Part 2
non-linear problems
example of a straight line fit
the progressive fit
exact constraints

the weighted mean is an LSE

least squares ('minimum chi-square') estimator

$$\hat{x} = CH^TV^{-1}(m - h_0)$$

$$C \equiv \operatorname{var}(\hat{x}) = (H^TV^{-1}H)^{-1}$$

- simplest example: weighted mean
 - consider measurements m_i with known uncertainty σ_i
 - assuming they measure the same thing 'x', what value has 'x'?

$$h_i(x) = x \Longrightarrow H^T = (1, 1, 1, \cdots)$$

$$\hat{x} = \left(\sum \frac{1}{\sigma_i^2}\right)^{-1} \sum \frac{m_i}{\sigma_i^2} \qquad \text{var}(\hat{x}) = \left(\sum \frac{1}{\sigma_i^2}\right)^{-1}$$

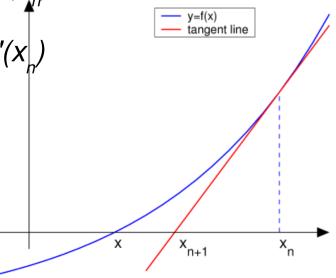
non-linear problems

- what if the measurement model h(x) is not linear?
- first derivative of the chi-square now looks like

$$\frac{\mathrm{d}\chi^2}{\mathrm{d}x} = 2 \frac{\mathrm{d}h(x)}{\mathrm{d}x}^T V^{-1} (h(x) - m)$$

where the derivative *dh/dx* now depends on x as well

- use Newton-Raphson to find the zero-crossing 'x' of a function f(x)
 - starting from an estimate $x_{n,}$ evaluate $f(x_n)$ and $f'(x_n)$
 - estimate a better value as $X_{n+1} = X_n f(X_n) / f'(X_n)$
 - iterate until you're happy with the value of f(x)



non-linear problems (II)

second derivative becomes

$$\frac{\mathrm{d}^2\chi^2}{\mathrm{d}x^2} \ = \ 2 \frac{\mathrm{d}h(x)}{\mathrm{d}x}^T V^{-1} \frac{\mathrm{d}h(x)}{\mathrm{d}x} + \ 2 \frac{\mathrm{d}^2h(x)}{\mathrm{d}x^2}^T V^{-1} \ (h(x) - m)$$
 this term also appears for a linear model this term is new

- the second term appears because the derivative is not constant
- in track/vertex fit applications we always drop this term, because
 - depending on how poor your starting point is it could actually make the second derivative negative, which is bad
 - if the derivative dh/dx varies slowly wrt the resolution, the second term is much smaller than the first
- dropping the 2nd term is equivalent to linearizing the measurement model

non-linear problems (III)

summarizing: choosing a starting point x₀, we have

which, with Newton-Raphson, gives

$$\hat{x} = x_0 - \left(\frac{\mathrm{d}^2\chi^2}{\mathrm{d}x^2}\right)^{-1} \frac{\mathrm{d}\chi^2}{\mathrm{d}x}$$

expression is just the same as for linear model

note that the variance can be written as

$$\operatorname{var}(x) = 2\left(\frac{\mathrm{d}^2\chi^2}{\mathrm{d}x^2}\right)^{-1}$$

 we now need a sensible starting point and iterations and repeat the calculation of derivatives and x, until we are 'close enough'

under-constrained problems

let's look more carefully at this step

$$-2~H^TV^{-1}~(m-h_0-Hx)~=~0$$
 minimum X^2 condition $\hat{x}~=~\underbrace{\left(H^TV^{-1}H
ight)^{-1}~H^TV^{-1}~(m-h_0)}$ solution

matrix inversion only possible if determinant not zero!

- if the determinant is zero
 - solution to minimum chi-square condition is not unique
 - some (or all) linear combinations of elements of x are not constrained, which means that they do not have finite variance
 - we call these linear combinations 'unconstrained degrees of freedom'
 - they could be isolated, e.g. by diagonalizing $oldsymbol{H}^T V^{-1} oldsymbol{H}$
- example: all linear problems with more parameters than data points
- we will not discuss problems with unconstrained DOFs

chi-square distribution

• consider the sum of N Gaussian distributed random variables (RV) 'r' with unit variance N

$$z = \sum_{i=1}^{N} r_i^2$$

this sum is itself an RV. its distribution is the chi-square distribution with N degrees of freedom

$${\cal P}_{\chi^2}(z;N) \; = \; rac{z^{N/2-1} \, e^{-z/2}}{2^{N/2} \, \Gamma(N/2)} \; egin{array}{c} E(z) \; = \; N \ {
m var} \, (z) \; = \; 2 \, N \end{array}$$

its cumulative distribution function

$$F(z;N) = \int_{z}^{\infty} \mathcal{P}(t;N) dt$$

is the probability that a random other 'z' is larger than 'z'

