A comprehensive real-time analysis model at the LHCb experiment
    J. Instr. 14 (2019) P04006
    https://doi.org/10.1088/1748-0221/14/04/P04006
  48. K. Akiba, M. van Beuzekom, H. Boterenbrood, B.van der Heijden, F. Schreuder, H. Snoek, P. Tsopelas
    LHCb VELO Timepix3 Telescope
    J. Instr. 14 (2019) P05026
    https://doi.org/10.1088/1748-0221/14/05/P05026
  49. S. Benson
    Experimental status of LNU in B decays in LHCb
    SciPost Phys. Proc. 1 (2019)011
    https://dx.doi.org/10.21468/SciPostPhysProc.1.011
  50. X. Cid Vidal, C. Vazquez Sierra (et al.)
    Report from Working Group 3 Beyond the Standard Model physics at the HL-LHC and HE-LHC
    CERN Yellow Rep. Monogr. 7 (2019)585
    https://dx.doi.org/10.23731/CYRM-2019-007.585
  51. A. Cerri, F. Archilli (et al.)
    Report from Working Group 4: Opportunities in flavour physics at the HL-LHC and HE-LHC
    CERN Yellow Rep. Monogr. 7 (2019)867
    https://dx.doi.org/10.23731/CYRM-2019-007.867
  52. HEP Software Foundation Collaboration : J. Albrecht (et al.), P. Koppenburg, G. Raven, J. Templon, C. Vazquez Sierra
    A Roadmap for HEP Software and Computing R&D for the 2020s
    Comput Softw Big Sci 03 (2019) 1
    https://doi.org/10.1007/s41781-018-0018-8
  53. S. Benson, K. Gizdov
    NNDrone: a toolkit for the mass application of machine learning in High Energy Physics
    Comput. Phys. Commun. 240 (2019) 15
    https://doi.org/10.1016/j.cpc.2019.03.002
  54. D. Hynds (et al.)
    Comparison of small collection electrode CMOS pixel sensors with partial and full lateral depletion of the high-resistivity epitaxial layer
    Nucl. Instr. Meth. A 927 (2019) 187
    https://doi.org/10.1016/j.nima.2019.02.049
  55. S. Ferreres-Sole (et al.)
    Role of the thermal f0(500) in chiral symmetry restoration
    Phys. Rev. D. 99 (2019) 036018
    https://doi.org/10.1103/PhysRevD.99.036018
  56. A. G. Nicola, J. Ruiz De Elvira, S. Ferreres-Sole (et al.)
    Chiral and U(1)A restoration: Ward Identities and effective theories
    PoS Confinement2018(2019)153
    https://dx.doi.org/10.22323/1.336.0153
  57. N. Tuning
    Rare decays of B, D and K mesons
    PoS ICHEP2018(2019)713
    https://dx.doi.org/10.22323/1.340.0713
  58. S. Benson, A. Casais Vidal, X. Cid Vidal (et al.)
    Real-time discrimination of photon pairs using machine learning at the LHC
    SciPost Phys. 7 (2019)062
    https://dx.doi.org/10.21468/SciPostPhys.7.5.062
  59. S. Benson
    Time Dependent CPV in the Beauty Sector
    Springer Proc. Phys. 234 (2019)225
    https://dx.doi.org/10.1007/978-3-030-29622-3_31

BaBar Collaboration: J.P. Lees (et al.); G. Raven

  1. Search for B→ Λ p̅νν̅ with the BABAR experiment
    Phys. Rev. D. 100 (2019)111101
    https://dx.doi.org/10.1103/PhysRevD.100.111101
  2. Search for a stable six-quark state at BABAR
    Phys. Rev. Lett. 122 (2019) 072002
    https://doi.org/10.1103/PhysRevLett.122.072002
  3. Observation of the decay D0→ Kπ+e+e
    Phys. Rev. Lett. 122 (2019) 081802
    https://doi.org/10.1103/PhysRevLett.122.081802
  4. Extraction of form Factors from a Four-Dimensional Angular Analysis of B̅→ D*ν̅
    Phys. Rev. Lett. 123 (2019) 091801
    https://doi.org/10.1103/PhysRevLett.123.091801

 


ALICE

ALICE Collaboration: S. Acharya (et al.); S. (et at.) Acharya, C. Bedda, D. Caffarri, P. Christakoglou, C. Deplano, L.V.R. Doremalen, A. Grelli, M.R. Haque, S. Jaelani, D.L.D. Keijdener, Z. Khabanova, P.G. Kuijer, M. van Leeuwen, F. Lehas, D.F. Lodato, J. Margutti, A. Mischke, A.P. Mohanty, G. Nooren, T. Peitzmann, T. Richert, M.H.P. Sas, G. Simatovic, R.J.M. Snellings, B.A. Trzeciak, A.M. Veen, L. Vermunt, H. Wang

