Topical Lectures

Fitting, Tracking and Vertexing

NIKHEF, Feb. 28-29 2007

Wouter Hulsbergen (CERN)

wouter.hulsbergen@cern.ch

program

- 6 x 45 minutes, today and tomorrow
 - 1st hour: probability, statistics, least squares estimator
 - 2nd hour: non-linear problems, a straight line fit, the progressive fit
 - 3rd hour: interaction of particles with matter, tracking detectors
 - 4th hour: track fitting
 - 5th hour: track finding
 - 6th hour: vertex and decay tree fitting

slides available at http://www.cern.ch/whulsber/topicallectures

subset of recent NIKHEF theses

- van Eldik, The ATLAS muon spectrometer: calibration and pattern recognition (2007)
- Cornelissen, Track fitting in the ATLAS experiment (2006)
- Hommels, The tracker in the trigger of LHCb (2006)
- van Beuzekom, Identifying fast hadrons with silicon detectors (2006)
- Sokolov, Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment (2006)
- van Tilburg, Track simulation and reconstruction in LHCb (2005)
- Heijboer, Track reconstruction and point source searches with ANTARES (2004)
- Hierck, Optimisation of the LHCb detector (2003)
- Vos, The ATLAS inner tracker and the detection of light supersymmetric Higgs bosons (2003)
- Peeters, The ATLAS semiconductor tracker endcap (2003)
- Visser, Muon tracks through ATLAS (2003)
- Woudstra, Precision of the ATLAS muon spectrometer (2002)
- van der Eijk, Track reconstruction in the LHCb experiment (2002)
- Hulsbergen, Track reconstruction and di-lepton production in Hera-B (2002)
- ...

Part 1

probability

least squares estimator

probability density function

- from wikipedia (stripped from the mathematical language I cannot understand)
 - the probability density function for a random variable X is the non-negative function $\mathcal{P}:R\to R$ such that the probability that $X\in[a,b]$ is

$$\int_a^b \mathcal{P}(\xi) \mathrm{d}\xi$$

• alternative formulation: if Δt is an infinitely small number, the probability that X is included within the interval $(t, t + \Delta t)$ is equal to $\mathcal{P}(t) \Delta t$, or:

$$\Pr(t < X < t + dt) = \mathcal{P}(t) \Delta t$$

- notes
 - the value of P(x) is *not* the *probability* for x; it is a *density*
 - since integrals over P represents a probability, P(x) is normalized to unity

expectation value

expectation value for a function g(x)

$$E[g(x)]_{\mathcal{P}} = \int_{-\infty}^{\infty} g(x) \mathcal{P}(x) dx$$

• less common, shorter notation

$$E\left[g(x)\right]_{\mathcal{P}} \equiv \langle g(x) \rangle_{\mathcal{P}}$$

some relevant properties

$$\langle g(x) + h(x) \rangle = \langle g(x) \rangle + \langle h(x) \rangle$$

$$\langle a g(x) + b \rangle = a \langle g(x) \rangle + b$$

for any $a,b \in R$

mean, variance

mean of P

$$\mu_x \equiv \langle x \rangle \equiv \int_{-\infty}^{\infty} x \mathcal{P}(x) \mathrm{d}x$$

variance

$$\sigma_x^2 \equiv \mathrm{var}(x) \equiv \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

example, the gaussian distribution

$$\mathcal{P}(x) dx = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left| \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right| dx$$

$$\langle x \rangle = \mu \quad \text{var}(x) = \sigma^2$$

multi-dimensional pdfs

two-dimensional pdf for random variables (RVs) X and Y

$$\mathcal{P}(t,s) dt ds = \Pr(t < X < t + dt \land s < Y < s + ds)$$

- can be generalized to any number of RVs
- covariance

$$V_{xy} \equiv \text{cov}(x,y) \equiv \langle (x-\langle x \rangle) (y-\langle y \rangle) \rangle$$

