next up previous contents
Next: Complexe grootheden Up: Vectorrekening over de reële Previous: Tripelproducten   Contents

Voorbeelden

  1. Als ${\bf A} = 2{\bf i} -3{\bf j} + {\bf k}$, dan is $A = \sqrt{ 2^2 +(-3)^2 + 1^2 } = \sqrt{14}$.
  2. Gegeven: ${\bf A} = 2{\bf i} -3{\bf j} + {\bf k}$ en ${\bf B} = 5{\bf i} +{\bf j} -7{\bf k}$. Te bewijzen: ${\bf A} \perp {\bf B}$.


    Bewijs:

    \begin{displaymath}
\begin{array}{rl}
{\bf A} \cdot {\bf B} & = A_1B_1 + A_2B_...
...cdot 1 +1 \cdot (-7) \\
& = 10 -3 -7 = 0, \\
\end{array}
\end{displaymath} (15)

    dus ${\bf A} \perp {\bf B}$.
  3. Gegeven: ${\bf A} = 3{\bf i} -4{\bf j} + 5{\bf k}$ en ${\bf B} = {\bf i} +2{\bf j} -{\bf k}$. Te berekenen: $\cos{\angle{ ({\bf A};{\bf B}) }}$.


    Oplossing:

    \begin{displaymath}
\begin{array}{rl}
{\bf A} \cdot {\bf B} & = AB \cdot \cos{...
...6} \cdot \cos{\angle{ ({\bf A};{\bf B}) }}. \\
\end{array}
\end{displaymath} (16)

    Verder geldt
    \begin{displaymath}
{\bf A} \cdot {\bf B} = A_1B_1 + A_2B_2 + A_3B_3 = 3 -8 -5 = -10.
\end{displaymath} (17)

    Dus $10 \sqrt{3} \cdot \cos{\angle{ ({\bf A};{\bf B}) }} = -10$, ofwel $\cos{\angle{ ({\bf A};{\bf B}) }} = -{1 \over 3} \sqrt{3}$.
  4. Als ${\bf A} = 2{\bf i} -3{\bf j} + {\bf k}$ en ${\bf B} = 5{\bf i} +{\bf j} -7{\bf k}$, dan is
    \begin{displaymath}
\begin{array}{rl}
{\bf A} \times {\bf B} & = \left\vert
\...
... \\
& = 20{\bf i} + 19{\bf j} + 17{\bf k}. \\
\end{array}
\end{displaymath} (18)



Jo van den Brand 2004-09-25