- if 'z' follows a chi-square distribution, then the distribution of F(z) is 'flat' between 0 and 1.
- the value of F(z) is sometimes called the 'chi-square probability'

minimum chi-square of the LSE

let's look again at the chi-square of our linear model

$$\chi^2 = \sum_{i} \left(\frac{m_i - h_0 - Hx}{\sigma_i} \right)^2$$

- if everything Gaussian, then for if $x=x^{\text{true}}$ this is distributed as $\mathcal{P}_{\chi^2}(z;N)$
- let's now look at the minimum chi-square in the LSE

$$\hat{\chi}^2 = (m - h_0 - H\hat{x})^T V^{-1} (m - h_0 - H\hat{x})$$

• filling in the solution for x-hat, we can rewrite this, for any x_0 (!)

$$\hat{\chi}^2 = \underbrace{(m-h_0-Hx_0)^T V^{-1} \left(m-h_0-Hx_0\right)}_{\text{X}^2 \text{ of residuals for X=X}_0} - \underbrace{(\hat{x}-x_0)^T C^{-1} (\hat{x}-x_0)}_{\text{X}^2 \text{ of difference between X and X}_0}$$

minimum chi-square of the LSE

• now apply this for $x_0 = x^{true}$

dimension N dimension M

$$\hat{\chi}^2 = (m - h_0 - H x^{ ext{true}})^T V^{-1} (m - h_0 - H x^{ ext{true}}) - (\hat{x} - x^{ ext{true}})^T C^{-1} (\hat{x} - x^{ ext{true}})$$

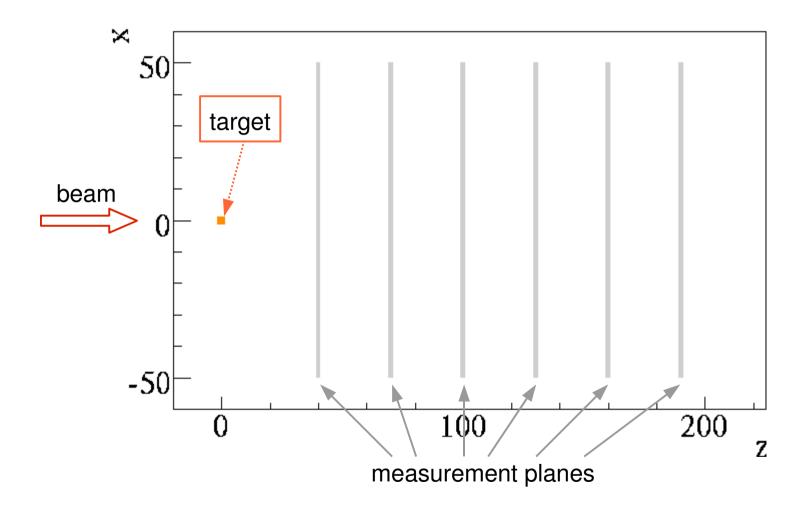
- ullet the first term is the chi-square for $\mathit{x}^{\mathit{true}}$, distributed as $\;\mathcal{P}_{\chi^2}(z;N)$
- the second is also a real chi-square:
 - because any linear combination of Gaussian RVs is still Gaussian
 - if x has dimension M, this chi-square is distributed as $\mathcal{P}_{\chi^2}(z;M)$
- however, two terms are fully correlated: all random perturbations in the right term originate from those in the left term
- as a result (without proof) things cancel and we get $\mathcal{P}_{\chi^2}(\hat{\chi}^2; N-M)$
- its expectation value is thus $E(\hat{\chi}^2) = N M$
- in words: "by fitting we have removed M degrees of freedom from X^2 "

enough theory?

