Part 6
vertex fitting
decay tree fitting

reconstructing decays

* most HEP analysis concern reconstruction of decaying particles
— charged decay products are reconstructed as tracks

— neutral decay products as clusters in a calorimeter

* reconstruction of decay vertex is essential ingredient for
— measurement of invariant mass
— measurement of lifetime, time-dependent CPV

— identification: list of particles with macroscopic decay length is short

vertex fitting

combine N tracks under the constraint that they come from common point
Input: parameters + covariance for each track
output: vertex position, track momentum vectors, covariance matrix

momentum only becomes relevant if there are kinematic constraints or if
the field is non-zero at the position of the vertex

compared to track fitting
— more parameters: 3 + 3xN
— Inherently non-linear

— no equivalent of process noise

model of a decay

N Track 2

Track 1

* model: 1 vertex + N momentum vectors

P, ,«l J"’,
Vé :p?——”'l Re§erenceimj/ rock 3 e data N traCk parameter VeCtOrS Wlth
Pt W, covariance matrix

v

* measured tracks are independent, so total chi-square is

= > (@ —h(@p))" Vi (@ — h(=z,p))

tracks 2 _ .
covariance matrix for
measured track parameters,

measured track parameters, .
e.g. 5-parameter helix ‘ vertex position \ ‘ momentum vector \

track measurement model in vertex fit

* of course, this depends on how you have parameterized the tracks

* trivial in the forward-geometry parameterization in zero field

4y £r — meﬁpz \
(Yo \ (T — Zpy/P-
h(x,p) = t = Pa/P=

f; Py/P=
\»/) \ p

* but quite a bit more complicated if dealing with helices

/ do \ / (pto — pe) /aq \
b atan2 (pyo. Pao)
h(z,p) = W — qB. /p¢ Do = Pe+— qBLy
20 z — (atan2(py, pa) — ¢0)p=/9B. Py = Py — qB.y
\ 0) \ atan(p:/p:))

* and now you still need the derivatives ... see arXiv:physics/0503191

minimizing the chi-square

'naive’ global fit requires inversion of M-dimensional matrix, with M=3+3N
— not great if number of outgoing tracks large

— practical implementations don't do it that way

two popular methods (closely related)
— Billoir algorithm (Billoir, Fruhwirth,Regler (1985), Billoir, Qian (1992)
* global fit, exploiting (empty) structure of H'V''H

— Kalman filter (Fruhwirth (1987), Luchsinger, Grab (1992), ...,
Hulsbergen (2005))

with both methods the new track momentum vectors can be calculated,
but can also be omitted (which saves time)

since measurement-model not linear, need iterations

expressions not very illuminating, so we'll skip them

short intermezzo: exact constraints
(left over from yesterday morning)

measurement constraints

up till now, contributions to chi-square looked like
—1
Ax® = (m; — hi(z))" V7 (m; — hi(x))
I'll call this type of contribution a measurement constraint

it can be more generally written as

Ax* = gi(x)T Vi gi(x)
with the LSE we solve the over-constrained set of equations
using the assigned inverse variance as a weight

but now suppose that we have a relation between the parameters x that
we want to be exactly satisfied?

exact constraints

exact constraint expresses exact relation between the parameters x

— for example: suppose x is a 4-vector with 4x4 covariance matrix and
we want it to have exactly length m,

sometimes it is possible to simply eliminate 1 of the parameters

more generic solution: add an extra term to the chi-square

Ax® = Ajgj(x)

the parameter A is a lagrange multiplier
we now minimize the total chi-square wrt to A and x simultaneously

taking the derivative to lambda, you see how this imposes the constraint

- @)
~odn, Y

exact constraints in the progressive fit

* inthe progressive fit, we can eliminate the lagrange multiplier

X; = (x— 2p—1)" Cp1 " (T — Tp—1) + 2A£ 9k ()

Cy

ﬂ linearize around x_: 9ix(*) = gx(®r1) + Gk (¥ — #11)
Cro1 (x — xp—1) + GEXg

gr(xp—1) + G (x — xp—_1)

ﬂ solve, eliminate A

L1 — Kk: gkz(mk—l)
(1 — Ki,.Gy) Cr_1 (1 — K;.G)7T

K, = Cu1GT (GrCL_1GT)™"

* not surprising: expressions are identical to those for a measurement

constraint with V=0!

