Part 5
pattern recognition

pattern recognition

* track pattern recognition: associate hits that belong to one particle

Pattern Space Feature Space

nature or GEANT
-

track finding + fitting

-

* will discuss concepts and some examples

* if you are interested in this, start with
R. Mankel, “Pattern Recognition and Event Reconstruction in Particle Physics Experiments”,

Rept.Prog.Phys.67:553,2004, arXiv: physics/0402039.

aim of track finding algorithm

* two distinct cases

1. reconstruct complete event, as many 'physics' tracks as possible

* common for 'offline' reconstruction

2. search only for subset of tracks, for example
* in region of interest seeded by calorimeter cluster
* above certain momentum threshold

typical in online event selection (trigger)

* how do we judge performance of algorithms?

efficiency

track finding efficiency: what fraction of frue particles has been found?

two common definitions

— by hit matching: particle found if certain fraction of hits correctly
associated

— by parameter matching: particle found if there is a reconstructed track
sufficiently close in feature space

usually need some criterion to decide if true track is 'reconstructable'’
total efficiency = geometric efficiency x reconstruction efficiency

needless to say, track finding algorithms aim for high efficiency

ghosts and clones

* ghost track: reconstructed track that does not match to true particle, e.g.
— tracks made up entirely of noise hits

— tracks with hits from different particles

* track clones: particles reconstructed more than once, e.qg.
- due to a kink in the track

— due to using two algorithms that find same tracks

* tracking algorithms need to balance efficiency against ghosts/clone rate
— required purity of selection might depend on physics analysis

— when comparing different algorithms, always look at both efficiency
and ghost/clone rate

multiplicity and combinatorics

* multiplicity: number of particles or hits per event

— central issue in pattern recognition: if there were only one particle in
the event, we wouldn't have this discussion

* large multiplicity can lead to large occupancy, resulting in e.g.
— overlapping tracks --> inefficiency

— ghost tracks

to keep occupancy low, we need high detector granularity

* large multiplicity also leads to large combinatorics in track finding
— this is where algorithms become slow
— usually, faster algorithms are simply those that try 'less combinations'

— good algorithms are robust against large variations in multiplicity

2D versus 3D track finding

* single-coordinate detectors (like strip and wire chambers)
— require stereo angles for 3D reconstruction

— geometry often suitable for reconstruction in 2D projections

* reconstruction in 2D projection reduces combinatorics
— many track finding techniques only work in 2D
- find tracks in one view first, then combine with hits in other views, or

— find tracks in two projections, then combine

* 3D algorithms usually require 3D 'points' as input
— need space-point reconstruction by combining stereo views

— In single-coordinate detectors this leads to space-point ambiguity

space points ambiguity

* consider 'x' and 'u' view at 45°

N
N ™ |||.|||||.|_|
NN X
SUNSERNNESA
™ \\\‘ N ||||||._|.|||
EANRANIRAN u
™ N
NN .
X
N mirror points
N
CINAN \
) \\. \\ ""-\
B) R
SRR \.\\ N
) ™ N
N LAY
NON :f‘ X
X

* problem worse if angle larger (since more strips overlap)

* need 3 stereo views to resolve ambiguities

left-right ambiguity

* drift-radius measurement yields 'circle' in plane perpendicular to wire

* leads to two possible hit positions in x-projection

L.

y4

* this is called left-right ambiguity

* alternative way of thinking about this: two 'minima’ in hit chi-square
contribution (strongly non-linear)

* pattern recognition includes also 'solving' left-right ambiguities

track finding strategies: global versus local

* global methods
— treat hits in all detector layers simultaneously
— find all tracks simultaneously
— result independent of starting point or order of hits

— examples: template matching, hough transforms, neural nets

* local methods ('track following')
— start with construction of track seeds
— add hits by following each seed through detector layers

— eventually improve seed after each hits (e.g. with Kalman filter
technique)

template matching
make complete list of 'patterns’, valid
combinations of hits

now simply run through list of patterns and
check for each if it exists in data

this works well if

next step in

tree search

— number of patterns is small
— hit efficiency close to one l

— simple geometry, e.g. 2D, symmetric, etc

for high granularity, use 'tree search':
— start with patterns in coarse resolution

— for found patterns, process higher
granularity 'daughter-patterns'’

Hough transform

pattern space

hough transform in 2D: 8
point in pattern space -->

line in feature space

example in our toy-detector o
| I I I | | I I L I | I
hit (x,z2) --> line t =(x-x)/z 0 100 200 :
05 feature space

each line is one hit

lines cross at parameters of track

plot on the right is for 'perfect resolution'’

Hough transform (ll)

in real applications: finite resolution, more
than one track

concrete implementation
— histogram the 'lines'

— tracks are local maxima or bins with >N
entries

works also in higher dimension feature
space (e.g. add momentum), but finding
maxima becomes more complicated (and
time consuming)

can also be used in cylindrical detectors:
use transform that translates circles into
points

pattern space

501

-
-FE.
-

-
="

.

-
-

.