  1. Real-time data processing in the ALICE High Level Trigger at the LHC
    Comput. Phys. Commun. 242 (2019) 25
    https://doi.org/10.1016/j.cpc.2019.04.011
  2. Relative particle yield fluctuations in Pb-Pb collisions at √sNN = 2.76 TeV
    Eur. Phys. J. C 79 (2019) 236
    https://doi.org/10.1140/epjc/s10052-019-6711-x
  3. Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at √sNN = 8.16 TeV
    Eur. Phys. J. C 79 (2019) 307
    https://doi.org/10.1140/epjc/s10052-019-6801-9
  4. Measurement of D0, D+ ,D*+ and D+s production in pp collisions at √s=5.02 TeV with ALICE
    Eur. Phys. J. C 79 (2019) 388
    https://doi.org/10.1140/epjc/s10052-019-6873-6
  5. Energy dependence of exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at √sNN = 5.02 TeV
    Eur. Phys. J. C 79 (2019) 402
    https://doi.org/10.1140/epjc/s10052-019-6816-2
  6. Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at √s =5.02 and 13 TeV
    Eur. Phys. J. C 79 (2019)857
    https://dx.doi.org/10.1140/epjc/s10052-019-7350-y
  7. Measurement of the inclusive isolated photon production cross section in pp collisions at √s = 7 TeV
    Eur. Phys. J. C 79 (2019) 869
    https://doi.org/10.1140/epjc/s10052-019-7389-9
  8. Study of J/ψ azimuthal anisotropy at forward rapidity in Pb-Pb collisions at √sNN =5.02 TeV
    J. High Energy Phys. 02 (2019) 012
    https://doi.org/10.1007/JHEP02%282019%29012
  9. Event-shape engineering for the D-meson elliptic flow in mid-central Pb-Pb collisions at √sNN =5.02 TeV
    J. High Energy Phys. 02 (2019) 150
    https://doi.org/10.1007/JHEP02%282019%29150
  10. Jet fragmentation transverse momentum measurements from di-hadron correlations in √s = 7 TeV pp and √sNN = 5.02 TeV p-Pb collisions
    J. High Energy Phys. 03 (2019) 169
    https://doi.org/10.1007/JHEP03%282019%29169
  11. Measurement of the production of charm jets tagged with D0 mesons in pp collisions at √s = 7 TeV
    J. High Energy Phys. 08 (2019) 133
    https://doi.org/10.1007/JHEP08%282019%29133
  12. Production of muons from heavy-flavour hadron decays in pp collisions at √s = 5.02 TeV
    J. High Energy Phys. 09 (2019) 008
    https://doi.org/10.1007/JHEP09%282019%29008
  13. Event-shape and multiplicity dependence of freeze-out radii in pp collisions at √s=7 TeV
    J. High Energy Phys. 09 (2019) 108
    https://doi.org/10.1007/JHEP09%282019%29108
  14. Inclusive J/ψ production at mid-rapidity in pp collisions at √s = 5.02 TeV
    J. High Energy Phys. 10 (2019) 084
    https://doi.org/10.1007/JHEP10%282019%29084
  15. Measurement of prompt D0, D+, D*+, and D+s production in p-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 12 (2019) 092
    https://dx.doi.org/10.1007/JHEP12(2019)092
  16. Calibration of the photon spectrometer PHOS of the ALICE experiment
    J. Instr. 14 (2019) P05025
    https://doi.org/10.1088/1748-0221/14/05/P05025
  17. Measurement of charged jet cross section in pp collisions at √s = 5.02 TeV
    Phys. Rev. D. 100 (2019) 092004
    https://doi.org/10.1103/PhysRevD.100.092004
  18. Charged jet cross section and fragmentation in proton-proton collisions at √s = 7 TeV
    Phys. Rev. D. 99 (2019) 012016
    https://doi.org/10.1103/PhysRevD.99.012016
  19. Suppression of Λ(1520) resonance production in central Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Rev. D. 99 (2019) 024905
    https://doi.org/10.1103/PhysRevC.99.024905
  20. Two-particle differential transverse momentum and number density correlations in p-Pb-Pb collisions at 2.76 TeV at the CERN Large Hadron Collider
    Phys. Rev. Lett. 100 (2019) 044903
    https://doi.org/10.1103/PhysRevC.100.044903
  21. Azimuthal anisotropy of heavy-flavour decay electrons in p-Pb collisions at √sNN = 5.02 TeV
    Phys. Rev. Lett. 122 (2019) 072301
    https://doi.org/10.1103/PhysRevLett.122.072301
  22. First observation of an attractive interaction between a proton and a multi-strange baryon
    Phys. Rev. Lett. 123 (2019) 112002
    https://doi.org/10.1103/PhysRevLett.123.112002
  23. Investigations of anisotropic flow using multi-particle azimuthal correlations in pp, p-Pb-Pb collisions at the LHC
    Phys. Rev. Lett. 123 (2019) 142301
    https://doi.org/10.1103/PhysRevLett.123.142301
  24. Measurement of Υ(1S) elliptic flow at forward rapidity in Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Rev. Lett. 123 (2019) 192301
    https://doi.org/10.1103/PhysRevLett.123.192301
  25. One-dimensional charged kaon femtoscopy in p-Pb collisions at √sNN = 5.02 TeV
    Phys. Rev. C 100 (2019) 024002
    https://doi.org/10.1103/PhysRevC.100.024002
  26. p-p, p-Λ and Λ – Λ correlations studied via femtoscopy in pp reactions at √s = 7 TeV
    Phys. Rev. C 99 (2019) 024001
    https://doi.org/10.1103/PhysRevC.99.024001
  27. Measurement of dielectron production in central Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Rev. C 99 (2019) 024002
    https://doi.org/10.1103/PhysRevC.99.024002
  28. Multiplicity dependence of light-flavor hadron production in pp collisions at √s = 7 TeV
    Phys. Rev. C 99 (2019) 024906
    https://doi.org/10.1103/PhysRevC.99.024906
  29. Direct photon production at low transverse momentum in proton-proton collisions at √s = 2.76 and 8 TeV
    Phys. Rev. C 99 (2019) 024912
    https://doi.org/10.1103/PhysRevC.99.024912
  30. Production of the ρ(770)0 meson in pp and Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Rev. C 99 (2019) 064901
    https://doi.org/10.1103/PhysRevC.99.064901
  31. Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at √sNN = 5.44 TeV
    Phys. Lett. B 788 (2019) 166
    https://doi.org/10.1016/j.physletb.2018.10.052
  32. Dielectron and heavy-quark production in inelastic and high-multiplicity proton-proton collisions at √sNN = 13 TeV
    Phys. Lett. B 788 (2019) 505
    https://doi.org/10.1016/j.physletb.2018.11.009
  33. Direct photon elliptic flow in Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Lett. B 789 (2019) 308
    https://doi.org/10.1016/j.physletb.2018.11.039
  34. Measuring K0S K± interactions using pp collisions at √s = 7 TeV
    Phys. Lett. B 790 (2019) 22
    https://doi.org/10.1016/j.physletb.2018.12.033
  35. Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe-Xe collisions at √sNN = 5.44 TeV
    Phys. Lett. B 790 (2019) 35
    https://doi.org/10.1016/j.physletb.2018.12.048
  36. Υ suppression at forward rapidity in Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Lett. B 790 (2019) 89
    https://doi.org/10.1016/j.physletb.2018.11.067
  37. Λc+ production in Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Lett. B 793 (2019) 212
    https://doi.org/10.1016/j.physletb.2019.04.046
  38. Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV
    Phys. Lett. B 793 (2019) 420
    https://doi.org/10.1016/j.physletb.2019.04.047
  39. Multiplicity dependence of (anti-)deuteron production in pp collisions at √s = 7 TeV
    Phys. Lett. B 794 (2019) 50
    https://doi.org/10.1016/j.physletb.2019.05.028
  40. Measurement of jet radial profiles in Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Lett. B 796 (2019) 204
    https://doi.org/10.1016/j.physletb.2019.07.020
  41. Study of the Λ – Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC
    Phys. Lett. B 797 (2019) 134822
    https://doi.org/10.1016/j.physletb.2019.134822
  42. 3ΛH and 3Λ̅H̅ lifetime measurement in Pb-Pb collisions at √sNN = 5.02 TeV via two-body decay
    Phys. Lett. B 797 (2019) 134905
    https://doi.org/10.1016/j.physletb.2019.134905
  43. Coherent J/ψ photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at √sNN =5.02 TeV
    Phys. Lett. B 798 (2019) 134926
    https://doi.org/10.1016/j.physletb.2019.134926
  44. D. Andreou
    The upgrade of the ALICE Inner Tracking System
    J. Instr. 14 (2019)C05004
    https://dx.doi.org/10.1088/1748-0221/14/05/C05004
  45. Calice Collaboration : G. Eigen (et al.), T. Peitzmann
    Characterisation of different stages of hadronic showers using the CALICE Si-W ECAL physics prototype
    Nucl. Instr. Meth. A 937 (2019) 41
    https://doi.org/10.1016/j.nima.2019.04.111
  46. Citron, M. van Leeuwen (et al.)
    Report from Working Group 5 : Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams
    CERN Yellow Rep. Monogr. (2019) 1159
    https://dx.doi.org/10.23731/CYRM-2019-007.1159
  47. M. Sas
    Direct photon elliptic flow in Pb-Pb collisions at √sNN = 2.76 TeV
    Nucl. Phys. A982(2019)195
    https://dx.doi.org/10.1016/j.nuclphysa.2018.10.065
  48. H. Pettersen, T. Peitzmann (et al.)
    Design optimization of a pixel-based range telescope for proton computed tomography
    Physica Medica 63 (2019) 87
    https://dx.doi.org/10.1016/j.ejmp.2019.05.026
  49. A. Dainese, M. van Leeuwen (et al.)
    Future heavy-ion facilities: FCC-AA
    PoS HardProbes2018(2019)005
    https://dx.doi.org/10.22323/1.345.0005
  50. M. H. P. Sas
    Direct-photon elliptic flow in Pb-Pb collisions at √sNN = 2.76 TeV
    PoS ICHEP2018(2019)442
    https://dx.doi.org/10.22323/1.340.0442

 


Neutrino Telescopes

ANTARES Collaboration: A. Albert (et al.); R. Bormuth, M.C. Bouwhuis, R. Bruijn, A.J. Heijboer, M. Jongen, M. de Jong, K. Melis, D.F.E. Samtleben

  1. ANTARES neutrino search for time and space correlations with IceCube high-energy neutrino events
    Astrophys. J.B 879 (2019) 108
    https://doi.org/10.3847/1538-4357/ab253c
  2. Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data
    J. High Energy Phys. 06 (2019) 133
    https://doi.org/10.1007/JHEP06%282019%29113
  3. The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope
    Mon. Not. R. Astron. Soc. 482 (2019) 184
    https://doi.org/10.1093/mnras/sty2621
  4. M. Bouwhuis (et al.)
    A single fast radio burst localized to a massive galaxy at cosmological distance
    Science 365 (2019) 6453
    https://doi.org/10.1126/science.aaw5903

ANTARES Collaboration and IceCube Collaboration and Virgo Collaboration: A. Albert (et al.); M. Bader, N. van Bakel, A. Bertolini, M. van Beuzekom, S. Bloemen, B.A. Boom, R. Bormuth, M.C. Bouwhuis, J.F.J. Brand, C. Van Den Broeck, R. Bruijn, H.J. Bulten, S. Caudill, T. Dietrich, A. Ghosh, P. Groot, Y. Guo, A.J. Heijboer, J.V. van Heiningen, , T. Hinderer, M. Jongen, M. de Jong, R.J.G. Jonker, G. Koekoek, S. Koley, F. Linde, J. Meidam, K. Melis, T. Michael, G. Nelemans, D. Nichols, S. Nissanke, A. Samajdar, D.F.E. Samtleben, L. van der Schaaf, P. Schmidt, B.L. Swinkels, M. Tacca, K.W. Tsang, R. Walet, A.R. Williamson