- correlation coefficient $ho_{x,y} \equiv rac{\mathrm{cov}(x,y)}{\sqrt{\mathrm{var}\,(x)\,\mathrm{var}\,(y)}}$
- note: $\operatorname{cov}(x,y) = \operatorname{cov}(y,x)$ $\operatorname{var}(x) = \operatorname{cov}(x,x)$

$$-1 \le \rho_{x,y} \le 1$$

covariance matrix

covariance conveniently organized in matrix

$$V(x,y,z,\cdots) \;=\; \left(egin{array}{ccc} V_{xx} & V_{xy} & V_{xz} & \cdots \ V_{yx} & V_{yy} & V_{yz} & \cdots \ V_{zx} & V_{zy} & V_{zz} & \cdots \ dots & dots & dots & dots & dots \end{array}
ight)$$

- matrix V is symmetric and positive-definite (det(V)>=0)
- example: gaussian (normal) distribution in N dimensions

$$\mathcal{P}(x_1,\ldots,x_N) dx_1 \cdots dx_N \propto \exp\left[\frac{1}{2}x^T V^{-1} x\right] dx_1 \cdots dx_N$$

• where $x = (x_1, \dots, x_N)$ and V as above

linear transformations

if F a linear transformation such that

$$y \ = \ F \ x$$
 for vectors $x \in R^n, y \in R^m$ and matrix $F \in R^m imes R^n$ then

$$\langle y \rangle = F \langle x \rangle$$
 $\operatorname{var}(y) = F \operatorname{var}(x) F^T$

- this is the familiar 'error propagation'
- if the transformation is not linear, e.g. y = f(x)

the expressions above hold to first order in x with jacobian

$$F_{ij} = rac{\partial y_i}{\partial x_j}$$

 this is just an approximation: if you want the true variance of y, you need to calculate var(f(x))

linear transformation of Gaussian distribution

example of linear transformation: for Gaussian P(x)

$$\mathcal{P}(x_1,\ldots,x_n) dx_1 \cdots dx_n \propto \exp\left[\frac{1}{2} x^T V_x^{-1} x\right] dx_1 \cdots dx_n$$

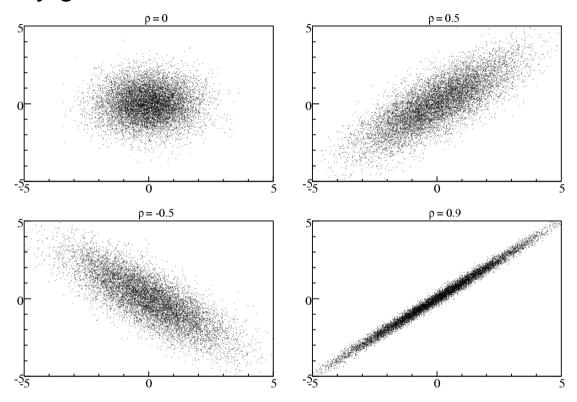
• if y = Fx, then P(y) is also Gaussian

$$\mathcal{P}(y_1, \dots, y_m) dy_1 \cdots dy_m \propto \exp \left[\frac{1}{2} y^T V_y^{-1} y\right] dy_1 \cdots dy_m$$

with
$$V_y = F V_x F^T$$

- in other words
 - linear transformation of Gaussian PDF is still Gaussian PDF
 - if X is sum of Gaussian Rvs, X is itself a Gaussian RV

example: x and y gaussian distributed with unit variance



- correlation tells about the sign of the direction of the slope and how squeezed the distribution is
- sizes of half the major and minor axis of the 'ellipse' correspond to eigenvalues of covariance matrix V

central limit theorem

central limit theorem

Consider sum of N random variables

$$S = x_1 + x_2 + \dots + x_N$$

If x_i independent and distributed according to a pdf $\mathcal{P}(x)$ with finite mean μ_x and variance V_x , then