-
-

-

"
-

~m

-
-
-

-
-
-

L IO R
by
-
-

L l L
100

artificial neural network techniques

ANN algorithms look for global patterns using local (neighbour) rules
— build a network of neurons, each with activation state S
— update neuron state based on state of connected neurons

— Iterate until things converge

exploited models are very different, for example
— Denby-Peterson: neurons are things that connect hits to hits

— elastic arms: neurons are things that connect hits to track templates
main feature: usually robust against noise and inefficiency

we'll discuss two examples

Denby-Peterson neural net

iIn 2D, connect hits by lines that represent binary neurons

hits
neurons

neuron has two different states:

— S,y = 1 if two hits belong to same track
— S,-,- = 0 if two hits belong to different tracks
now define an 'energy’ function that depends on things like

— angle between connected neurons: in true tracks neurons parallel

— how many neurons: number of neurons ~ number of hits

track finding becomes 'minimizing energy function’

Denby-Peterson neural net

* energy function in the Denby-Peterson neural net

- — cos"™ 6 « o - 9 5
— Z 4+ e jk U‘S‘jk‘f + E (Z bijSz‘! + Z Sijskj) E (Z Ski

/ 1= T k=4
'cost function': penalty function
* 6,: angle between neurons ij and |l against bifurcations
d: length of neuron |j penalty function to balance number of

active neurons against number of hits

* alpha, delta and m are adjustable parameters
— weigh the different contributions to the energy

— that's what you tune on your simulation

* minimize energy with respect to all possible combinations of neuron
states

Denby-Peterson neural net

with discrete states, minimization not very stable

therefore, define continuous states and an update function

1 OF 1
vij = 3 1 + tanh T T
.-"i_lj

where the temperature T is yet another adjustable parameter

the algorithm now becomes

— create neurons, initialize with some state value. usually a cut-off on dij

IS used to limit number of neurons
— calculate the new states for all neurons using equation above

— Iiterate until things have converged, eventually reducing temperature
between iterations ('simulated annealing')

evolution of Denby-Peterson neural net

Energ
”Er'}[i};}!'l

"
= ﬁ.f.mr /@/.ﬁ [
X ﬁff,._,,f :
S fﬁhﬁwﬁ —, e
5| ooy 8
e
ﬁ.ﬁ.&lﬁl@i”@.@f N

Eneegy
trerglion

T=-05T

oL

Er?f.’ g i]
feralion

T=207

0

105

Enerqy
Ilerﬂl;sl;un

cellular automaton

like Denby-Peterson, but simpler

start again by creating neurons ij
— to simplify things, connect only hits on different detector layers

- each neuron has integer-valued state Sij, initialized at 1

make a choice about which neuron combination could belong to same
track, for example, just by angle: 0;; < 6™

evolution: update all states simultaneously by looking at neighbours in
layer before it

Sij — maX{Skzlgsz < QmaX} + 1
iterate until all cells stable

select tracks by starting at highest state value in the network

b)

d)

llustration of 'CATS' algorithm

initialization

end of evolution:
state value indicated by line thickness

selection of longest tracks

more selection to remove
overlapping tracks with same
length

elastic arms

ANN techniques that we just discussed
— work only with hits in 2D or space points in 3D
— are entirely oblivious to track model

* just finds something straight : no difference between track bended
In magnetic field and track with random scatterings

* hard to extend to situation with magnetic field

limitations are (somewhat) overcome by the elastic arms algorithm,
which works with deformable track templates

— neurons connect hits to finite sample of track 'templates'
— number of templates must roughly correspond to expected multiplicity
— main problem is sensible initialization of template parameters

— too much for today: if you are interested, look in the literature

seed construction for local methods

* local or track following methods find tracks by extrapolating seed
* usually, seeds are created in region with lowest occupancy

* two different methods of seed construction:

'nearby layer' approach 'distant layer' approach
| A
.'I |I'-I III ll'.
I f
A == Ay O
D ——— D l¢'r ::*' i
| | L
- A — -) A
F o ————w F o P —n
© ————= © e
(. - = w - | w 3 Iq w
i | \ T}
J = — I i =
K o — = n K 1 - /! = n
— f ! " L —= = - =
f |

smaller combinatorics larger combinatorics
worse seed parameters better seed parameters

track following

* track following works both in 2D and in 3D

* most simple scenario
— navigate track candidate to next layer
— pick closest hit within certain fixed window

— reject track if hit is missing

* problems with this 'naive' scenario
— detector inefficiency may lead to track being rejected for wrong reason
— wrong hit may be closer than correct hit

— left-right ambiguity can not always be resolved --> may make wrong
choice and spoil track

combinatorial track following

* combinatorial track following uses candidate branching
— split seed if more than one hit compatible
- follow both seeds, reject seeds with two many missing hits
— after all layers processed, select between overlapping tracks

* figure of merit: number of hits/holes, track chi-square etc.

* example: RANGER algorithm used in Hera-B (until replaced by CATS)

A B C D E

Kalman Filter used to improve
parameters with each hit

T1,T2,T3: true tracks

tracks splits in
three branches

some concluding remarks

track finding strategies are not independent of detector design

— think how you will find tracks before building your detector

strategies developed on MC usually need retuning once there is data

— noise, efficiency, occupancy

most robust strategies involve more than one track finding algorithm
— find tracks in system A, extrapolate to B
— find tracks in B, extrapolate to A
— use seeds from trigger

- elc

there is no one-size-fits-all