  1. Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES, and IceCube
    Astrophys. J.B 870 (2019) 134
    https://doi.org/10.3847/1538-4357/aaf21d

KM3NeT Collaboration: S. Aiello (et al.); M. Baars, E. Berbee, R. Bormuth, M.C. Bouwhuis, R. Bruijn, D. van Eijk, H. van Haren, A. Heijboer, M. Jongen, B. Jongewaard, M. de. Jong, P. de Jong, G. Kieft, E. Koffeman, P. Kooijman, J. Koopstra, K. Melis, L. Nauta, M. Post, Samtleben. D.F.E., B. Schermer, J. Seneca, J. Steijger, P. Timmer, L. de Waardt, E. de Wolf

  1. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources
    Astropart. Phys. 111 (2019) 100
    https://doi.org/10.1016/j.astropartphys.2019.04.002
  2. KM3NeT front-end and readout electronics system hardware, firmware, and software
    Jrnl.Astron.Telescopes, Instr.and Syst. 5 (2019) 046001
    https://doi.org/10.1117/1.JATIS.5.4.046001
  3. R. Bruijn
    The KM3NeT Digital Optical Module and Detection Unit
    EPJ Web Conf. 207 (2019)06002
    https://dx.doi.org/10.1051/epjconf/201920706002
  4. R. Bruijn
    KM3NeT Readout and Triggering
    EPJ Web Conf. 207 (2019)06007
    https://dx.doi.org/10.1051/epjconf/201920706007
  5. A. Akindinov (et al.), R. Bruijn, A. Heijboer, M. de Jong, P. de Jong, L. Nauta, K. Melis, R. Muller, B.’O. Fearraigh, D.F.E. Samtleben, J. Seneca, B. Strandberg, E. de Wolf
    Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA
    Eur. Phys. J. C 79 (2019) 758
    https://doi.org/10.1140/epjc/s10052-019-7259-5

 


Gravitational Waves

Virgo Collaboration: F. Acernese (et al.); M.K.M. Bader, N. van Bakel, A. Bertolini, M.van Beuzekom, B.A. Boom, J.F.J. van den Brand, C. Van Den Broeck, H.J. Bulten, A. Ghosh, S. Ghosh, J. van Heijningen, R.J.G. Jonker, S. Koley, J. Meidam, G. Nelemans, D. Nichols, S. Nissanke, L. van der Schaaf, K.W. Tsang, R. Walet

  1. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light
    Phys. Rev. Lett. 123 (2019) 231108
    https://doi.org/10.1103/PhysRevLett.123.231108
  2. J. van Heijningen, A. Bertolini, E. Hennes, M.G. Beker, M. Doets, H.J. Bulten, K. Agatsuma, J.F.J. van den Brand
    A multistage vibration isolation system for Advanced Virgo suspended optical benches
    Class. Quantum Grav. 36 (2019) 075007
    https://doi.org/10.1088/1361-6382/ab075e
  3. B.L. Swinkels (et al.)
    Investigation of magnetic noise in advanced Virgo
    Class. Quantum Grav. 36 (2019) 225004
    https://doi.org/10.1088/1361-6382/ab4974
  4. J. van den Brand
    Seismic noise and gravity-gradient noise
    100 Years of General Relativity (2019)161
    https://doi.org/10.1142/9789813146082_0006
  5. S. Ballmer, B. Swinkels
    Non-fundamental noise sources
    100 Years of General Relativity (2019)185
    https://doi.org/10.1142/9789813146082_0007
  6. T. Dietrich, S. Ossokine, K. Clough
    Full 3D numerical relativity simulations of neutron star-boson star collisions with BAM
    Class. Quantum Grav. 36 (2019) 025002
    https://doi.org/10.1088/1361-6382/aaf43e
  7. G. Carullo, G. Riemenschneider, K.W. Tsang, W. Del Pozzo
    GW150914 peak frequency: a novel consistency test of strong-field General Relativity
    Class. Quantum Grav. 36 (2019) 105009
    https://doi.org/10.1088/1361-6382/ab185e
  8. S. Nissanke, T. Hinderer, G. Nelemans, P. Schmidt, D. Nichols, A. Williamson (et al.)
    Black holes, gravitational waves and fundamental physics: a roadmap
    Class. Quantum Grav. 36 (2019) 142001
    https://doi.org/10.1088/1361-6382/ab0587
  9. S Koley, J. van den Brand (et al.)
    Characteristics of surface wave Greens function for anisotropic ambient seismic noise field: a case study in Limburg, The Netherlands
    First Break 37 (2019)83
  10. T. Dietrich (et al.)
    Neutron star — axion star collisions in the light of multi-messenger astronomy
    Mon. Not. R. Astron. Soc. 483 (2019) 908
    https://doi.org/10.1093/mnras/sty3158
  11. S. Nissanke (et al.)
    A Hubble constant measurement from superluminal motion of the jet in GW170817
    Nature Astr. 3 (2019) 940
    https://doi.org/10.1038/s41550-019-0820-1
  12. K. Agatsuma, L. van der Schaaf, M. van Beuzekom, D. Rabeling, J.F.J. van den Brand
    High-performance phase camera as a frequency selective laser wavefront sensor for gravitational wave detectors
    Opt. Express 27 (2019) 18533
    https://doi.org/10.1364/OE.27.018533
  13. H. Gieg, T. Dietrich, M. Ujevic
    Simulating Binary Neutron Stars with Hybrid Equation of States: Gravitational Waves, Electromagnetic Signatures, and Challenges for Numerical Relativity
    Particles 2 (2019) 365
    https://doi.org/10.3390/particles2030023
  14. A. Samajdar, T. Dietrich
    Waveform systematics for binary neutron star gravitational wave signals: Effects of spin, precession, and the observation of electromagnetic counterparts
    Phys. Rev. D. 100 (2019) 024046
    https://doi.org/10.1103/PhysRevD.100.024046
  15. M.W. Coughlin, T. Dietrich
    Can a black hole-neutron star merger explain GW170817, AT2017gfo, and GRB170817A?
    Phys. Rev. D. 100 (2019) 043011
    https://doi.org/10.1103/PhysRevD.100.043011
  16. T.D. Dietrich, A. Samajdar (et al.)
    Improving the NRTidal model for binary neutron star systems
    Phys. Rev. D. 100 (2019) 044003
    https://doi.org/10.1103/PhysRevD.100.044003
  17. K.W. Tsang, T. Dietrich, C. Van Den Broeck
    Modeling the postmerger gravitational wave signal and extracting binary properties from future binary neutron star detections
    Phys. Rev. D. 100 (2019) 044047
    https://doi.org/10.1103/PhysRevD.100.044047
  18. S. Nissanke (et al.)
    Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study
    Phys. Rev. D. 100 (2019) 063021
    https://doi.org/10.1103/PhysRevD.100.063021
  19. T. Dietrich, K. Clough
    Cooling binary neutron star remnants via nucleon-nucleon-axion bremsstrahlung
    Phys. Rev. D. 100 (2019) 083005
    https://doi.org/10.1103/PhysRevD.100.083005
  20. A. Williamson, S.M. Nissanke (et al.)
    Unbiased Hubble constant estimation from binary neutron star mergers
    Phys. Rev. D. 100 (2019) 103523
    https://doi.org/10.1103/PhysRevD.100.103523
  21. W. Tichy, A. Rashti, T. Dietrich (et al.)
    Constructing Binary Neutron Star Initial Data with High Spins, High Compactness, and High Mass-Ratios
    Phys. Rev. D. 100 (2019) 124046
    https://dx.doi.org/10.1103/PhysRevD.100.124046
  22. T. Dietrich, A. Samajdar, C. Van Der Broeck (et al.)
    Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects
    Phys. Rev. D. 99 (2019) 024029
    https://doi.org/10.1103/PhysRevD.99.024029
  23. S. Nissanke (et al.)
    Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
    Phys. Rev. D. 99 (2019) 103025
    https://doi.org/10.1103/PhysRevD.99.103025