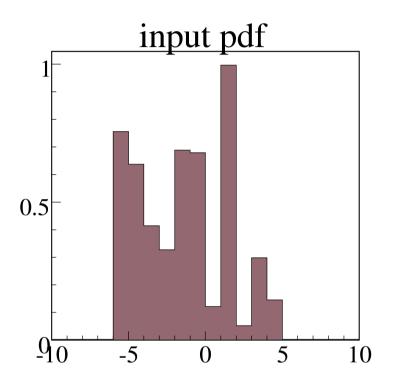
$$\mu_S = N\mu_x$$
 $V_S = NV_x$

In the limit for large N the distribution for S approaches a normal distribution with mean μ_S and variance V_S .

- why is this important for us?
 - if error on measurement is sum of many small contributions, it is approximately gaussian distributed
 - if we extract <N parameters from N measurements, their errors are usually more Gaussian then those on original measurements

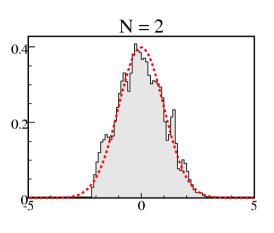
CLT in action

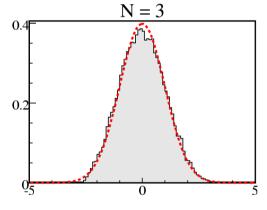
starting from an arbitrary PDF

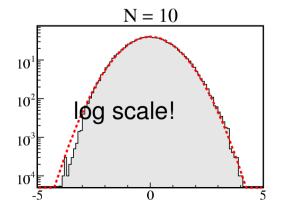


generated distribution of $(S-\mu_S)/\sqrt{V_S}$

note: used finite number of samplings (10000). in reality distributions even more gaussian!







estimators

- suppose we have
 - a data set {x_i}
 - a model with unknown parameters α
- a *statistic* is any function of the data that does not depend on α
- an estimator for α is a statistic whose value estimates α
- some important properties of estimators
 - consistency: estimator is consistent if it approaches true value with more data
 - **bias**: difference between expectation value of estimate and α
 - **efficiency**: ratio between variance of estimate and best possible variance of any estimate for α

method of maximum likelihood

- given
 - set of independent measurements {x_i}
 - 'model' which gives the pdf for each x_i: $\mathcal{P}_i(x_i; \alpha) \mathrm{d}x_i$
- define the likelihood function

$$\mathcal{L}(\alpha; x) = \prod_{i} \mathcal{P}_{i}(x_{i}; \alpha)$$

- maximum likelihood estimate of α is the value $\alpha_{_{\!\!\mathsf{ML}}}$ for which $\mathscr L$ is maximum
- it can be proven that if an efficient estimator exists, then $\alpha_{_{\!\!\mathsf{ML}}}$ is efficient
 - that means that there exists no estimator with smaller variance
 - (that does not mean that there exists no estimator with smaller bias)

method of maximum likelihood

 in applications we usually deal with the log of the likelihood function, because it is easier to add than to multiply