* S0, itis easy to include exact constraints in a progressive fit

mass constraints

as we shall see in a few minutes, it is sometimes useful to constrain the
invariant mass of the decaying particle to a 'known' value

use lagrange-multiplier technique

G = A G md) - (Sa) - mly

note
— need to assign mass hypothesis to each track

— this is a non-linear constraint

as we have seen in 2™ lecture, an efficient way of dealing with such
constraint is the 'progressive’ method

- first vertex without the constraint
- then add the constraint
— eventually iterate

adding a mass constraint

with progressive method, chi-square looks like (in 1D, but easy to generalize)

E,—E\" E, — E
X! = | po—p | C'{ po—p | + /\[Ez—pg’—mﬁdg}

Xrg — O g — &

*

result of vertex fit

In the linear approximation, the minimum chi-square solution is

o~

E Eq 1
p | =|r | - CGT(GCGT) " (B2 —pt—m?,)
€T Iy

2F,
where the constraint derivative is G* = (2P0)
0

since the constraint is non-linear, you would not need to iterate, using the
technique discussed in the 2™ lecture

can we do it simpler?

adding a mass constraint, faster method

* the faster method relies on coordinate transformation

(E) ('m,g) C — FCFT

—

P P 2F 2p
P (5T

* the exact constraint does something very simple to m?

m? = mﬁ " var (m?) =0

®* now you propagate that information to the momentum

X cov(mg, po)
P = Po—

(m[2) o m]?dg)

var (m%)

cov(mg, po)?

var (p) = var(pg) — var (m2)
0

* finally, you transform back to (E,p) coordinates

* using the same formulas, you can also propagate the information to the

vertex position

why did | show you this?

* sometimes 'tranformation’ is good alternative to 'linearization’

— It's not magic: it will not solve the problem that non-linear
transformations of variance don't preserve confidence intervals

* the trick on the previous page allows you to add mass constraint to any
p4 with error

— you can often do this at 'ntuple-level’

— no need for complicated kinematic fits

* | wanted to introduce you to the concept of 'propagation’ of information
through covariance matrices

iIntermezzo: propagation formula

suppose we have two observables (a,b) with covariance V

suppose we do something which makes that we know a better
a— a Viw — Vi

we can propagate this knowledge to b using

b = b+ VyV.(a—a)

Vbb

Vbb _ Vba Va;l (Va,a, _ f/a,a,) Va;1 Vab

f/ab Vaa Va;1 Vab

you can derive this with the LSE. it is essentially just the progressive
method again. formulas also work when a and b are vectors

propagation is useful if you want to deal only with relevant subset of
parameters when adding a constraint

photons

* photons in final state
— do not contribute to knowledge of vertex

— however, needed when using mass constraint

* photon reconstructed as 'calorimeter cluster' with energy and position
- enters X® just like reconstructed tarck
— measurement model not completely trivial (see e.g. arXiv:physics/0503191)

— 4 measurements, but only 3 constraints

* calorimeter clusters with other hypothesis can also be used, e.g. K

- use only reconstructed position, not energy measurement

- this only becomes a constraint when dealing with multi-level
decay chains

decay trees

* now consider a multilevel decay tree, e.g. B-->D*0 pi-

TU
D ~ K-
*0 / --- ’Y
B-__ i ---Q"" /--"7:56'- ettt
N y

* there are four types of objects, sometimes called 'particles’
— reconstructed as track with mass hypothesis (e,u,n,K,p)
— reconstructed as cluster with mass hypothesis ()
— composite or virtual particles
* with non-observable decay length (‘'resonances’)

* with macroscopic decay length (‘non-resonances’)

parameterizing a decay tree

* there are many ways to do this, but this is most popular (with me, at least)
— for each outgoing particlea momentum vector (mass is fixed)
— for each 'composite’ particles
* a momentum vector, energy and decay vertex