LIGO Scientific Collaboration and Virgo Collaboration: B.P. Abbott (et al.); M. Soares-Santos (et al.), K. Agatsuma, M.K.M. Bader, N. van Bakel, A. Bertolini, M. van Beuzekom, S. Bloemen, B.A. Boom, J.F.J. van den Brand, C. Van Den Broeck, H.J. Bulten, P. Canizares, S. Caudill, A. Ghosh, S. Ghosh, P. Groot, J. van Heijningen, R.J.G. Jonker, S. Koley, J. Meidam, G. Nelemans, D. Nichols, S. Nissanke, L. van der Schaaf, P. Schmidt, K.W. Tsang, R. Walet

  1. A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart
    Astrophys. J. Lett. 871 (2019) 1, L13
    https://doi.org/10.3847/2041-8213/aaf96e
  2. A Fermi Γ-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO’s First Observing Run
    Astrophys. J.B 871 (2019) 90
    https://doi.org/10.3847/1538-4357/aaf726
  3. Search for transient gravitational wave signals associated with magnetar bursts during Advanced LIGO’s second
    Astrophys. J.B 874 (2019) 163
    https://doi.org/10.3847/1538-4357/ab0e15
  4. Searches for Continuous Gravitational Waves from Fifteen Supernova Remnants and Fomalhaut b with Advanced LIGO
    Astrophys. J.B 875 (2019) 122
    https://doi.org/10.3847/1538-4357/ab113b
  5. Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817
    Astrophys. J.B 875 (2019) 160
    https://doi.org/10.3847/1538-4357/ab0f3d
  6. Low-Latency Gravitational Wave Alerts for Multi-Messenger Astronomy During the Second Advanced LIGO and Virgo Observing Run
    Astrophys. J.B 875 (2019) 161
    https://doi.org/10.3847/1538-4357/ab0e8f
  7. First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814
    Astrophys. J.B 876 (2019) L7
    https://doi.org/10.3847/2041-8213/ab14f1
  8. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data
    Astrophys. J.B 879 (2019) 10
    https://doi.org/10.3847/1538-4357/ab20cb
  9. Search for gravitational-wave signals associated with γ-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo
    Astrophys. J.B 886 (2019) 75
    https://doi.org/10.3847/1538-4357/ab4b48
  10. Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo
    Astrophys. J. Lett. 882 (2019) L24
    https://doi.org/10.3847/2041-8213/ab3800
  11. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data
    Phys. Rev. D. 100 (2019) 024004
    https://doi.org/10.1103/PhysRevD.100.024004
  12. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
    Phys. Rev. D. 100 (2019) 024017
    https://doi.org/10.1103/PhysRevD.100.024017
  13. Search for the isotropic stochastic background using data from Advanced LIGOs second observing run
    Phys. Rev. D. 100 (2019)061101
    https://dx.doi.org/10.1103/PhysRevD.100.061101
  14. Directional limits on persistent gravitational waves using data from Advanced LIGO’s first two observing runs
    Phys. Rev. D. 100 (2019) 062001
    https://doi.org/10.1103/PhysRevD.100.062001
  15. Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
    Phys. Rev. D. 100 (2019) 064064
    https://doi.org/10.1103/PhysRevD.100.064064
  16. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1
    Phys. Rev. D. 100 (2019) 104036
    https://doi.org/10.1103/PhysRevD.100.104036
  17. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
    Phys. Rev. D. 100 (2019)122002
    https://dx.doi.org/10.1103/PhysRevD.100.122002
  18. Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run
    Phys. Rev. D. 123 (2019) 161102
    https://doi.org/10.1103/PhysRevLett.123.161102
  19. All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run
    Phys. Rev. D. 99 (2019) 104033
    https://doi.org/10.1103/PhysRevD.99.104033
  20. Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run
    Phys. Rev. D. 99 (2019) 122002
    https://doi.org/10.1103/PhysRevD.99.122002
  21. Constraining the p-Mode-g-Mode Tidal Instability with GW170817
    Phys. Rev. Lett. 122 (2019) 061104
    https://doi.org/10.1103/PhysRevLett.122.061104
  22. Tests of General Relativity with GW170817
    Phys. Rev. Lett. 123 (2019) 011102
    https://doi.org/10.1103/PhysRevLett.123.011102
  23. Properties of the binary neutron star merger GW170817
    Phys. Rev. X. 9 (2019) 011001
    https://doi.org/10.1103/PhysRevX.9.011001
  24. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
    Phys. Rev. X. 9 (2019) 031040
    https://doi.org/10.1103/PhysRevX.9.031040
  25. S. Caudill (et al.)
    Sub-threshold Binary Neutron Star Search in Advanced LIGO’s First Observing Run
    Astrophys. J.B 878 (2019) L17
    https://doi.org/10.3847/2041-8213/ab20cf

 


Cosmic Rays

Pierre Auger Collaboration: A. Aab (et al.); G. van Aar, S. Buitink, F. Canfora, H. Falcke, J.R. Horandel, S. Jansen, S.J. de Jong, G. De Mauro, J. Schulz, C. Timmermans, A. van Vliet

  1. Multi-Messenger Physics with the Pierre Auger Observatory
    Front.Astron.Space.Sci. 6 (2019) 24
    https://doi.org/10.3389/fspas.2019.00024
  2. Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory
    J. Cosmol. Astropart. Phys. 03 (2019) 018
    https://doi.org/10.1088/1475-7516/2019/03/018
  3. Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory
    J. Cosmol. Astropart. Phys. 10 (2019) 022
    https://doi.org/10.1088/1475-7516/2019/10/022
  4. Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory
    J. Cosmol. Astropart. Phys. 11 (2019) 004
    https://doi.org/10.1088/1475-7516/2019/11/004
  5. Multi-messenger Bayesian parameter inference of a binary neutron-star merger
    Mon. Not. R. Astron. Soc. 489 (2019) L91-L96
    https://doi.org/10.1093/mnrasl/slz133
  6. Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory
    Phys. Rev. D. 100 (2019) 082003
    https://doi.org/10.1103/PhysRevD.100.082003
  7. J. R. Horandel
    Precision measurements of cosmic rays up to the highest energies with a large radio array at the Pierre Auger Observatory
    EPJ Web Conf. 210 (2019)06005
    https://dx.doi.org/10.1051/epjconf/201921006005
  8. J. R. Horandel
    A large radio array at the Pierre Auger Observatory: Precision measurements of the properties of cosmic rays at the highest energies
    EPJ Web Conf. 216 (2019)01010
    https://dx.doi.org/10.1051/epjconf/201921601010
  9. J. R. Horandel
    Radio detection of extensive air showers: Measuring the properties of cosmic rays with the radio technique at LOFAR and the Pierre Auger Observatory
    Nucl. Part. Phys. Proc. 306-308 (2019)108
    https://dx.doi.org/10.1016/j.nuclphysbps.2019.07.016
  10. C. Glaser, S.J. de Jong, M. Erdmann, J.R. Horandel
    An analytic description of the radio emission of air showers based on its emission mechanisms
    Astropart. Phys. 104 (2019) 64
    https://doi.org/10.1016/j.astropartphys.2018.08.004
  11. KASCADE-Grande Collaboration: W.D. Apel (et al.), J.R. Horandel
    Search for Large-scale anisotropy in the arrival direction of cosmic rays with KASCADE-Grande
    Astrophys. J.B 870 (2019) 91
    https://doi.org/10.3847/1538-4357/aaf1ca
  12. J. R. Horandel
    Status and perspectives of the radio detection of high-energy cosmic rays
    EPJ Web Conf. 209 (2019)01051
    https://dx.doi.org/10.1051/epjconf/201920901051
  13. A. Abada, S.J. de Jong, T. du Pree, P. Koppenburg, M. Merk, M. Mulder, A. Papaefstathiou, J. Rojo, M. van Leeuwen (et al.)
    FCC Physics opportunities
    Eur. Phys. J. C 79 (2019) 474
    https://doi.org/10.1140/epjc/s10052-019-6904-3
  14. A. Abada (et al.), S.J. de Jong, T. du Pree, P. Koppenburg, M. Merk, M. Mulder, A. Papaefstathiou, J. Rojo, M. van Leeuwen
    HE-LHC: The High-Energy Large Hadron Collider
    Eur.Phys.J.ST 228 (2019) 1109
    https://doi.org/10.1140/epjst/e2019-900088-6
  15. A. Abada (et al.), S.J. de Jong, T. du Pree, P. Koppenburg, M. Merk, M. Mulder, A. Papaefstathiou, J. Rojo, M. van Leeuwen
    FCC-ee: The Lepton Collider
    Eur.Phys.J.ST 228 (2019) 261
    https://doi.org/10.1140/epjst/e2019-900045-4
  16. A. Abada (et al.), S.J. de Jong, T. du Pree, P. Koppenburg, M. Merk, M. Mulder, A. Papaefstathiou, J. Rojo, M. van Leeuwen
    FCC-hh: The Hadron Collider : Future Circular Collider Conceptual Design Report Volume 3
    Eur.Phys.J.ST 228 (2019) 755
    https://doi.org/10.1140/epjst/e2019-900087-0
  17. B. M. Hare, O. Scholten, J.R. Horandel, H. Falcke (et al.)
    Needle-like structures discovered on positively charged lightning branches
    Nature 568 (2019)360
    https://dx.doi.org/10.1038/s41586-019-1086-6
  18. A. van Vliet, R. Alves Batista, J.R. Horandel
    Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos
    Phys. Rev. D. 100 (2019) 021302
    https://doi.org/10.1103/PhysRevD.100.021302
  19. F. Oosterhof, R.G.E. Timmermans (et al.)
    Baryon-number violation by two units and the deuteron lifetime
    Phys. Rev. Lett. 122 (2019) 172501
    https://doi.org/10.1103/PhysRevLett.122.172501
  20. S. de Jong
    GRAND: A Giant Radio Array for Neutrino Detection
    PoS ICHEP2018(2019)438
    https://dx.doi.org/10.22323/1.340.0438
  21. A. van Vliet, R. Alves Batista, J. R. Horandel
    Current constraints from cosmogenic neutrinos on the fraction of protons in UHECRs
    PoS ICRC2019(2019)1025
  22. GRAND Collaboration : J. Alvarez-Muniz (et al.), S.de Jong, C. Timmermans
    The Giant Radio Array for Neutrino Detection (GRAND): Science and Design
    Science China-Physics Mechanics & Astronomy 63 (2019) 219501
    https://doi.org/10.1007/s11433-018-9385-7
  23. C. Timmermans
    GRAND: A Giant Radio Array for Neutrino Detection
    SciPost Phys. Proc. 1 (2019)042
    https://dx.doi.org/10.21468/SciPostPhysProc.1.042

