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* 6 x 45 minutes, today and tomorrow
- 1% hour: probability, statistics, least squares estimator
- 2" hour: non-linear problems, a straight line fit, the progressive fit
- 3 hour: interaction of particles with matter, tracking detectors
- 4" hour: track fitting
- 5™ hour: track finding

- 6" hour: vertex and decay tree fitting

* slides available at http://www.cern.ch/whulsber/topicallectures



subset of recent NIKHEF theses

van Eldik, The ATLAS muon spectrometer : calibration and pattern recognition (2007)
Cornelissen, Track fitting in the ATLAS experiment (2006)

Hommels, The tracker in the trigger of LHCb (2006)

van Beuzekom, Identifying fast hadrons with silicon detectors (2006)

Sokolov, Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment (2006)
van Tilburg, Track simulation and reconstruction in LHCb (2005)

Heijboer, Track reconstruction and point source searches with ANTARES (2004)

Hierck, Optimisation of the LHCb detector (2003)

Vos, The ATLAS inner tracker and the detection of light supersymmetric Higgs bosons (2003)
Peeters, The ATLAS semiconductor tracker endcap (2003)

Visser, Muon tracks through ATLAS (2003)

Woudstra, Precision of the ATLAS muon spectrometer (2002)

van der Eijk, Track reconstruction in the LHCb experiment (2002)

Hulsbergen, Track reconstruction and di-lepton production in Hera-B (2002)



Part 1
probability

least squares estimator



probability density function

* from wikipedia (stripped from the mathematical language | cannot understand)

e the probability density function for a random variable X is the non-negative
function P : R — R such that the probability that X € |a, b] is

/ "Ple)a

e alternative formulation: if At is an infinitely small number, the probability
that X is included within the interval (¢, t 4+ At) is equal to P(t) At, or:

Pr(t < X < t+dt) = P(t) At

* notes

— the value of P(x) is not the probability for x; it is a density

— since integrals over P represents a probability, P(x) is normalized to
unity



expectation value

* expectation value for a function g(x)
Elg@lp = | a(@)P@)de
* less common, shorter notation Elg(x)|lp = (9(x))p

* some relevant properties

(ag(x) + b) = a {(g(x)) + b foranya,b € R



mean, variance

°* mean of P
e = () = ./E:xp(m)dx
° variance |
o= var(z) = ((&— (2)?) = (2?) — (a)’

* example, the gaussian distribution

1 1 (x— p\?
P(x) de = exp 5(3:: H) da




multi-dimensional pdfs

two-dimensional pdf for random variables (RVs) X and Y

P(t,s)dtds = Pr(t< X <t+dt N s<Y < s—+ds)

* can be generalized to any number of RVs

Vay = cov(z,y) = ((x — () (¥ — (¥)))

correlation coefficient , = = cov(x, y)
’ v/ var () var (y)
note: COV(C[:, y) — Cov(ya m)

var (x) = cov(x,x)

—1 < p.y <1



covariance matrix

covariance conveniently organized in matrix

(Vzca:: me V;I:z "'\
Vie Vau Vi
Vs = | v W

\: : .

matrix V is symmetric and positive-definite (det(V)>=0)

example: gaussian (normal) distribution in N dimensions

1
P(xiy....xNn) dxy---deny o exp [—:I:TV_l:B dxq

where = = (xy,---,xxn) andV as above

cevdax gy



linear transformations

If Fa linear transformation such that

y = Fx forvectorsx € R".y € R™ andmatrix F € R™ X R"

then
(y) = F (x) var (y) = F var(x) FT

this is the familiar 'error propagation'’

if the transformation is not linear,e.g. vy = f(x)

the expressions above hold to first order in x with jacobian

dy;
82133'

this is just an approximation: if you want the true variance of y, you need
to calculate var(f(x))

Fy; =



linear transformation of Gaussian distribution

* example of linear transformation: for Gaussian P(x)

1
P(xyy...,xp) dey - -dx, x exp la xt Vm_l T] dxy -+ -dx,
* if y = Fx, then P(y)is also Gaussian
L 7
P -2 Ym) dyr - dym o exp | oy” V" y | dyy - - - dy,

with V, = FV, FT

* |n other words

- linear transformation of Gaussian PDF is still Gaussian PDF

- if X is sum of Gaussian Rvs, X is itself a Gaussian RV



* example: x and y gaussian distributed with unit variance

=0 =0.5
P 5 P

5

] A tiall ]
=5 0 5 =5 0 5

* correlation tells about the sign of the direction of the slope and how
squeezed the distribution is

* sizes of half the major and minor axis of the 'ellipse' correspond to
eigenvalues of covariance matrix V



central limit theorem

* central limit theorem
Consider sum of N random variables
S=xz+x+---+xN

It x; independent and distributed according to a pdf P () with finite mean fi,
and variance V. then

,LLS:N)(L& VS:NVm

In the limit for large N the distribution for S approaches a normal distribution
with mean pg and variance V.

* why is this important for us?

