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Course Overview

• Basic statistics               – 24 pages

• Reducing backgrounds  – 36  pages

• Estimation and fitting – 52 pages

• Significance, probability – 25 pages

• Systematic uncertainties – 12  pages
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Speaker introduction

Working for the BaBar experiment 
since 1998 -- CP Violation in the B 
meson system

The BaBar Detector

The BaBar collaboration in 1999 à

Occasionally, I will take some examples
from B physics, no material in this
course is specifically tied to any
experiment (including BaBar)
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Basic Statistics
— Mean, Variance, Standard Deviation
— Gaussian Standard Deviation 
— Covariance, correlations
— Basic distributions – Binomial, Poisson, Gaussian
— Central Limit Theorem
— Error propagation
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Data – types of data

• Qualitative (numeric) vs Quantitative (non-numeric)

Not suitable for 
mathematical
treatment

Discrete
(Integers)

Continuous
(Reals)

Binning

{ 5.6354
7.3625
8.1635
9.3634
1.3846
0.2847
1.4763 }

‘Histograms’ ‘N-tuples’
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Describing your data – the Average

• Given a set of unbinned data (measurements)

{ x1, x2, …, xN}

then the mean value of x is

• For binned data

– where ni is bin count and xi is bin center

– Unbinned average more accurate due to rounding
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Describing your data – Spread

• Variance V(x) of x expresses how much x is liable to 
vary from its mean value x

• Standard deviation
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Different definitions of the Standard Deviation

• Presumably our data was taken from a parent 
distributions which has mean µ and S.F. σ
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σ is the S.D. of the data sample

x – mean of our sample µ – mean of our parent dist

σ – S.D. of our parent distσ – S.D. of our sample

Beware Notational Confusion!

x

σ σ

µ

Data Sample
Parent Distribution

(from which data sample was drawn)
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Different definitions of the Standard Deviation

• Which definition of σ you use, σdata or σparent,  is matter of 
preference, but be clear which one you mean!

• In addition, you can get an unbiased estimate of σparent from a 
given data sample using 
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More than one variable

• Given 2 variables x,y and a dataset consisting of pairs 
of numbers

{ (x1,y1),  (x2,y2), … (xN,yN) }

• Definition of x, y, σx, σy as usual

• In addition, any dependence between x,y described by 
the covariance

• The dimensionless 
correlation coefficient is defined as
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Visualization of correlation

• (add figures)ρ = 0 ρ = 0.1 ρ = 0.5

ρ = -0.7 ρ = -0.9 ρ = 0.99
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Correlation & covariance in >2 variables

• Concept of covariance, correlation is easily extended to 
arbitrary number of variables

• so that                                 takes the form of 
a n x n symmetric matrix

• This is called the covariance matrix, or error matrix

• Similarly the correlation matrix becomes
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Basic Distributions – The binomial distribution

• Simple experiment – Drawing marbles from a bowl
– Bowl with marbles,  fraction p are black, others are white

– Draw N marbles from bowl, put marble back after each drawing

– Distribution of R black marbles in drawn sample:

Binomial distribution
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Properties of the binomial distribution

• Mean:

• Variance:  

pnr ⋅=

)1()1()( pnppnprV −=⇒−= σ

p=0.1, N=4 p=0.5, N=4 p=0.9, N=4

p=0.1, N=1000 p=0.5, N=1000 p=0.9, N=1000
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Basic Distributions – the Poisson distribution

• Sometimes we don’t know the equivalent of the number 
of drawings
– Example: Geiger counter

– Sharp events occurring in a (time) continuum

• What distribution to we expect in measurement over 
fixed amount of time?
– Divide time interval λ in n finite chunks,

– Take binomial formula with p=λ/n and let nà∞
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Properties of the Poisson distribution

λ=0.1 λ=0.5 λ=1

λ=2 λ=5 λ=10

λ=20 λ=50 λ=200
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More properties of the Poisson distribution

• Mean, variance:

• Convolution of 2 Poisson distributions is also a Poisson 
distribution with λab=λa+λb
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Basic Distributions – The Gaussian distribution