 


Dark Matter

XENON100 Collaboration: E. Aprile (et al.); J. Aalbers, P.A. Breur, A. Brown, A.P. Colijn, M.P. Decowski, E. Hogenbirk

  1. The XENON1T Data Acquisition System
    J. Instr. 14 (2019) P070165
    https://doi.org/10.1088/1748-0221/14/07/P07016
  2. Observation of two-neutrino double electron capture in 124Xe with XENON1T
    Nature 568 (2019) 532
    https://doi.org/10.1038/s41586-019-1124-4
  3. XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection
    Phys. Rev. D. 100 (2019) 0520145
    https://doi.org/10.1103/PhysRevD.100.052014
  4. XENON1T dark matter data analysis: Signal and background models and statistical inference
    Phys. Rev. D. 99 (2019) 1120095
    https://doi.org/10.1103/PhysRevD.99.112009
  5. First results on the scalar WIMP-pion coupling, using the XENON1T experiment
    Phys. Rev. Lett. 122 (2019) 071301
    https://doi.org/10.1103/PhysRevLett.122.071301
  6. Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T
    Phys. Rev. Lett. 122 (2019) 141301
    https://doi.org/10.1103/PhysRevLett.122.141301
  7. A Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T
    Phys. Rev. Lett. 123 (2019)241803
    https://dx.doi.org/10.1103/PhysRevLett.123.241803
  8. Light Dark Matter Search with Ionization Signals in XENON1T
    Phys. Rev. Lett. 123 (2019)251801
    https://dx.doi.org/10.1103/PhysRevLett.123.251801

PTOLEMY Collaboration: M.G. Betti (et al.); A.P. Colijn, N. de Groot

  1. Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case
    J. Cosmol. Astropart. Phys. 07 (2019) 047
    https://doi.org/10.1088/1475-7516/2019/07/047

 