* if it is not at the 'nead' of the decay tree and not a resonance, we
add a decay length

* if a resonance has a mother, we omit its decay vertex

* you can now count the number of parameters in the decay tree on the
previous page: 9 momenta + 2 vertices + 1 decay length = 34

* how would you fit something like this?

fitting a decay tree: cascade method

cascade method: fit most downstream vertices first, work your way
upward

this exploits that in the linear approximation all downstream information is
contained in composite's parameters and covariance matrix

In the example
— first fit the D->Kn decay
— then fit the B, using the '‘composite’' D as input

— once you have vertexed the DO, the K momentum is entirely irrelevant
for the B vertex fit

this method simple, fast and it almost always works

it is also efficient if you e.g. want to use same DO to reconstruct more than
one B candidate

fitting a decay tree: global method

* global method: calculate complete tree in single fit
— obtain covariance matrix for complete decay tree

— In practical applications, a progressive fit works best (since covariance
matrix is huge if number of particles large)

* global method has two advantages wrt to cascade method
— better treatment of non-linearities

— some decay trees cannot be fit with the cascade method, e.g.
‘'extreme vertexing: B’ —J/y K_with K —»n°r’

u
“,+
JN—""" y
- = = = == — _ _ L v
; K i
B . T v
-y

* this decay tree is overconstrained if mass constraints are used for both n°

illustration of global fit

* the alternative, used before we had decay tree fits: forget about Ks decay
length and simply attach the photons to the B vertex

* but Ks flies several 10s of cm = totally wrong Ks mass (and B mass)

simple method decay tree fit

\

75 m . .
= 400 / Entries 11112
=z @ Mean 0.499
300F RMS 0.012
200F
100

1 1 I 1 1 1 I 1 1
0.46 0.48 0.5 0.52 0.54 ,
fitted @ mass [GeV/c™]

mass constraints in decay tree

e to illustrate what mass constraints can do for you, consider B® — J/y K,
but now with K —7'7 (this is the 'normal’ decay)

Ks -> 7't mass BO - prSi Ks mass
400__I ' ' I ' ' ! ! l ' ' ') l ! ' ' ' ' ! ! ' l__ T T T T T T T T T T T T
- L [[

3501 500 w/o mass constrainis

300f

: with J/psi and Ks mass constraints

250 B
: 400

200 i

150

300

100

50

. el P ST S R S R s q
0 0.48 0.49 0.5 0.51 0.52 200

J/psi ->) mass

150: 1uu_

1400

1200
1001
8of
60"

large impact of mass constraints mostly due
to 'recovery’ of tail in J/y mass

aot

20"

other constraints

* depending on what your experiment looks like, you might have more
information for your fit

* e.g.inthe B factories
— origin of initial particle
* average interaction point is calibrated using e'e” ->u'u” events
* used in decay tree fits to constrain origin of B or D mesons
— energy of initial particle

* if your X comes from e'e” —»XX, (like the B in the B-factories), then
the CMS energy of X can be constrained to Vs/2

* adding these constraints to your fit should be straightforward now!

concluding remark: 'garbage-in is garbage-out'

If the errors of the input don't make sense, then the errors of the output
don't make sense either

for example, be careful with mass constraints

— a tail in your mass distribution can bias the vertex position if you
constrain the mass

— there is not much you can do about this (unless you are adventurous
and experiment with things like the Gaussian-Sum filter)

often, result is compromise between maximum statistical power and
minimum systematic errors

— you apply the mass constraint if it helps

— you use a control channel to make sure it doesn't hurt

what | skipped: vertex finding

In experiments like Babar almost all vertexing is 'hypothesis-based'

— we assume these tacks come from B->J/psi Ks. now fit it

in LEP/Fermilab/LHC experiments vertex finding is more important
— how many interactions were there in this event?

— was there a B decay in this event?

the techniques look similar to track finding, but combinatorics is less
important limitation

example: reconstruct a primary vertex
— combine all tracks in one vertex
— remove tracks with large chisquare contribution

— refit if necessary

