Part 4
fitting with energy loss and multiple scattering
non-gaussian uncertainties
outliers



material intersections

* to treat material effects in track fit, locate material 'intersections' along
particle trajectory

/./ track

—
/ N
detector plane dead material

* for each intersection use known material properties to obtain
— average energy loss (from Bethe-Bloch formula)
— RMS of scattering angle distribution (from Moliere formula)

* to understand how to deal with that, we introduce 'state propagation’



state propagation

parameter vector of track ('state') changes when traversing material

[

state x » state X'
energy loss + scattering

x'is function of x: x' = f(x)
— function takes into account everything happening in between
— we call this 'propagation’ or 'transportation’

for example, accounting for energy loss p' = p - AE

note that it matters in which direction the track goes!



state propagation (ll)
function f(x) can eventually be absorbed in measurement model
residual = m,; — h@(.’.ﬂ)

however, it is more common to redefine track parameters such that they
become function of position along track

residual = m; — h%(.’lﬁg) with €Tr; — f@(&?)

e.g. for our toy track fit
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once you have energy loss corrections, or a non-nomogeneous field, this
function becomes less trivial



energy loss and multiple scattering in the fit

* energy loss along the trajectory of the particle is usually treated
'deterministically’

— simply change the momentum by average expected energy loss

— ignore uncertainty on correction: usually small compared to
momentum resolution

— It's all inside propagation f(x)

* multiple scattering can only be treated 'stochastically’

— we do not know the scattering angles, just the variance
— scattering angles become parameters in track model

— it's still inside f(x), but x now includes scattering angles



multiple scattering in a global track fit

* for each scattering plane, add two scattering angles to track model

* add new contribution to chi-square

normal contribution new contribution
for measured points for scattering angles
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expectation value .
P from Moliere formula

for scattering angles
E(e scat) = 0

* now minimize the chi-square as before, both to xand to 6

* problem: many parameters --> time consuming matrix inversion



multiple scattering in a progressive track fit

* in the Kalman filter we account for multiple scattering by introducing so-
called 'process noise'

* state propagation in kalman track fit

k—1 k—1
L = Jk (Tr—~1)

/

prediction of state at hit k

state after processing k-1 hits

function that expresses state at hit k
in terms of state after hit k-1

* the function f propagates the track parameter vector from one hit to next

* it takes care of magnetic field integration and energy loss correction

* yesterday | ignored it: ch,:_l — Ll_1



kalman filter with process noise

with transportation covariance matrix of prediction is

C;:_l = F;f_lq\k—1F;f_lT + Qg
_ }

derivative of f(x) variance of x, _ new: process noise

the matrix Q accounts for 'random noise' in the extrapolation from state
'k-1' to state 'k’

this is where we insert multiple scattering contributions

for example, traversing through 300 micron of silicon we would have

0.7 mrad)2
p/GeV

Qlisits) = Qtyty) — (



kalman filter with process noise (ll)

taking into account small correlations, the full formula become
Qte, ) = 65 (1+t5t7) (1+13)
Q(tyv t'y) — 93 (1 + titz) (1 + tz)

Q(tayty) = 93 (1+ titz) taty

If the finite thickness of the scatterer cannot be neglected, there are also
contributions to the position coordinates

in the helix parameterization this looks of course different, but the
iIngredients are the same

In terms of these new 'prediction’ variables, the Kalman is

ke—1 —1 vv T~ —1
K, = C,  H!(Vi.+ H,C,” H)})

ke—1 L1 (same as before,
Te = mk_ + K (mk — hk(irfk_ )) just substitute

_ new symbols)
o (1 — K,H,,) Cr!



graphical representation of Kalman filter

[nitial approximation
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Process noise
Cr = Ck + G

* borrowed from CBM-SOFT-note-2007-001
* note: slightly different notation
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* we call the points at which states
are evaluated 'nodes’ (labeled by k)
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Fitted parameters
Iy, Uy

* sometimes it is useful to split
'measurement' and 'noise’ in
separate nodes

* [I'll do that in the toy track fit



adding multiple scattering in our toy track fit

* introduce a single scattering plane

scattering plane
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* very thick plane: equivalent to 1cm iron (x/X, = 0.6)

* to emphasize its importance, reduced detector resolution to Tmm



adding multiple scattering in our toy track fit

* evolution of track state in the Kalman filter

st,attermg plane arbitrarily large
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* note how uncertainty in predicted state blows up exactly at the scattering
plane: that is the noise contribution

* as a result, measurement before scattering plane do not really contribute



comparison of two 'scattering' approaches

* we could do the same in the global fit, but that's too much work now

* once more, difference between two approaches

— global fit: explicit parameterization in terms of angles. matrix to be
inverted has size “5 + 2 x number of planes”