Theoretical Physics

  1. R. Abdul Khalek, J. J. Ethier, J. Rojo
    Nuclear Parton Distributions from Neural Networks
    Acta Phys. Polon. Supp. 12 (2019)927
    https://dx.doi.org/10.5506/APhysPolBSupp.12.927
  2. T. Kasemets
    Parton Correlations in Double Parton Scattering
    Advanced Series on Directions in High Energy Physics 29 (2019)49
    https://dx.doi.org/10.1142/9789813227767_0004
  3. P. Azzi, R. Abdul Khalek (et al.)
    Report from Working Group 1: Standard Model physics at the HL-LHC and HE-LHC
    CERN Yellow Rep. Monogr. 7 (2019)1
    https://dx.doi.org/10.23731/CYRM-2019-007.1
  4. M. Cepeda, R. Abdul Khalek (et al.)
    Report from Working Group 2: Higgs physics at the HL-LHC and HE-LHC
    CERN Yellow Rep. Monogr. 7 (2019)221
    https://dx.doi.org/10.23731/CYRM-2019-007.221
  5. B. Knorr, C. Ripken, F. Saueressig
    Form Factors in Asymptotic Safety: conceptual ideas and computational toolbox
    Class. Quantum Grav. 36 (2019) 234001
    https://doi.org/10.1088/1361-6382/ab4a53
  6. K. Nordstroem, A. Papaefstathiou
    VHH production at the High-Luminosity LHC
    Eur. Phys. J. Plus 134 (2019) 288
    https://doi.org/10.1140/epjp/i2019-12614-2
  7. NNPDF Collaboration : R.D. Ball, E.R. Nocera, R.L. Pearson
    Nuclear uncertainties in the determination of proton PDFs
    Eur. Phys. J. C 79 (2019) 282
    https://doi.org/10.1140/epjc/s10052-019-6793-5
  8. NNPDF Collaboration : R.A. Khalek, J.J. Ethier, J. Rojo
    Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider
    Eur. Phys. J. C 79 (2019) 471011
    https://doi.org/10.1140/epjc/s10052-019-6983-1
  9. NNPDF Collaboration : R.A. Khalek, E.T. Nocera, J. Rojo (et al.)
    A first determination of parton distributions with theoretical uncertainties
    Eur. Phys. J. C 79 (2019) 838
    https://doi.org/10.1140/epjc/s10052-019-7364-5
  10. NNPDF Collaboration : R.A. Khalek, E.T. Nocera, J. Rojo (et al.)
    Parton Distributions with Theory Uncertainties: General Formalism and First Phenomenological Studies
    Eur. Phys. J. C 79 (2019) 931
    https://doi.org/10.1140/epjc/s10052-019-7401-4
  11. A. Papaefstathiou, G. Tetlalmatzi Xolocotzi, M. Zaro
    Triple Higgs boson production to six b-jets at a 100 TeV proton collider
    Eur. Phys. J. C 79 (2019) 947
    https://doi.org/10.1140/epjc/s10052-019-7457-1
  12. J.-W. van Holten
    World-line perturbation theory
    Fundam. Theor. Phys. 196 (2019)393
    https://dx.doi.org/10.1007/978-3-030-11500-5_12
  13. M. Dukalski, E. Mariani, K. de Vos
    Handling short-period scattering using augmented Marchenko autofocusing
    Geophysical Journal Int. 216 (2019)2129
    https://dx.doi.org/10.1093/gji/ggy544
  14. K. Petraki (et al.)
    Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays
    J. Cosmol. Astropart. Phys. 02 (2019) 014
    https://doi.org/10.1088/1475-7516/2019/02/014
  15. S. El Hedri (et al.)
    Dark matter amnesia in out-of-equilibrium scenarios
    J. Cosmol. Astropart. Phys. 02 (2019) 051
    https://doi.org/10.1088/1475-7516/2019/02/051
  16. E.I. Sfakianakis (et al.)
    Tensor Spectra Templates for Axion-Gauge Fields Dynamics during Inflation
    J. Cosmol. Astropart. Phys. 05 (2019) 057
    https://doi.org/10.1088/1475-7516/2019/05/057
  17. E.I. Sfakianakis (et al.)
    Universality and scaling in multi-field α-attractor preheating
    J. Cosmol. Astropart. Phys. 06 (2019) 027
    https://doi.org/10.1088/1475-7516/2019/06/027
  18. P. Christodoulidis, Roest D. E.I. Sfakianakis
    Angular inflation in multi-field α-attractors
    J. Cosmol. Astropart. Phys. 11 (2019) 0002
    https://doi.org/10.1088/1475-7516/2019/11/002
  19. P. Christodoulidis, D. Roest, E. I. Sfakianakis
    Scaling attractors in multi-field inflation
    J. Cosmol. Astropart. Phys. 1912 (2019) 059
    https://dx.doi.org/10.1088/1475-7516/2019/12/059
  20. D. Neill, A. Papaefstathiou, W. Waalewijn, L. Zoppi
    Phenomenology with a recoil-free jet axis: TMD fragmentation and the jet shape
    J. High Energy Phys. 01 (2019) 067
    https://doi.org/10.1007/JHEP01%282019%29067
  21. R. Oncala, K Petraki
    Dark matter bound states via emission of scalar mediators
    J. High Energy Phys. 01 (2019) 070
    https://doi.org/10.1007/JHEP01%282019%29070
  22. V. Bertone, R. Gauld, J. Rojo
    Neutrino telescopes as QCD microscopes
    J. High Energy Phys. 01 (2019) 217
    https://doi.org/10.1007/JHEP01%282019%29217
  23. L. Vernazza (et al.)
    Leading-logarithmic threshold resummation of the DrellYan process at next-to-leading power
    J. High Energy Phys. 03 (2019) 043
    https://doi.org/10.1007/JHEP03%282019%29043
  24. D.J. Scott (et al.)
    Resummation for rapidity distributions in top-quark pair production
    J. High Energy Phys. 03 (2019) 060
    https://doi.org/10.1007/JHEP03%282019%29060
  25. G. Lustermans, J.K.L. Michel, F.J. Tackmann, W.J. Waalewijn
    Joint two-dimensional resummation in qT and 0-jettiness at NNLL
    J. High Energy Phys. 03 (2019) 124
    https://doi.org/10.1007/JHEP03%282019%29124
  26. J. De Vries, M. Postma, J. van de Vis
    The role of leptons in electroweak baryogenesis
    J. High Energy Phys. 04 (2019)024
    https://dx.doi.org/10.1007/JHEP04(2019)024
  27. N.P. Hartland, E.R. Nocera, J. Rojo (et al.)
    A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector
    J. High Energy Phys. 04 (2019) 100
    https://doi.org/10.1007/JHEP04%282019%29100
  28. J. Harz, K. Petraki
    Higgs-mediated bound states in dark-matter models
    J. High Energy Phys. 04 (2019) 130
    https://doi.org/10.1007/JHEP04%282019%29130
  29. P. Cal, F. Ringer, W.J. Waalewijn
    The jet shape at NLL’
    J. High Energy Phys. 05 (2019) 143
    https://doi.org/10.1007/JHEP05%282019%29143
  30. M. Zaro (et al.)
    Top-Yukawa contributions to bbH production at the LHC
    J. High Energy Phys. 07 (2019) 054
    https://doi.org/10.1007/JHEP07%282019%29054
  31. D. Scott (et al.)
    NLO corrections to h→ bb̅ in SMEFT
    J. High Energy Phys. 08 (2019) 173
    https://doi.org/10.1007/JHEP08%282019%29173
  32. R. Gauld (et al.)
    Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD
    J. High Energy Phys. 10 (2019) 002
    https://doi.org/10.1007/JHEP10%282019%29002
  33. D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn (et al.)
    Transverse momentum dependent distributions in e+e and semi-inclusive deep-inelastic scattering using jets
    J. High Energy Phys. 10 (2019)031
    https://dx.doi.org/10.1007/JHEP10(2019)031
  34. G. Lustermans, A. Papaefsathiou, W.J. Waalewijn
    How much joint resummation do we need?
    J. High Energy Phys. 10 (2019) 133
    https://doi.org/10.1007/JHEP10%282019%29130
  35. J. Sinninghe Damste, E. Laenen, L. Vernazza (et al.)
    Diagrammatic resummation of leading-logarithmic threshold effects at next-to-leading power
    J. High Energy Phys. 11 (2019) 002
    https://doi.org/10.1007/JHEP11%282019%29002
  36. S. Frixione, B. Fuks, M. Zaro (et al.)
    Automated simulations beyond the Standard Model: supersymmetry
    J. High Energy Phys. 12 (2019)008
    https://dx.doi.org/10.1007/JHEP12(2019)008
  37. A. Papaefstathiou (et al.)
    On the phenomenology of sphaleron-induced processes at the LHC and beyond
    J. High Energy Phys. 12 (2019) 017
    https://doi.org/10.1007/JHEP12%282019%29017
  38. J. W. van Holten
    D = 1 supergravity as a constrained system
    J. Phys. Conf. Ser. 1194 (2019)012107
    https://dx.doi.org/10.1088/1742-6596/1194/1/012107
  39. J. Ambjorn (et al.)
    Pseudo-Cartesian coordinates in a model of Causal Dynamical Triangulations
    Nucl. Phys. B (2019) 114626
    https://doi.org/10.1016/j.nuclphysb.2019.114626
  40. S. Cotogno (et al.)
    Spin on same-sign W -boson pair production
    Phys. Rev. D. 100 (2019) 011503
    https://doi.org/10.1103/PhysRevD.100.011503
  41. P.J. Mulders, C. Van Hulse
    Noncollinearity in dijet fragmentation in electron-positron scattering
    Phys. Rev. D. 100 (2019) 034011
    https://doi.org/10.1103/PhysRevD.100.034011
  42. J.J. Ethier (et al.)
    Flavor symmetry breaking in the Δ sea
    Phys. Rev. D. 100 (2019) 034014
    https://doi.org/10.1103/PhysRevD.100.034014
  43. S. Kastha, A. Gupta, K. G. Arun (et al.)
    Testing the multipole structure and conservative dynamics of compact binaries using gravitational wave observations: The spinning case
    Phys. Rev. D. 100 (2019)044007
    https://dx.doi.org/10.1103/PhysRevD.100.044007
  44. E. Laenen (et al.)
    Next-to-leading power threshold effects for resummed prompt photon production
    Phys. Rev. D. 100 (2019) 056009
    https://doi.org/10.1103/PhysRevD.100.056009
  45. K. Nordstroem (et al.)
    Sleptons without Hadrons
    Phys. Rev. D. 100 (2019) 074010
    https://doi.org/10.1103/PhysRevD.100.074010
  46. R. Gauld
    Precise predictions for multi TeV and PeV energy neutrino scattering rates
    Phys. Rev. D. 100 (2019) 091301
    https://doi.org/10.1103/PhysRevD.100.091301
  47. E.I. Sfakianakis, J. de Vis
    Preheating after Higgs Inflation: Self-Resonance and Gauge boson production
    Phys. Rev. D. 99 (2019) 083519
    https://doi.org/10.1103/PhysRevD.99.083519
  48. J. Barragan Amado, B. Carneiro Da Cunha, E. Pallante
    Scalar quasinormal modes of Kerr-AdS5
    Phys. Rev. D. 99 (2019)105006
    https://dx.doi.org/10.1103/PhysRevD.99.105006
  49. L. Bosma, B. Knorr, F. Saueressig
    Resolving Spacetime Singularities within Asymptotic Safety
    Phys. Rev. Lett. 123 (2019) 101301
    https://doi.org/10.1103/PhysRevLett.123.101301
  50. J. Rojo (et al.)
    Can New Physics hide inside the proton?
    Phys. Rev. Lett. 123 (2019) 132001
    https://doi.org/10.1103/PhysRevLett.123.132001
  51. W.J. Waalewijn, D. Neill
    The Entropy of a Jet
    Phys. Rev. Lett. 123 (2019) 142001
    https://doi.org/10.1103/PhysRevLett.123.142001
  52. J. van de Vis, E.I. Stafianakis (et al.)
    Nonlinear Dynamics of Preheating after Multifield Inflation with Nonminimal Couplings
    Phys. Rev. Lett. 123 (2019) 171301
    https://doi.org/10.1103/PhysRevLett.123.171301
  53. H. Nishimura, C. Korthals-Altes, R. D. Pisarski (et al.)
    Thermal effective potential for the Polyakov loop to higher loop order
    PoS Confinement2018(2019)155
    https://dx.doi.org/10.22323/1.336.0155
  54. R. Pearson, R. Ball, E. R. Nocera
    Uncertainties due to Nuclear Data in Proton PDF Fits
    PoS DIS2019(2019)027
    https://dx.doi.org/10.22323/1.352.0027
  55. D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn (et al.)
    Studying transverse momentum distributions with jets at N3LL
    PoS DIS2019(2019)144
    https://dx.doi.org/10.22323/1.352.0144
  56. P. Mulders, E. Petreska
    Polarized gluon TMDs at small x
    PoS DIS2019(2019)192
    https://dx.doi.org/10.22323/1.352.0192
  57. E. Gardi, S. Caron-Huot, L. Vernazza (et al.)
    The High-Energy Limit of 2-to-2 Partonic Scattering Amplitudes
    PoS RADCOR2019 (2019) 050
  58. W. Altmannshofer, G. Tetlalmatzi-Xolocotzi (et al.)
    The Belle II Physics Book
    Prog. Theor. Exp. Phys. 2019 (2019) 123C01
    https://dx.doi.org/10.1093/ptep/ptz106
  59. M.M. Nagels, Th.A. Rijken, Y. Yamamoto
    Extended-soft-core baryon-baryon model ESC16. I. Nucleon-nucleon scattering
    Phys. Rev. C 99 (2019) 044002
    https://doi.org/10.1103/PhysRevC.99.044002
  60. M.M. Nagels, Y. Rijken, Th. A. Yamamoto
    Extended-soft-core Baryon-Baryon Model Esc08 II. Hyperon-Nucleon Interactions
    Phys. Rev. C 99 (2019) 044003
    https://doi.org/10.1103/PhysRevC.99.044003
  61. F. Herzog, J.A.M. Vermaseren (et al.)
    Five-loop contributions to low-N non-singlet anomalous dimensions in QCD
    Phys. Lett. B 790 (2019) 436
    https://doi.org/10.1016/j.physletb.2019.01.060
  62. S. El Hedri, K. Nordstroem
    Whac-a-constraint with anomaly-free dark matter models
    SciPost Phys.6 (2019) 020
    https://doi.org/10.21468/SciPostPhys.6.2.020
  63. G. Kasieczka (et al.), K. Nordstroem
    The Machine Learning Landscape of Top Triggers
    SciPost Phys. 7 (2019) 014
    https://doi.org/10.21468/SciPostPhys.7.1.014
  64. K. Nordstroem (et al.)
    Reports of My Demise Are Greatly Exaggerated: N-subjettiness Triggers Take On Jet Images
    SciPost Phys. 7 (2019) 036
    https://doi.org/10.21468/SciPostPhys.7.3.036
  65. R.A. Khalek, J. Rojo (et al.)
    Probing Proton Structure at the Large Hadron electron Collider
    SciPost Phys. 7 (2019) 051
    https://doi.org/10.21468/SciPostPhys.7.4.051
  66. S. van Beek, E. R. Nocera, J. Rojo (et al.)
    Constraining the SMEFT with Bayesian reweighting
    SciPost Phys. 7 (2019) 070
    https://dx.doi.org/10.21468/SciPostPhys.7.5.070
  67. G. Banelli, R. Fleischer, R. Jaarsma (et al.)
    Probing Lepton Universality with (Semi)-Leptonic B decays
    SciPost Phys. Proc. 1 (2019)013
    https://dx.doi.org/10.21468/SciPostPhysProc.1.013