$$\ln \mathcal{L}(\alpha; x) = \sum_{i} \ln \mathcal{P}_{i}(x_{i}; \alpha)$$

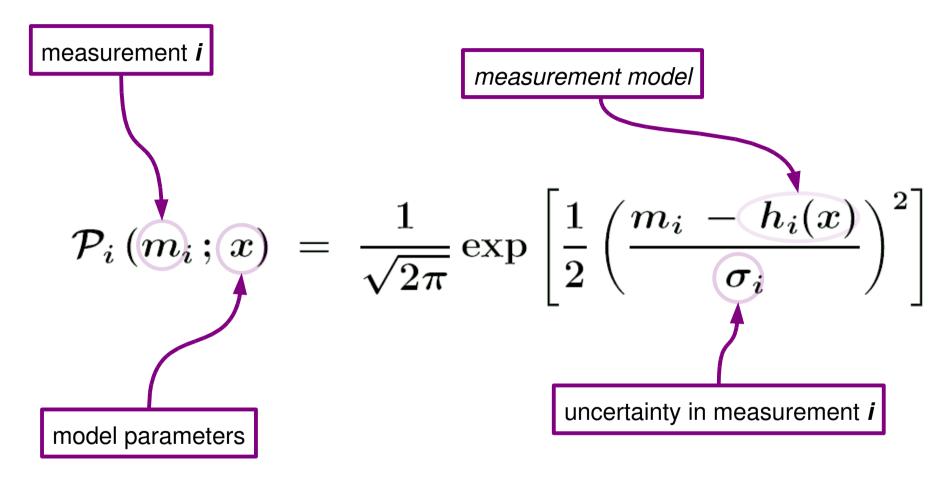
covariance matrix may be estimated from

$$V = \left[E \left(-rac{\partial^2 \ln \mathcal{L}}{\partial lpha^2}
ight)
ight]^{-1}$$

- don't need to believe this now: will derive later for gaussian case
- most commonly, solution found with generic minimization algorithm, like MINUIT
- NOT HERE: we do not use MINUIT in track and vertex fitting

method of least squares

consider N independent measurements with Gaussian PDF



- note: change of variable names
 - till now mostly followed PDG
 - from now on use notations closer to tracking literature

method of least squares

consider N independent measurements with Gaussian PDF

$$\mathcal{P}_i\left(m_i; x\right) = \left. \frac{1}{\sqrt{2\pi}} \exp \left| \frac{1}{2} \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 \right|$$

define the chi-square

$$\chi^2 \equiv \sum_i \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 = -2 \ln \mathcal{L} + \text{constant}$$

- the value x-hat for which the chi-square is minimum is called the least squares estimator (LSE)
- as you can see above, if the measurements are distributed normally around their true values, the LSE is the maximum likelihood estimator

method of least squares

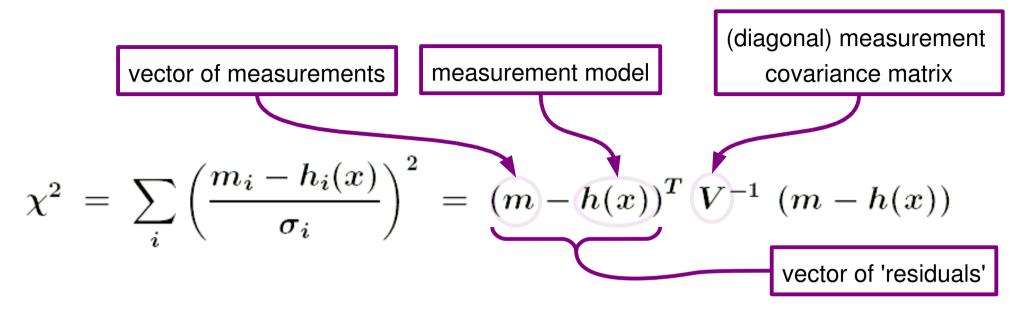
so, minimizing the chi-square is well motivated for 'Gaussian' errors

- there is another motivation: the Gauss-Markov theorem states that for a linear model, the LSE is efficient for (almost) any error distribution
 - there is no *linear* estimator with smaller variance

- because it is a good illustration of the concepts we have just introduced, we now prove the Gauss-Markov theorem
 - first we rewrite the chi-square in matrix notation
 - then we linearize it, extract the LSE and its variance
 - finally, we prove the theorem

chi-square in matrix notation

rewrite chi-square using covariance matrix for measurements



condition that chi-square is minimum, can now be written as

$$0 = rac{\mathrm{d} \chi^2}{\mathrm{d} x} = -2 rac{\mathrm{d} h(x)}{\mathrm{d} x}^T V^{-1} \left(m - h(x)
ight)$$
 derivative matrix

for N measurements and M parameters, derivative is NxM matrix

LSE for a linear model

- in many fit applications derivative of h(x) varies slowly with respect to measurement errors
- therefore, consider linear measurement model