— If error on measurement is sum of many small contributions, it is
approximately gaussian distributed

— If we extract <N parameters from N measurements, their errors are
usually more Gaussian then those on original measurements



CLT in action

starting from an arbitrary PDF

input pdf

Y 5 0 5 10

generated distribution of (s — pg)/\/Vs

note: used finite number of samplings
(10000). in reality distributions
even more gaussian!
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estimators

suppose we have

- adata set {x}

- a model with unknown parameters

a statistic is any function of the data that does not depend on
an estimator for A is a statistic whose value estimates O
some important properties of estimators

— consistency: estimator is consistent if it approaches true value with
more data

- bias: difference between expectation value of estimate and O

— efficiency: ratio between variance of estimate and best possible
variance of any estimate for



method of maximum likelihood

given
- set of independent measurements {x }
- 'model' which gives the pdf for each x:  P;(x;; a)dx;

define the likelihood function
Llazx) = HPz‘(ZC?:EOC)
7

maximum likelihood estimate of « is the value a,  for which & is maximum
it can be proven that if an efficient estimator exists, then «  is efficient

- that means that there exists no estimator with smaller variance

— (that does not mean that there exists no estimator with smaller bias)



method of maximum likelihood

In applications we usually deal with the log of the likelihood function,
because it is easier to add than to multiply

InL(a;x) = Z In P;(x;; )

covariance matrix may be estimated from

V =

0°ln L.

0 %

—1

— don't need to believe this now: will derive later for gaussian case

most commonly, solution found with generic minimization algorithm, like

MINUIT

NOT HERE: we do not use MINUIT in track and vertex fitting



method of least squares

* consider N independent measurements with Gaussian PDF

measurement i

measurement model

uncertainty in measurement i

model parameters

* note: change of variable names

- till now mostly followed PDG

— from now on use notations closer to tracking literature



method of least squares

consider N independent measurements with Gaussian PDF

1 1 i — h; :
'P,L(mzjm) — exp E(m h($)>

V27T g,;

define the chi-square

m%—ht(m) 2
Y2 = Z( ) = —2In L + constant

O

()

the value x-hat for which the chi-square is minimum is called the least
squares estimator (LSE)

as you can see above, if the measurements are distributed normally
around their true values, the LSE is the maximum likelihood estimator



method of least squares

so, minimizing the chi-square is well motivated for 'Gaussian' errors

there is another motivation: the Gauss-Markov theorem states that for a
linear model, the LSE is efficient for (almost) any error distribution

- there is no linear estimator with smaller variance

because it is a good illustration of the concepts we have just introduced,
we now prove the Gauss-Markov theorem

— first we rewrite the chi-square in matrix notation
- then we linearize it, extract the LSE and its variance

— finally, we prove the theorem



chi-square in matrix notation

* rewrite chi-square using covariance matrix for measurements

(diagonal) measurement
vector of measurements measurement model covariance matrix

=

= Z(’”*"h ) (m — h(x)" V7 (m = h(x))

0

1
L vector of 'residuals'

* condition that chi-square is minimum, can now be written as

dy2 dh(x) T
0 = X _ L dh®@) @)
da da
u derivative matrix

* for N measurements and M parameters, derivative is NxM matrix



LSE for a linear model

iIn many fit applications derivative of h(x) varies slowly with respect to
measurement errors

therefore, consider linear measurement model

h(x) = ho + Hx

dh(x)
dx

where the derivative matrix H = IS constant

condition that chi-square derivative vanishes, becomes
dy?
dx
which has a solution

i = (HTV'H)™ HTV~' (m — hy)

= 2H'V'(m —hy— Hx) = 0

this is the LSE for linear models. it is called a linear estimator, because it
IS a linear function of the measurements



bias and variance of the LSE

* provided that the measurements are unbiased and have variance V

(m) — mm'e — hg —|— HClee var (m) — V
* we find that the bias of the LSE is zero
(# —z™) = (HTV-'H)™" HTV-'((m) — hy — Hz")
= 0

* and that its variance is
var (&) = var ((HTV_IH) — gTy1 (m — hg))
drop constants _1
— var ((HTV_IH) HTV_lm)
var(Ax) = A var(x) A’ .
— (HTV-'H)™" HTV-'var(m) V-'H (HTV-'H)~
var(m)=V
= (HTV_lH) -

1



other linear estimators

we now simplify things a bit, without loss of generality

- choose h(x )=0 by absorbing constants in measurements

— choose V = 1 by scaling measurements to have unit variance

the LSE then becomes
& = (H'H) " HTm var () = (H'H) -

now take an arbitrary other linear estimator
~
r = Am

again, without loss of generality rewrite it as

= ((HTH)" ' H” + B) m




Gauss-Markov theorem

* for the bias and variance of A we obtain
<(i3’ . ZEtme> — BHIEUUG
var(#') = (HTH) + BH (HTH)™' + (HTH) " H"B” + BB”

* so, if we require the estimator to be unbiased for any true x, then BH=0
and therefore

var (#') = (H'H)™ + BBY

variance of LSE l/ \ pos-def matrix

* this completes our 'proof' of the Gauss-Markov theorem: if the data are
unbiased and uncorrelated and the model is linear, then the LSE is
unbiased and there is no linear unbiased estimator with smaller variance