 


Detector R&D

  1. P. Jansweijer, H. Peek
    Insitu determination of the fiber delay coefficient in time-dissemination networks.
    2019 IEEE Int. Symposium on Precision Clock Synchronization for Measurement, Control, and Communication ISPCS (2019)1
    https://doi.org/10.1109/ISPCS.2019.8886632
  2. M. Beker, H. van der Graaf (et al.)
    The Rasnik 3-point optical alignment system
    J. Instr. 14 (2019) P08010
    https://dx.doi.org/10.1088/1748-0221/14/08/P08010
  3. M. van Beuzekom, B. van der Heijden (et al.)
    Identification of particles with Lorentz factor up to 104 with Transition Radiation Detectors based on micro-strip silicon detectors
    Nucl. Instr. Meth. A 927 (2019) 001
    https://doi.org/10.1016/j.nima.2019.02.032
  4. M. van Beuzekom, H. van der Graaf, F. Hartjes, K. Heijhoff, V. Prodanovic (et al.)
    Timewalk correction for the Timepix3 chip obtained with real particle data
    Nucl. Instr. Meth. A 930 (2019) 185
    https://doi.org/10.1016/j.nima.2019.03.077
  5. K. S. Nicpon, H. Binderup, H. Boterenbrood (et al.)
    The Embedded Local Monitor Board upgrade proposals
    PoS TWEPP2018(2019)034
    https://dx.doi.org/10.22323/1.343.0034

 

Physics Data Processing

  1. H. Short, D. Kelsey, D. Groep (et al.)
    WISE Information Security for Collaborating e-Infrastructures
    EPJ Web Conf. 214 (2019)03041
    https://dx.doi.org/10.1051/epjconf/20192140304

 


eEDM

  1. J. O. Grasdijk, X. F. Bai, I. Engin (et al.)
    Electro-optic sensor for static fields
    Applied Physics B 125 (2019)212
    https://dx.doi.org/10.1007/s00340-019-7326-5
  2. Y. Hao, L. Visscher, S. Hoekstra (et al.)
    High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling
    The Journal of Chemical Physics 151 (2019)34302
    https://dx.doi.org/10.1063/1.5098540

 

HERMES

  1. A. Airapetian (et al.); H.P. Blok, L. Lapikás, P.B. van der Nat, J.J.M. Steijger
    Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons
    Phys. Rev. D. 99 (2019) 112001
    https://doi.org/10.1103/PhysRevD.99.112001
  2. A. Airapetian (et al.); H.P. Blok, L. Lapikás, P.B. van der Nat, J.J.M. Steijger
    Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets
    Phys. Lett. B 797 (2019) 134886
    https://doi.org/10.1016/j.physletb.2019.134886

 