— kalman fit: implicit parameterization by allowing state vector to change
along track. only 1-dimensional matrix inversions.

treatment of material effects in KF is easier and faster

* contrary to common belief, track model does not necessarily differ in the
two cases

— if you would 'draw' the track, you would get the same result

— scattering angles in the kalman fit do not appear explicitly, but can be
calculated from the difference of states on neighbouring nodes



back propagation

* global fit leads to single set of parameters that describe track state
everywhere along trajectory

* in the Kalman fit, you get exactly that state, after processing all hits
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* if there is no scattering, you can propagate the 'final' state back to
everywhere along track



track state smoothing

in the global fit scattering angles explicit: still know position everywhere
in Kalman fit, scattering information is not kept

— you need to do extra work to propagate final state 'oackward'
— this is called track state 'smoothing'

there are two common approaches

— use so-called 'smoothing-matrix' formalism (see Fruhwirth)

— run another Kalman filter in opposite direction and perform weighted
average on each node

latter procedure is more popular now, because
— math is simpler (not a very good reason)
— it is more stable (a good reason)

— It is more economic if you don't need smoothed state on every node



reverse filter: Kalman filter in opposite direction

* in orange the result from the reverse filter (which runs from left-to-right)

s 5oP= 23[Gevic]
O = = T ¥ o )
: filter direction
-50-
| 1 1 1 1 | 1 1 1 1 | 1
0 100 200 .

* to initialize the reverse filter, we can use the result from the forward fit

* need to blow up the uncertainty by a large factor, for example 1000



smoothing with a weighted mean

* once we have the result in both directions, we can compute the
'smoothed' trajectory by taking the weighted average

* _ p= 23[GeVic]
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momentum resolution with multiple scattering

* we have seen: without multiple scattering o (p)/p ~ p
* to see what multiple scattering does, we use the toy track fit
* we add just a bit more realism

— hit resolution 100 micron (an excellent drift chamber)

- scattering x/X = 0.01 per layer (not untypical for forward detectors)
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momentum resolution with multiple scattering
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* this is the same plot for the hera-B
spectrometer, which has

— more field integral

— a much longer arm

= better resolution at high
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toward a real track fit

* we now have almost all ingredients to state-of-the art track fitting

— track models for two types of detectors
— two track fitting procedures, both with 'material' corrections
* the missing ingredients are really detector specific
— measurement model h(x): depends on geometry, 'strips' or wires, etc.
- the field integration
* to finish this, we'll briefly touch on two related subjects
- how to deal with non-Gaussian errors

- how to deal with outliers



non-gaussian error PDFs

as we have seen, for linear models and data with Gaussian errors,
extracted parameters have Gaussian errors

in real life, things are not entirely Gaussian

— hit errors might have tails due to noise, overlapping events, ...

— Moliere scattering has larger tails than Gauss

— ionization energy loss follows Landau distribution

— electron energy loss (bremstrahlung) follows Bethe-Heitler distribution

the last effect is particularly important for tracking electrons in 'heavy'
detectors like ATLAS and CMS

we'll use it as an example



energy loss of electrons

* 'fractional' energy loss of electrons described by Bethe-Heitler pdf
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* very non-gaussian. how could you deal with this in track fit?



Gaussian Sum Filter

* idea: describe P(z) as a weighted sum of several Gaussian distributions

* split fit in different component, one for each Gauss. add up the final
results.

|__predicted PDF at TIP in qip | From Adam, Fruhwirth,Strandlie, Todorov.
\ This plot shows the result from a single fit.
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* but

— number of components can become very large ... must run many fits
to fit a single track

— what do you do with the final pdf? reuse pdf components in vertexing?



outliers

up to now we have assumed that we know which hits belong to the track
but what if we have made a mistake?

— hits from other tracks
— noise hits
this becomes especially important in LHC era
— many tracks per event
— some tracks very close (e.g. in jets)
— overlapping events, 'spill-over' events (from previous bunch crossing)

how do we deal with this in tracking?



outlier rejection

* most simple idea

— reject hits with large contribution to the chisquare
— refit the track
— repeat if necessary

this is sometimes called 'trimmed' fitting

* more advanced idea: treat also 'competition between tracks'

— assign weights to hit-track combinations, depending on chi-square
contribution of hit

— eventually, combine this with an 'annealing' scheme in which weights
also depend on a 'temperature'

example: Deterministic Annealing Filter



* Marijke is jarig vandaag en trackteert taart

* daarom zingen we, in het Nederlands natuurlijk

Lang zal ze leven
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