let's fit something

toy track fit: detector

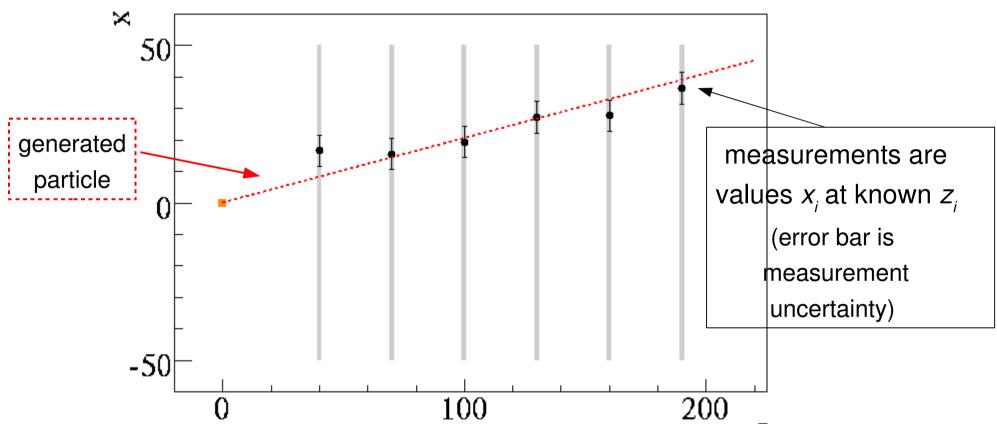
detector: 6 measurement planes in the x-z plane



• each plane (at known z) measures the x-coordinate with uncertainty σ

toy track fit: generator

generator: single particle, with straight trajectory (yes ... it's called a line)



- I am now going to show you a really complicated way of fitting a straight line through these point
- the good thing is that once you understand this, you can fit (almost) any kind of line, through (almost) any kind of data set, without MINUIT

toy track fit: track model

let's choose this parameterization of the straight line

$$\left(egin{array}{c} x \ z \end{array}
ight) \ = \ \left(egin{array}{c} x_0 \ 0 \end{array}
ight) + \lambda \left(egin{array}{c} t_0 \ 1 \end{array}
ight) \qquad egin{array}{c} x_0 & : & x \ ext{position at } z = 0 \ t_0 & : & ext{slope at } z = 0 \end{array}$$

so, vector of track parameters (sorry, once more a change in notation)

$$lpha \ = \ \left(egin{array}{c} x_0 \ t_0 \end{array}
ight)$$

measurement model for hit in plane at z_i

$$h_i(lpha) = x_0 + z_i t_0 \qquad \qquad H_i = \left(egin{array}{c} 1 \ z_i \end{array}
ight)$$

• this is a linear model: let's anyway use the expressions for the non-linear model. since the model is linear, we can choose a simple expansion point, e.g. (0,0)

chi-square derivatives

• evaluate the 1st and 2nd derivative of the chi-square at $\alpha=0$

$$egin{array}{ll} rac{1}{2}rac{\mathrm{d}\chi^2}{\mathrm{d}lpha} &=& -\sum_{i=1}^N H_i^Trac{1}{\sigma_i^2}x_i = -rac{N}{\sigma^2}\left(egin{array}{c} \langle x_i
angle \ \langle x_iz_i
angle \end{array}
ight) \ &=& rac{1}{2}rac{\mathrm{d}^2\chi^2}{\mathrm{d}lpha^2} &=& rac{N}{\sigma^2}\left(egin{array}{c} \langle z_i
angle \ \langle z_i
angle \ \langle z_i
angle \end{array}
ight) \end{array}$$

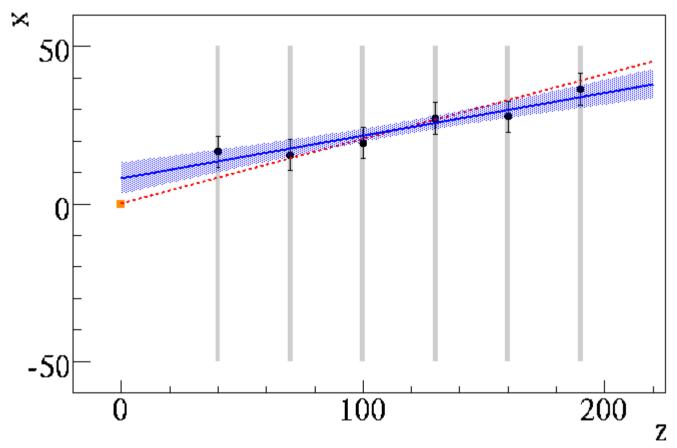
 I will not write down solution because this is where we would normally stop writing things down and use a computer. however, it is still instructive to look at the covariance matrix

$$\operatorname{var}(\alpha) = \frac{\sigma^2}{N} \frac{1}{\langle z_i^2 \rangle - \langle z_i \rangle^2} \begin{pmatrix} \langle z_i^2 \rangle & -\langle z_i \rangle \\ -\langle z_i \rangle & 1 \end{pmatrix}$$