• Look at Poisson distribution in limit of large N
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Properties of the Gaussian distribution

• Mean and Variance

• Integrals of Gaussian
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Errors

• Doing an experiment à making measurements

• Measurements not perfect à imperfection quantified in 
resolution or error

• Common language to quote errors
– Gaussian standard deviation = sqrt(V(x))

– 68% probability that true values is within quoted errors

[NB: 68% interpretation relies strictly on Gaussian sampling distribution, 
which is not always the case, more on this later]

• Errors are usually Gaussian if they quantify a result that 
is based on many independent measurements
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The Gaussian as ‘Normal distribution’

• Why are errors usually Gaussian?

• The Central Limit Theorem says
– If you take the sum X of N independent measurements xi, 

each taken from a distribution of mean mi, a variance Vi=σ i
2,

the distribution for x

(a) has expectation value

(b) has variance

(c ) becomes Gaussian as N à ∞

– Small print: tails converge very slowly in CLT, be careful in assuming 
Gaussian shape beyond 2σ
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Demonstration of Central Limit Theorem

← 5000 numbers taken at random from a 
uniform distribution between [0,1].
– Mean = 1/2, Variance = 1/12

← 5000 numbers, each the sum of 2 
random numbers, i.e. X = x1+x2.
– Triangular shape

← Same for 3 numbers, 
X = x1 + x2 + x3

← Same for 12 numbers, overlaid curve is 
exact Gaussian distribution

N=1

N=2

N=3

N=12
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Central Limit Theorem – repeated measurements

• Common case 1 : Repeated identical measurements
i.e. µi = µ, σi = σ for all i
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Central Limit Theorem – repeated measurements

• Common case 2 : Repeated measurements with
identical means but different errors
(i.e weighted measurements, µi = µ)
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Error propagation – one variable

• Suppose we have

• How do you calculate V(f) from V(x)?

• More general: 

– But only valid if linear approximation is good in range of error
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Error Propagation – Summing 2 variables

• Consider

• More general
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Error propagation – multiplying, dividing 2 variables

• Now consider

– Result similar for 

• Other useful formulas
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Dealing with backgrounds
— Comparing discriminating variables
— Choosing the optimal cut
— Working in more than one dimension
— Approximating the optimal discriminant 
— Techniques: Principal component analysis, 

Fisher Discriminant, Neural Network, 
Probability Density Estimate, Empirical Modeling 
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Backgrounds – Analysis strategy

• Reducing backgrounds in a central theme in most HEP 
experiments and HEP data analyses

• For statistical analysis, problems introduced by 
background are two-fold
1) Need to correct results for presence of background

‘subtract background’ or ‘include in fit’

2) It reduces the significance of the measurement,
10 events on top 1000 background events are less compelling 
evidence of any new particle than 10 events on top of 2 
background events

Nsig=100
Nbkg=50

Nsig=100
Nbkg=500

Nsig=100
Nbkg=5000
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Analysis strategy – General structure

• General strategy for data analysis in presence of background

1) Reduce backgrounds: ‘Apply cuts’
– Exploiting information from your experiment to select a 

subset of events with less background

2) Account for remaining backgrounds: 
‘Fit the data’

– Developing procedures to incorporate uncertainty due 
to background into  error on final result

3) Compute statistical significance of your 
result:             ‘Claim your signal (or not)’
– State your result in terms of absolute probabilities, e.g. 

‘the probability that background fakes my Higgs signal 
is less than 5x10-6’

Boundary
between cutting
and fitting
is quite vague
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Analysis strategy – General structure

• General strategy for data analysis in presence of background

1) Reducing backgrounds: ‘Apply cuts’
– Exploiting information from your experiment to select a 

subset of events with less background

2) Accounting for remaining backgrounds: 
‘Fit the data’

– Developing procedures to incorporate uncertainty due 
to background into  error on final result

3) Summarize statistical significance of your 
result:             ‘Claim your signal (or not)’
– State your result in terms of absolute probabilities, e.g. 