$$h(x) = h_0 + Hx$$

where the derivative matrix $H \equiv \frac{\mathrm{d}h(x)}{\mathrm{d}x}$ is constant

condition that chi-square derivative vanishes, becomes

$$rac{\mathrm{d}\chi^2}{\mathrm{d}x} \; = \; -2 \; H^T V^{-1} \left(m - h_0 - H x
ight) \; = \; 0$$

which has a solution

$$\hat{x} = (H^T V^{-1} H)^{-1} H^T V^{-1} (m - h_0)$$

this is the LSE for linear models. it is called a linear estimator, because it
is a linear function of the measurements

bias and variance of the LSE

provided that the measurements are unbiased and have variance V

$$\langle m
angle = m^{ ext{true}} \equiv h_0 + H x^{ ext{true}}$$
 var $(m) \equiv V$

we find that the bias of the LSE is zero

$$\langle \hat{x} - x^{\text{true}} \rangle = (H^T V^{-1} H)^{-1} H^T V^{-1} (\langle m \rangle - h_0 - H x^{\text{true}})$$

$$= 0$$

and that its variance is

$$\begin{array}{lll} \mathrm{var}\left(\hat{x}\right) & = & \mathrm{var}\left(\left(H^{T}V^{-1}H\right)^{-1} \; H^{T}V^{-1} \left(m-h_{0}\right)\right) \\ & \overset{\mathsf{drop \; constants}}{=} \; \mathrm{var}\left(\left(H^{T}V^{-1}H\right)^{-1} \; H^{T}V^{-1}m\right) \\ & \overset{\mathsf{var}(\mathsf{Ax}) \; = \; \mathsf{A} \; \mathsf{var}(\mathsf{x}) \; \mathsf{A}^{\mathsf{T}}}{=} \; \left(H^{T}V^{-1}H\right)^{-1} \; H^{T}V^{-1} \; \mathrm{var}\left(m\right) \; V^{-1}H \left(H^{T}V^{-1}H\right)^{-1} \\ & \overset{\mathsf{var}(\mathsf{m}) = \mathsf{V}}{=} \; \left(H^{T}V^{-1}H\right)^{-1} \\ & = \; \left(H^{T}V^{-1}H\right)^{-1} \end{array}$$

other linear estimators

- we now simplify things a bit, without loss of generality
 - choose $h(x_0)=0$ by absorbing constants in measurements
 - choose V = 1 by scaling measurements to have unit variance
- the LSE then becomes

$$\hat{x} = (H^T H)^{-1} H^T m \qquad \text{var}(x) = (H^T H)^{-1}$$

now take an arbitrary other linear estimator

$$\hat{x}' = Am$$

again, without loss of generality rewrite it as

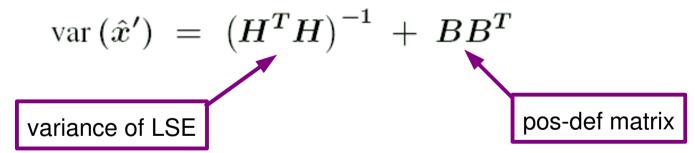
$$\hat{x}' = \left(\left(H^T H \right)^{-1} H^T + B \right) m$$

Gauss-Markov theorem

for the bias and variance of A we obtain

$$\langle \hat{x}'-x^{ ext{true}}
angle \ = \ BHx^{ ext{true}}$$
 var $(\hat{x}') \ = \ \left(H^TH\right)^{-1}+BH\left(H^TH\right)^{-1}+\left(H^TH\right)^{-1}H^TB^T+BB^T$

 so, if we require the estimator to be unbiased for any true x, then BH=0 and therefore



 this completes our 'proof' of the Gauss-Markov theorem: if the data are unbiased and uncorrelated and the model is linear, then the LSE is unbiased and there is no linear unbiased estimator with smaller variance