- note
 - uncertainty on track parameters is proportional to hit uncertainty
 - its inversely proportional to sqrt(N)
 - uncertainty on the slope is inverse proportional to the spread in z

toy track fit: results of the LSE

this is a result of the fit to the event we have seen before



- the blue line is the best fit 'trajectory'
- the blue band is the uncertainty on the x-coordinate for given z
- let me show you how that was calculated

'transporting' the track state

we parameterized our track model at a fixed z-position z=0

$$\left(egin{array}{c} x \ z \end{array}
ight) \ = \ \left(egin{array}{c} x_0 \ 0 \end{array}
ight) \ + \ \lambda \left(egin{array}{c} t_0 \ 1 \end{array}
ight)$$

 we could have taken any other point. as a function of that point z, the track parameters are related to the parameters at z=0 by

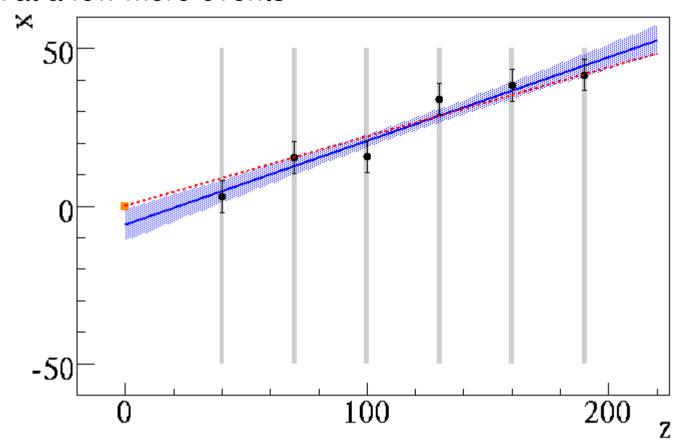
$$lpha(z) \ = \ \left(egin{array}{c} x_0 \ t_0 \end{array}
ight) + \left(egin{array}{c} zt_0 \ 0 \end{array}
ight) \ = \ Flpha_0 \qquad ext{with} \qquad F \ = \ \left(egin{array}{c} 1 & z \ 0 & 1 \end{array}
ight)$$

- we sometimes call the matrix F the 'transport matrix'
- the variance of the track parameters along z is then

$$\mathrm{var}\left(\alpha(z)\right) = F \, \mathrm{var}\left(\alpha\right) \, F^T$$
 (just the familiar error propagation)

• for the error in x we find: $\operatorname{var}(x(z)) = \frac{\sigma^2}{N} \frac{\langle z_i^2 \rangle - 2 \, \langle z_i \rangle \, z + z^2}{\langle z_i^2 \rangle - \langle z_i \rangle^2}$

let's look at a few more events

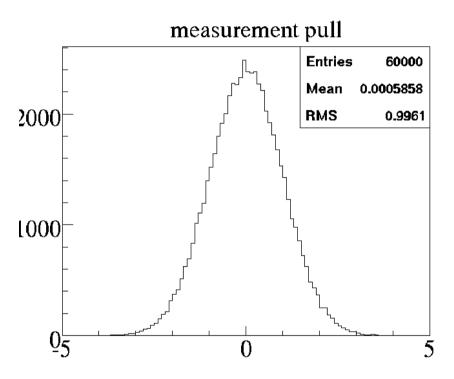


note that the error band is always most narrow in the middle of the track

$$\operatorname{var}\left(x(z)
ight) \ = \ rac{\sigma^2}{N} rac{\left\langle z_i^2
ight
angle - 2 \left\langle z_i
ight
angle z + z^2}{\left\langle z_i^2
ight
angle - \left\langle z_i
ight
angle^2}$$

testing the fit

- first thing to check is that input to track fit makes sense
- look at pull-distribution of measurements