Astrophysics

  1. C. Brinkerink, C. Mueller, H.D. Falcke, S. Issaoun, R. Fraga-Encinas, C. Goddi, M. Moscibrodzka, R.P.J. Tilanus (et al.)
    Micro-arcsecond structure of Sagittarius A* revealed by high-sensitivity 86 GHz VLBI observations
    Astron. Astrophys. 621 (2019) A119
    https://doi.org/10.1051/0004-6361/201834148
  2. M. Haverkorn (et al.)
    The LOFAR Two-metre Sky Survey: II. First data release
    Astron. Astrophys. 622 (2019) A1
    https://doi.org/10.1051/0004-6361/201833559
  3. M. Haverkorn (et al.)
    The intergalactic magnetic field probed by a giant radio galaxy
    Astron. Astrophys. 622 (2019) A16
    https://doi.org/10.1051/0004-6361/201833832
  4. P. Vreeswijk (et al.)
    The X-shooter GRB afterglow legacy sample (XS-GRB)
    Astron. Astrophys. 623 (2019) A92
    https://doi.org/10.1051/0004-6361/201832835
  5. C. Brinkerink, C. Mueller, H.D. Falcke, S. Issaoun, M. Janssen, C. Goddi, M. Moscibrodzka, F. Roelofs, R.P.J. Tilanus (et al.)
    The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA
    Astrophys. J.B (2019) 30
    https://doi.org/10.3847/1538-4357/aaf732
  6. S. ter Veen, J. E. Enriquez, H. Falcke (et al.)
    The FRATS project: real-time searches for fast radio bursts and other fast transients with LOFAR at 135 MHz
    Astronomy & Astrophysics 621 (2019)A57
    https://dx.doi.org/10.1051/0004-6361/201732515
  7. M. Haverkorn, F. Boulanger, T. Ensslin (et al.)
    IMAGINE Modeling the Galactic Magnetic Field
    Galaxies 7 (2019)17
    https://dx.doi.org/10.3390/galaxies7010017
  8. M. Backes, M. Boettcher, H. Falcke
    Millimeter-Wave Monitoring of Active Galactic Nuclei with the Africa Millimetre Telescope
    Galaxies 7 (2019)66
    https://dx.doi.org/10.3390/galaxies7020066
  9. A. van Vliet (et al.)
    Secondary neutrino and γ-ray fluxes from SimProp and CRPropa
    J. Cosmol. Astropart. Phys. (2019) 006
    https://doi.org/10.1088/1475-7516/2019/05/006
  10. P.G. Jonker, G. Nelemans, M.A.P. Torres (et al.)
    Potential Kick Velocity distribution of black hole X-ray binaries and implications for natal kicks
    Mon. Not. R. Astron. Soc. 489 (2019) 3116
    https://doi.org/10.1093/mnras/stz2335
  11. P. Groot, E. Koerding (et al.)
    MKT J170456.2-482100: the first transient discovered by MeerKAT
    Mon. Not. R. Astron. Soc. 491 (2019) 560
    https://doi.org/10.1093/mnras/stz3027
  12. T. Hinderer (et al.)
    Gravitational waveforms from spectral Einstein code simulations: Neutron star-neutron star and low-mass black hole-neutron star binaries
    Phys. Rev. D. 99 (2019) 044008
    https://doi.org/10.1103/PhysRevD.99.044008
  13. eXTP Collaboration : A. De Rosa (et al.), E. Koerding
    Accretion in Strong Field Gravity with eXTP
    Science China-Physics Mechanics & Astronomy 62 (2019) 029504
    https://doi.org/10.1007/s11433-018-9297-0

 


Miscellaneous

  1. A. de Hoogh, S. Hesping, P. Rudolf (et al.)
    The Dutch FOm/f approach to gender balance in physics
    AIP Conf. Proceedings 2109 (2019)050028
    https://doi.org/10.1063/1.5110102
  2. E. de Wolf, S. Hesping, A. de Hoogh (et al.)
    GENERA gender in physics days in Europe
    AIP Conf. Proceedings 2109 (2019)130010
    https://doi.org/10.1063/1.5110158
  3. LSST – Large Synoptic Survey Telescope Collaboration : Z. Ivezic (et al.), P. Schellart
    LSST: from Science Drivers to Reference Design and Anticipated Data Products
    Astrophys. J.B 873 (2019) 111
    https://doi.org/10.3847/1538-4357/ab042c
  4. J. Ambjoern (et al.)
    Critical Phenomena in Causal Dynamical Triangulations
    Class. Quantum Grav. 36 (2019) 224001
    https://doi.org/10.1088/1361-6382/ab4184
  5. L. Buoninfante (et al.)
    Casimir effect in quadratic theories of gravity
    Eur. Phys. J. C 79 (2019) 41
    https://doi.org/10.1140/epjc/s10052-019-6574-1
  6. A.H. Chamseddine, V. Mukhanov, T.B. Russ
    Asymptotically Free Mimetic Gravity
    Eur. Phys. J. C 79 (2019) 558
    https://doi.org/10.1140/epjc/s10052-019-7075-y
  7. L. Buoninfante, G. Gaetano, L. Petruzziello
    Generalized Uncertainty Principle and Corpuscular Gravity
    Eur. Phys. J. C 79 (2019) 663
    https://doi.org/10.1140/epjc/s10052-019-7164-y
  8. P.D. Meerburg (et al.)
    Aspects of Dark Matter Annihilation in Cosmology
    J. Cosmol. Astropart. Phys. 04 (2019) 025
    https://doi.org/10.1088/1475-7516/2019/04/025
  9. A. Nelles (et al.)
    Neutrino vertex reconstruction with in-ice radio detectors using surface reflections and implications for the neutrino energy resolution
    J. Cosmol. Astropart. Phys. 11 (2019) 030
    https://doi.org/10.1088/1475-7516/2019/11/030
  10. B. Dittrich (et al.)
    Holographic description of boundary gravitons in (3+1) dimensions
    J. High Energy Phys. 01 (2019) 144
    https://doi.org/10.1007/JHEP01%282019%29144
  11. L. Zoppi (et al.)
    Probing Transverse-Momentum Distributions With Groomed Jets
    J. High Energy Phys. 08 (2019) 161
    https://doi.org/10.1007/JHEP08%282019%29161
  12. G.H. Janssen (et al.)
    Tests of gravitational symmetries with Pulsar Binary J1713+0747
    Mon. Not. R. Astron. Soc. 482 (2019) 3249
    https://doi.org/10.1093/mnras/sty2905
  13. N. Banik, J.C. Tan, P. Monaco
    The Formation of Supermassive Black Holes from Population III.1 Seeds. I. Cosmic Formation Histories and Clustering Properties
    Mon. Not. R. Astron. Soc. 483 (2019) 3592
    https://doi.org/10.1093/mnras/sty3298
  14. G.H. Janssen (et al.)
    The Int. Pulsar Timing Array: Second data release
    Mon. Not. R. Astron. Soc. 490 (2019) 4666
    https://doi.org/10.1093/mnras/stz2857
  15. Magic Collaboration : V.A. Acciari, A.J. Levan (et al.)
    Observation of inverse Compton emission from a long γ-ray burst
    Nature 575 (2019) 459
    https://doi.org/10.1038/s41586-019-1754-6
  16. S. Basnet, H.P. Blok (et al.)
    Exclusive π+ electroproduction off the proton from low to high-t
    Phys. Rev. C. 100 (2019)065204
    https://dx.doi.org/10.1103/PhysRevC.100.065204
  17. A. Samajdar (et al.)
    Constraints on the binary black hole nature of GW151226 and GW170608 from the measurement of spin-induced quadrupole moments
    Phys. Rev. D. 100 (2019) 1040019
    https://doi.org/10.1103/PhysRevD.100.104019
  18. P.D. Meerburg (et al.)
    Initial conditions of the universe: A sign of the sine mode
    Phys. Rev. D. 99 (2019) 123518
    https://doi.org/10.1103/PhysRevD.99.123518
  19. L. Dabelow, H. Gies, B. Knorr
    Momentum dependence of quantum critical Dirac systems
    Phys. Rev. D. 99 (2019) 125019
    https://doi.org/10.1103/PhysRevD.99.125019
  20. A. Gando, M.P. Decowski (et al.)
    Precision Analysis of the 136Xe Two-Neutrino ββ Spectrum in KamlandZen and Its Impact on the Quenching of Nuclear Matrix Elements
    Phys. Rev. Lett. 122 (2019)
    https://dx.doi.org/10.1103/PhysRevLett.122.192501
  21. W.B. Li (et al.), H.P. Blok
    Unique Access to u-Channel Physics: Exclusive Backward-Angle Ω Meson Electroproduction
    Phys. Rev. Lett. 123 (2019) 182501
    https://doi.org/10.1103/PhysRevLett.123.182501
  22. M. Betti, A.P. Colijn (et al.)
    A design for an electromagnetic filter for precision energy measurements at the tritium endpoint
    Progress in Particle and Nuclear Physics 106 (2019) 120
    https://dx.doi.org/10.1016/j.ppnp.2019.02.004
  23. F.S. Carlier (et al.)
    First experimental demonstration of forced dynamic aperture measurements with LHC ac dipoles
    Phys. Rev. ST Accel. Beams 22 (2019) 031002
    https://doi.org/10.1103/PhysRevAccelBeams.22.031002
  24. M. Radici (et al.)
    Effect of flavor-dependent partonic transverse momentum on the determination of the W boson mass in hadronic collisions
    Phys. Lett. B 788 (2019) 542
    https://doi.org/10.1016/j.physletb.2018.11.002
  25. N. Alkofer
    Asymptotically safe f(R)-gravity coupled to matter II: Global solutions
    Phys. Lett. B 789 (2019) 480
    https://doi.org/10.1016/j.physletb.2018.12.061
  26. B. Knorr (et al.)
    Lorentz symmetry is relevant
    Phys. Lett. B 792 (2019) 142
    https://doi.org/10.1016/j.physletb.2019.01.070