next up previous contents
Next: About this document ... Up: Appendix - Coördinatensystemen Previous: Sferische coördinaten   Contents

Cilindirische coördinaten


$ d{\bf l} = ds ~ \hat {\bf s} + s d\phi ~ \hat {\bf\phi} + dz ~ \hat {\bf z}$ lijn-element

$ d\tau = sds d\phi dz$ volume-element

$ \nabla t = {\partial t \over \partial s} \hat {\bf s} +
{1 \over s}{\partial ...
...ver \partial \phi} \hat {\bf\phi} +
{\partial t \over \partial z} \hat {\bf z}$ gradiënt

$ \nabla \cdot {\bf v} = {1 \over s}{\partial \over \partial s}(s v_s) +
{1 \over s}{\partial v_\phi \over \partial \phi} +
{\partial v_z \over \partial z}$ divergentie

$ \nabla \times {\bf v} =
\left[ {1 \over s}{\partial v_z \over \partial \phi} ...
...partial s}(sv_\phi ) -
{\partial v_s \over \partial \phi} \right] \hat {\bf z}$ rotatie

$ \Delta t = \nabla^2 t = {1 \over s}{\partial \over \partial s}
\left( s {\par...
...r s^2}{\partial^2 t \over \partial \phi^2} +
{\partial^2 t \over \partial z^2}$ Laplace operator


FUNDAMENTELE THEOREMAS


$ \int_{\bf a}^{\bf b} (\nabla f) \cdot d{\bf l} = f({\bf b}) - f({\bf a})$ Gradiënt theorema

$ \int (\nabla \cdot {\bf A} ) d\tau = \oint {\bf A} \cdot d{\bf a}$ Divergentie theorema (stelling van Gauss)

$ \int (\nabla \times {\bf A} ) \cdot d{\bf a} = \oint {\bf A} \cdot d{\bf l}$ Rotatie theorema (stelling van Stokes)



Jo van den Brand 2009-01-31