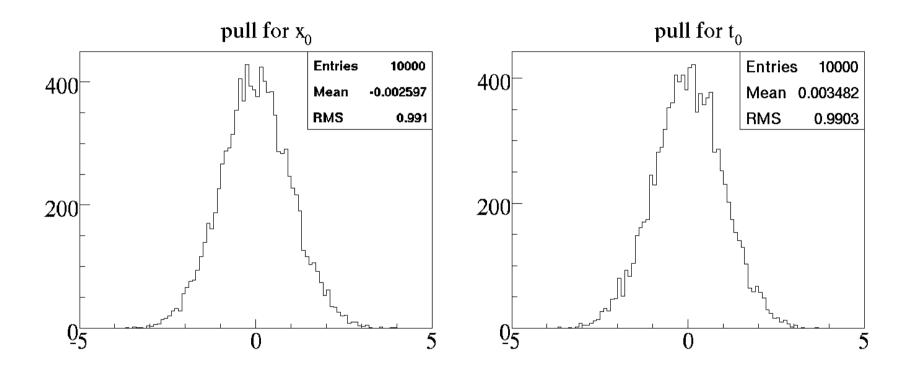
measurement pull =

$$rac{x_i - x_i^{ ext{true}}}{\sigma_i}$$

- pull distribution: any distribution of
- $\frac{a-E(a)}{\sqrt{\operatorname{var}(a)}}$
- square of pull is chi-square of 1 degree-of-freedom
- pull gives more information because it is signed (e.g. can see model bias)

parameter pulls

next we look at pulls of the output of the fit



- these kind of pulls still require knowledge of the 'true' trajectory
- we can also form pulls that do not require the 'truth', like the 'residual' pull

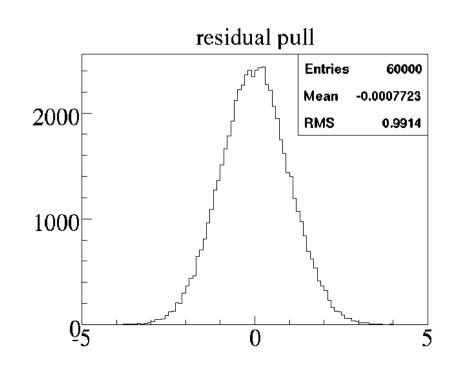
residual pull

- ullet measurement residuals: $\, r_i \, = \, m_i h_i(x) \,$
- covariance matrix for residuals (not entirely trivial, your homework)

$$m{R} \equiv ext{var} (m{r}) = m{V} - m{H} m{C} m{H}^T$$
 note minus sign! (100% correlation) variance of m

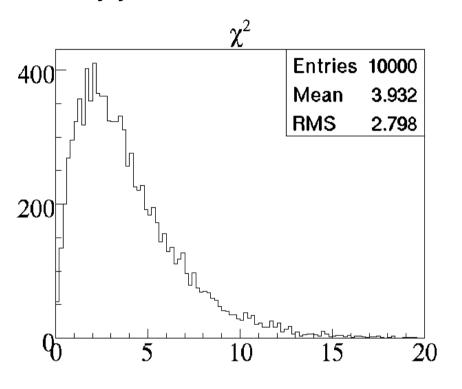
 matrix R is singular. its rank is N-M (it has M zero eigenvalues)

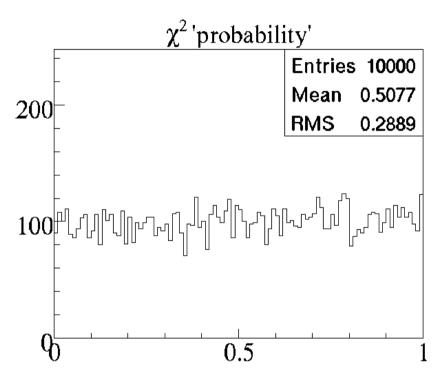
using this expression we can now calculate pull of residuals



chi-square

 if the residual pull looks good, chi-square must look good, because it is basically just the sum of residuals-squared





$$E(\chi^2) = N - M = 4$$

$$\sqrt{var(\chi^2)} = \sqrt{2(N - M)} = \sqrt{8}$$

applying constraints sequentially

• suppose we split the set of constraints in two $(m_1$ and m_2 still vectors)