‘the probability that background fakes my Higgs signal 
is less than 5x10-6’

We will now focus first on 
event selection techniques 
that reduce background: 

how to find a set of criteria 
that reduces background a lot, 

signal as little as possible
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Intermezzo – Role of simulation in HEP data analysis

• Simulation is an essential and pervasive aspects of all 
analysis step in HEP, e.g.

1) Reducing backgrounds: ‘Apply cuts’

2) Accounting for remaining backgrounds ‘Fit the data’

3) Summarize statistical significance of your result: ‘Claim your signal’

Samples of simulated events help you to understand the 
efficiency of your proposed cuts on signal and background 
and to determine the ‘optimal’ cut

Simulation helps you to understand the behavior of your
fit, explore the validity of functions and assumptions

Simulation helps you to understand the robustness and
validity of the statistical procedures that you have used
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Intermezzo – Role of simulation in HEP data analysis

• Monte Carlo simulation is one of the most powerful tools 
to design and test HEP analyses
– ‘Monte Carlo’ is a numerical technique generally directed at the problem of 

computing integrals. In HEP the ‘sampling’ aspect of the technique is 
especially useful to simulate events from given distribution functions 

• Typical layout of simulation facilities of HEP experiments

ntupleDST''

tionReconstruc

Detector

Trigger

process physicscollider

→
↓

↓

↓

↓
→

ntuple DST'simulation'

simulationDetector 

simulationTrigger 

simulation process physics

→

↓

↓
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Simple example – one discriminating variable

• Suppose we are looking at the decay D0 à K+π-.
– We take two tracks and form the invariant mass m(Kπ)

– Distribution of m(Kπ) will peak around m(D0) for signal

– Distribution of m(Kπ) will be more or less flat for combinatorial 
background (random combinations of two tracks)

– We can enhance the purity of our sample by cutting on m(Kπ)

Full Sample Signal Enriched Sample

D0

K+

π-
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Simple example – one discriminating variable

– We can enhance the purity of our sample by cutting on m(Kπ)

• How do we decide that this cut is ‘optimal’?
– We can choose cuts ‘by eye’ looking at the data – probably fine in 

this case, but not always so easy

– More robust approach: Study separate samples of simulated 
signal and background events and make informed decision

Full Sample Signal Enriched Sample

D0

K+

π-
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Optimizing cuts – Looking at simulated events

• Not all discriminating variables are equal – What is the 
selection power of your event variable?
– Scan range of cut values and calculate signal, background 

efficiency for each point. Plot εsig versus εbkg

This type of plot is useful to 
compare the merits of various 
discriminating variables
but it doesn’t tell you where to cut

Signal Efficiency

B
a
ck

g
ro

u
n
d
 E

ff
ic

ie
n
cy Background efficiency

as function of signal efficiency

No discriminating
power: signal and

background reduced
at equal rate

Good
Performance

Bad
Performance

x>0.1
x>0.3

x>0.5

x>0.7

x>0.9
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Optimizing cuts – Looking at simulated events

• Choosing optimal cut require additional piece of 
information: the expected amount of signal, background
– Lot of signal / little background à Cut looser

– Little signal / lots of background à Cut harder

• Goal for optimization: minimize error on N(signal)

x>0.5

x>0.7

This type of plot is useful to 
compare the merits of various 
discriminating variables
but it doesn’t tell you where to cut

60% 80%

34%

62%
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Optimizing your cut for the best signal significance

• Formula for approximate signal significance:
– Formula only good for large N,

asymmetric Poisson shape of 
distributions distorts results
at low N

Simulated bkg.

