next up previous contents
Next: APPENDIX: RELATIVISTISCHE KINEMATICA Up: hovo Previous: APPENDIX: FUNDAMENTELE CONSTANTEN   Contents


APPENDIX: COÖRDINATEN SYSTEMEN

CARTESIAANSE COÖRDINATEN


$d{\bf l} = dx  \hat {\bf x} + dy  \hat {\bf y} + dz  \hat {\bf z}$ lijn-element

$d\tau = dxdydz$ volume-element

$\nabla t = {\partial t \over \partial x} \hat {\bf x} +
{\partial t \over \partial y} \hat {\bf y} +
{\partial t \over \partial z} \hat {\bf z}$ gradiënt

$\nabla \cdot {\bf v} = {\partial v_x \over \partial x} +
{\partial v_y \over \partial y} +
{\partial v_z \over \partial z}$ divergentie

$\nabla \times {\bf v} =
\left( {\partial v_z \over \partial y} -
{\partial v_...
...l v_y \over \partial x} -
{\partial v_x \over \partial y} \right) \hat {\bf z}$ rotatie

$\Delta t = \nabla^2 t = {\partial^2 t \over \partial x^2} +
{\partial^2 t \over \partial y^2} +{\partial^2 t \over \partial z^2}$ Laplace operator


SFERISCHE COÖRDINATEN


$d{\bf l} = dr  \hat {\bf r} + r d\theta  \hat {\bf\theta} +
r \sin {\theta}d\phi  \hat {\bf\phi}$ lijn-element

$d\tau = r^2 \sin{\theta} dr d\theta d\phi$ volume-element

$\nabla t = {\partial t \over \partial r} \hat {\bf r} +
{1 \over r}{\partial t...
...eta} +
{1 \over r \sin{\theta}}{\partial t \over \partial \phi} \hat {\bf\phi}$ gradiënt

$\nabla \cdot {\bf v} = {1 \over r^2}{\partial \over \partial r}(r^2 v_r) +
{1 ...
...eta}v_\theta ) +
{1 \over r \sin{\theta}}{\partial v_\phi \over \partial \phi}$ divergentie

$\nabla \times {\bf v} =
{1 \over r \sin{\theta}} \left[ {\partial \over \parti...
...r} (r v_\theta )
- {\partial v_r \over \partial \theta }\right] \hat {\bf\phi}$ rotatie

$\Delta t = \nabla^2 t = {1 \over r^2}{\partial \over \partial r}
\left( r^2 {\...
...a} \right) +
{1 \over r^2 \sin^2{\theta} }{\partial^2 t \over \partial \phi^2}$ Laplace operator


CILINDRISCHE COÖRDINATEN


$d{\bf l} = ds  \hat {\bf s} + s d\phi  \hat {\bf\phi} + dz  \hat {\bf z}$ lijn-element

$d\tau = sds d\phi dz$ volume-element

$\nabla t = {\partial t \over \partial s} \hat {\bf s} +
{1 \over s}{\partial t \over \partial \phi} \hat {\bf\phi} +
{\partial t \over \partial z} \hat {\bf z}$ gradiënt

$\nabla \cdot {\bf v} = {1 \over s}{\partial \over \partial s}(s v_s) +
{1 \over s}{\partial v_\phi \over \partial \phi} +
{\partial v_z \over \partial z}$ divergentie

$\nabla \times {\bf v} =
\left[ {1 \over s}{\partial v_z \over \partial \phi} -...
...partial s}(sv_\phi ) -
{\partial v_s \over \partial \phi} \right] \hat {\bf z}$ rotatie

$\Delta t = \nabla^2 t = {1 \over s}{\partial \over \partial s}
\left( s {\part...
...r s^2}{\partial^2 t \over \partial \phi^2} +
{\partial^2 t \over \partial z^2}$ Laplace operator


FUNDAMENTELE THEOREMAS


$\int_{\bf a}^{\bf b} (\nabla f) \cdot d{\bf l} = f({\bf b}) - f({\bf a})$ Gradiënt theorema

$\int (\nabla \cdot {\bf A} ) d\tau = \oint {\bf A} \cdot d{\bf a}$ Divergentie theorema (stelling van Gauss)

$\int (\nabla \times {\bf A} ) \cdot d{\bf a} = \oint {\bf A} \cdot d{\bf l}$ Rotatie theorema (stelling van Stokes)

Jo van den Brand 2004-09-25