$$\chi^2 \; = \; \left(m_1 - h_1(x)\right)^T V_1^{-1} \left(m_1 - h_1(x)\right) + \left(m_2 - h_2(x)\right)^T V_2^{-1} \left(m_2 - h_2(x)\right)$$

let's first minimize the first term

$$\chi_1^2 = (m_1 - h_1(x))^T V_1^{-1} (m_1 - h_1(x))$$

as you know, assuming a linear model, the solution is

$$egin{array}{lll} C_1 &=& \left(H_1^T V_1^{-1} H_1
ight)^{-1} \ x_1 &=& x_0 \,+\, C_1 H_1^T V_1^{-1} (m_1 - h_1(x_0)) \end{array}$$

where x_0 was an arbitrary starting point (you can choose $x_0=0$)

 how can we reuse this result to find the minimum chi-square solution to the total set of constraints?

applying constraints sequentially (II)

well, use the solution x1 as a constraint to form this chi-square

$$\chi^{2'} = (x_1 - x)^T C_1^{-1} (x_1 - x) + (m_2 - h_2(x))^T V_2^{-1} (m_2 - h_2(x))$$

$$= \begin{pmatrix} x_1 - x \\ m_2 - h_2(x) \end{pmatrix}^T \begin{pmatrix} C_1^{-1} & 0 \\ 0 & V_2^{-1} \end{pmatrix} \begin{pmatrix} x_1 - x \\ m_2 - h_2(x) \end{pmatrix}$$

ullet the derivative matrix is now $oldsymbol{H}=\left(egin{array}{c}1\ oldsymbol{H_2}\end{array}
ight)$ and the solution becomes

$$egin{array}{lll} C &=& \left(C_1^{-1} + H_2^T V_2^{-1} H_2
ight)^{-1} \ x &=& x_0' \, + \, C \, \left(C_1^{-1} (x_1 - x_0') + H_2^T V_2^{-1} (m_2 - h_2(x_0'))
ight) \end{array}$$

- after substituting x_1 and C_1 , the result is equal to the result we would have obtained had we minimized the original chi-square
- conclusion: for linear models we can apply constraints sequentially
- caveat: the intermediate problems should not be under-constrained

gain matrix and weighted mean formalisms

 note that in the expression of the final solution the expansion point is still arbitrary

$$x = x'_0 + C \left(C_1^{-1}(x_1 - x'_0) + H_2^T V_2^{-1}(m_2 - h_2(x'_0)) \right)$$

an obvious choice is to use x1 as the expansion point

$$x = x_1 + C \, H_2^T V_2^{-1} (m_2 - h_2(x_1))$$
 gain matrix formalism

we can also write this expression as

$$x = C \left(C_1^{-1} x_1 + H_2^T V_2^{-1} (m_2 - h_2(x_1) + H_2 x_1) \right)$$

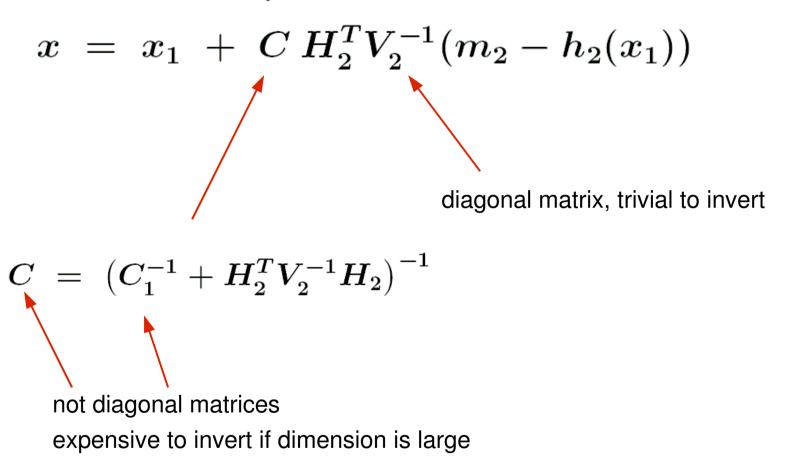
weighted means formalism

this is constant for linear models

 two understand the subtle difference, we need to talk about time consumption of calculations

matrix inversions

let's look more carefully at this



- so, to calculate C we need two 'expensive' matrix inversions
- it turns out we can do something smarter if the dimension of m₂ is small

Kalman gain matrix

make use of following matrix identity (homework: verify!)