Simulated signal 

X

X

Make 
cut |x|<C

C

CX

X

Large Bkg Scenario

Small Bkg Scenario
Make 

cut |x|<C

S
/
sq

rt
(S

+
B

)
S

/
sq

rt
(S

+
B

)

Strongly
peaked
optimum

Shallow
optimum

bkgsig

sig
sig NN

N
Nsignif

+
∝)(
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Optimizing your cut for the best signal significance

• If Nsig << Nbkg then Nsig+Nbkg can be approximated by Nbkg

• If you have no (good) background simulation, and Nsig is small 
you can also consider to replace Nsig+Nbkg by N(DATA)

• In the limit of low data (MC) statistics, SSB curve may exhibit 
statistical fluctuations
– Don’t write algorithms that blindly finds the absolute maximum of S/sqrt(S+B)

– Be especially careful if you use data as tuning to those statistical fluctations
may bias your result

bkgsig

sig
sig

NN

N
Nsignif

+
∝)(

cut

S
/
sq

rt
(S

+
B

)
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Optimizing a cut on multiple discriminating variables

• How to tune your cut if there is more than one 
discriminating variable?

• An example with three discriminating variables: 
Y(4s) à B+B-, B- à D0 π-, D0 à K+π−

mES(B+)
clever variation 

on B+ invariant mass

E(B+)-E(Y4s/2) 
Measured vs expected E 

of B+ in Y4s 2-body system

m(K+π-)
D0 candidate 

invariant mass  

A) B) C)
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Optimizing a cut on multiple discriminating variables

• Problem: need to find optimal S/sqrt(S+B) in 3-dim space
– Difficult!

• A possible way forward – Iterative approach

1) Start with reasonable ‘by eye’ cuts for mES,∆E,m(Kπ)

2) Tune each cut after all other cuts have been applied

3) Repeat step 2) until cuts no longer change

Result: a (hyper) cube-shaped cut in the three observables

This ensures that
the background
reducing effects of
the other cuts are
taken into account
in the tuning
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Multiple discriminating variables – correlations 

• Warning: box cut may not be optimal if there are strong 
correlations between the variables

Signal

Background

Scenario with
uncorrelated
X,Y in sig,bkg

Scenario with
strongly cor-

related X,Y in sig

Additional background
could have been reduced 
at no cost with a differently 
shaped cut

Tuned Box Cut

Need different approach…
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Multivariate data selection – constructing a 1D discriminant

• Instead of tuning a box cut in N observables, construct 
a 1-dim discriminant that incorporates information from 
all N observables. 
– Why? It is awkward to work with many dimensions

– How? Try to compactify data and not loose ability to discriminate 
between signal and background

• The Neyman-Pearson Lemma: 
– Given true signal and background probability

the highest purity at a given efficiency 
is obtained by requiring

where C controls the efficiency

)(   ;   )( xBxS
rr

)(
)(

)(
xB
xS

xD r
rr

=C
xB
xS

>
)(
)( r

r Optimal Discriminant

Or any other function with a one-to-
one mapping to this function like 
S/(S+B)
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Multivariate data selection – constructing a 1D discriminant

• That’s very nice but: 
we usually don’t know true S(x) and true B(x)
– But we can try to estimate it from data, simulation etc

• A variety of techniques exist to estimate D(x) from 
signal and background data samples such as
– Neural net

– Fisher discriminant

– Likelihood description

– Probability density estimate

• We’ll now explore some of these techniques
– But keep in mind that the idea behind all these techniques is the 

same: approximate the optimal discriminant D(x)=S(x)/B(x)
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Multivariate data selection – Principal Component Analysis

• Idea: reduce dimensionality of data

• Back to example of multi-dimensional box cut

SignalBackground

Tuned box
cut on original
variables x, y

A better (1-dim) cut
along axis with largest
difference between signal
and background
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Multivariate data selection – Principal Component Analysis

• How to find principal axes of 
signal data sample
– Goal: transform X=(x1,x2) to U=(u1,u2)

1) Compute variance matrix Cov(X)

2) Compute eigenvalues λ i
and eigenvectors vi

3) Construct rotation 
matrix T = Col(v i)T

4) Finally calculate ui = Txi

• Eliminate ui with smallest amount of variation
– u1 in example

– Just cut on u2

• Software tip: in ROOT the class 
TPrincipal does all the hard work for you

u1

u2

u1

u2
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Combining discriminating variables – Linear discriminants