$$(C^{-1} + H^T V^{-1} H) H^T V^{-1} = C H^T (V + H C H^T)^{-1}$$

to rewrite the gain matrix solution as

$$x = x_1 + K(m_2 - h_2(x_1))$$

$$K = C_1 H_2^T (V_2 + H_2 C_1 H_2^T)^{-1}$$

- single matrix inversion now concerns matrix with dimension of m_2 .
- if this dimension is small (e.g. if we add a single data point), the calculation is very fast
- this is the essential ingredient to the Kalman Filter

Kalman Filter

- developed to determine evolution of state vector (called 'trajectory') of dynamical system in time
- with each new measurement, knowledge about trajectory improves
- example: following a rocket on a radar screen
 - with a global fit, you would need to refit complete trajectory with each new measurement
 - kalman fit much faster, which is important in this case ...
- main benefits of Kalman filter in track and vertex fitting
 - local treatment of multiple scattering (tomorrow morning, part 4)
 - pattern recognition: possibility to decide, based on current knowledge of track, if a new hit is really part of it (tomorrow morning, part 5)

application: a weighted mean

- suppose m_2 is just another estimate of x with covariance C_2
- in the weighted mean formalism the combination would give

$$x = (C_1^{-1} + C_2^{-1})^{-1} (C_1^{-1}x_1 + C_2^{-1}x_2)$$

where the gain matrix expression looks like

$$x = x_1 + C_1 (C_1 + C_2)^{-1} (x_2 - x_1)$$

- it is easy to verify that these two expressions lead to identical results
- if the dimension of x is larger than 1, the 2^{nd} expression is computationally much simpler, since it involves only a single matrix inversion

covariance matrix in the gain formalism

there exist several expressions for the covariance matrix

$$C \ = \ (1-KH_2) \ C_1$$
 fast $3 ext{m}^3 + O(ext{m}^2)$ $C_1 \ C \ = \ (1-KH_2) \ C_1 \ (1-KH_2)^T \ + \ KV_2K^T$ stable but slow $C \ = \ (1-2KH_2) \ C_1 \ + \ K \ (V_2 + H_2C_1H_2^T) \ K^T$ stable and fast

- note that covariance matrix calculation does not require any extra matrix inversions
- expressions above differ in computation speed and in sensitivity to small errors in the gain matrix K
- such small errors can occur because of finite floating point precision affecting the matrix inversion
- see also NIM.A552:566-575,2005

global versus progressive fit

- global fit: apply constraints simultaneously
 - calculate chi-square derivatives once, summing over all constraints
 - requires single calculation of solution to system with M equations
 - hard to include 'process noise' (multiple scattering)

- progressive fit (Kalman filter, recursive fit): apply constraints sequentially
 - update solution after each constraint
 - requires M calculations of solution to system with single equation (provided the constraint is 1dimensional)
 - constraints must be uncorrelated
 - easy to include process noise

Kalman filter for track fitting

- your main reference: Fruhwirth, NIM-A262, pp 444, 1987
- the Kalman filter is based on the gain matrix formalism
 - start with an estimate x_o , C_o of the track parameters. C_o must be large compared to final expected variance
 - add measurements one-by-one updating track parameters at each step

$$K_k = C_{k-1}H_k^T(V_k + H_kC_{k-1}H_k^T)^{-1}$$

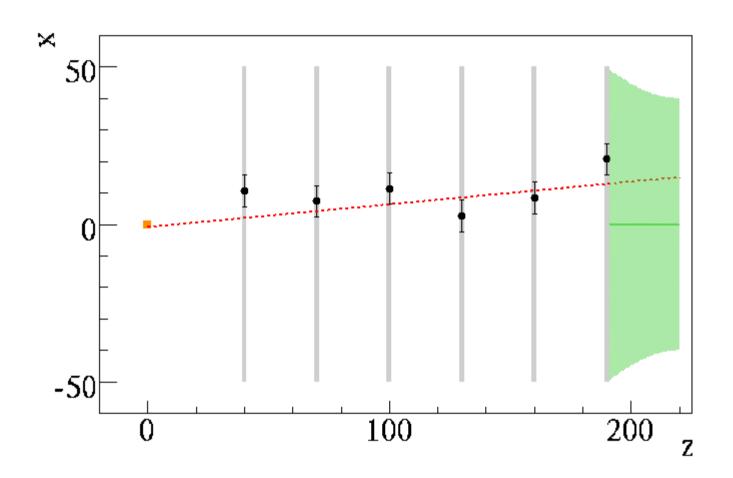
$$x_k = x_{k-1} + K_k(m_k - h_k(x_{k-1}))$$

$$C_k = (1 - K_kH_k) C_{k-1}$$

- for linear problems, the result is identical to the global fit
- the real advantage of the KF becomes clear only when we discuss multiple scattering

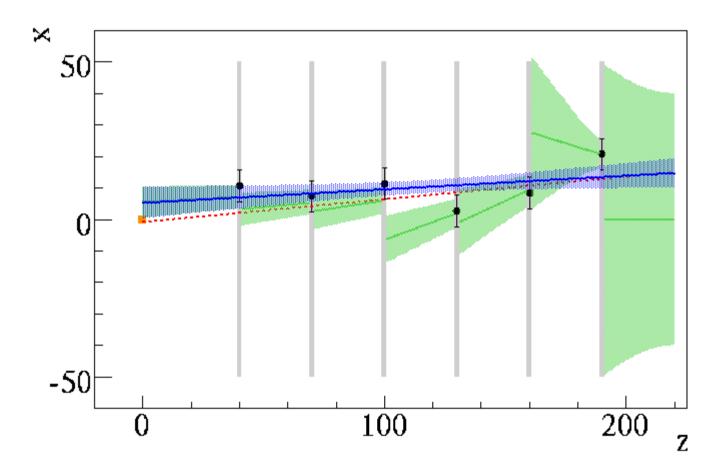
Kalman filter for our toy simulation

this animation shows how the track state changes when hits are added



Kalman filter for our toy simulation

this animation shows how the track state changes when hits are added



the result of the global fit is shown in blue

measurement constraints

up till now, contributions to chi-square looked like

$$\Delta \chi^2 = (m_i - h_i(x))^T V_i^{-1} (m_i - h_i(x))$$

- I'll call this type of contribution a *measurement constraint*
- it can be more generally written as

$$\Delta \chi^2 = g_i(x)^T V_i^{-1} g_i(x)$$

with the LSE we solve the over-constrained set of equations

$$\forall_i g_i(x) = 0$$

using the assigned inverse variance as a weight

 but now suppose that we have a relation between the parameters x that we want to be exactly satisfied?

exact constraints

- exact constraint expresses exact relation between the parameters x
 - for example: suppose x is a 4-vector with 4x4 covariance matrix and we want it to have exactly length $m_{\rm B}$
- sometimes it is possible to simply eliminate 1 of the parameters
- more generic solution: add an extra term to the chi-square

$$\Delta \chi^2 = \lambda_j g_j(x)$$

- the parameter λ is a lagrange multiplier
- we now minimize the total chi-square wrt to λ and x simultaneously
- taking the derivative to lambda, you see how this imposes the constraint

$$0 = \frac{\mathrm{d}\chi^2}{\mathrm{d}\lambda_i} = g_j(x)$$

exact constraints in the progressive fit

in the progressive fit, we can eliminate the lagrange multiplier

$$\chi_k^2 = (x-x_{k-1})^T C_{k-1}^{-1} (x-x_{k-1}) + 2\lambda_k^T g_k(x)$$

$$\lim_{k \to \infty} \lim_{k \to \infty} g_k(x) = g_k(x_{k-1}) + G_k(x-x_{k-1})$$
 $0 = \frac{1}{2} \frac{\mathrm{d}\chi^2}{\mathrm{d}x} = C_{k-1}^{-1} (x-x_{k-1}) + G_k^T \lambda_k$
 $0 = \frac{\mathrm{d}\chi^2}{\mathrm{d}\lambda} = g_k(x_{k-1}) + G_k(x-x_{k-1})$

$$\lim_{k \to \infty} \sup_{k \to \infty} g_k(x_{k-1})$$
 $\lim_{k \to \infty} g_k(x_{k-1}) + G_k(x-x_{k-1})$

$$\lim_{k \to \infty} \sup_{k \to \infty} g_k(x_{k-1})$$
 $\lim_{k \to \infty} g_k(x_{k-1}) + G_k(x-x_{k-1})$

$$\lim_{k \to \infty} g_k(x_{k-1}) + G_k(x-x_{k-1})$$

- not surprising: expressions are identical to those for a measurement constraint with V=0!
- so, it is easy to include exact constraints in a progressive fit