• A linear discriminant constructs D(x) from a 
linear combination of the variables xi

– Optimize discriminant by chosing ai to maximize separation 
between signal and background

• Most common form of the linear discriminant is the 
Fisher discriminant

xaxaxt
N

i
ii

rrr
⋅== ∑

=1

)(

R.A. Fisher
Ann. Eugen. 7(1936) 179.( ) xVxF T

BS

rrrr 1)( −−= µµ

Mean values in 
xi for sig,bkg

Inverse of variance matrix
of signal/background
(assumed to be the same)

a
r
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Multivariate data selection – Linear discriminants

• Advantage of Fisher Discriminant: 
– Ingredients µs,µb,V can all be calculated directly from 

data or simulation samples. No ‘training’ or ‘tuning’

• Disadvantages of Fisher Discriminant
– Fisher discriminant only exploits difference in means.

– If signal and background have different variance, this information 
is not used.

R.A. Fisher
Ann. Eugen. 7(1936) 179.( ) xVxF T

BS

rrrr 1)( −−= µµ

Mean values in 
xi for sig,bkg

Inverse of variance matrix
of signal/background
(assumed to be the same)



Wouter Verkerke, UCSB

Example of Fisher discriminant

• The CLEO Fisher discriminant
– Goal: distinguish between 

e+e- à Y4s à bb and uu,dd,ss,cc

– Method: Measure energy flow
in 9 concentric cones around 
direction of B candidate

F(x)

Energy flow 
in bb

Energy flow 
in u,d,s,c

1

2

3
4

5
678

9

Cone
Energy
flows

1 2 3

4 5 6

7 8 9
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When is Fisher discriminant is the optimal discriminant?

• A very simple dataset

• Fisher is optimal discriminant for this case
– In this case we can also directly correlate F(x) 

to absolute signal probability

∏

∏
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i
i
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ii
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ii

xGaussB

xGaussS
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σµ
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Multivariate data selection – Neural networks

• Neural networks are used in neurobiology, pattern 
recognition, financial forecasting (and also HEP)

• This formula corresponds to the ‘single layer perceptron’
– Visualization of single layer network topology
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Neural networks – general structure

• The single layer model and easily be generalized to a 
multilayer perceptron

– Easy to generalize to arbitrary number of layers

– Feed-forward net: values of a node depend only on earlier layers 
(usually only on preceding layer) ‘the network architecture’

– More nodes bring N(x) close to optimal D(x)=S(x)/B(x) but with 
much more parameters to be determined
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Neural networks – training

• Parameters of NN usually determined by minimizing the 
error function

• Same principle as Fisher discriminant, but cannot solve 
analytically for general case
– In practice replace ε with averages from training data from MC

(Adjusting parameters à ‘Learning’)

– Generally difficult, but many programs exist to do this for you
(‘error back propagation’ technique most common)

( ) ( )∫∫ −+−= xdxSxNxdxBxN
rrrrrr
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NN target value 
for background

NN target value 
for signal
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Neural networks – training example

N(x)

Signal MC Output

Background MC Output

cosΘH
B cosΘ*B cosΘ thr

cosΘH
D Fisher Qhemi

Diff

ln|DOCAK| QBΣQob
Km(Kl)

Signal

Signal

Signal

Background

Background

Background

Input Variables (9) Output Variables (1)
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Practical aspects of Neural Net training

• Choose input variables sensibly
– Don’t include badly simulated observables (such as #tracks/evt) 

– Some input variables may be highly correlated à drop all but one

– Some input variables may contain little or no discriminating power
à drop them

– Transform strongly peaked distributions into smooth ones (e.g. 
take log)

– Fewer inputs à fewer parameters to be adjusted à parameters 
better determined for finite training data

• Choose architecture sensibly
– No ‘rules’ for number of hidden layers, nodes

– Usually better to start simple and gradually increase compexity
and see how that pays off

• Verify sensible behavior
– NN are not magic, understand what your trained NN is doing
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Practical aspects of Neural Net training

• Training = iterative minimization of error function

• Beware risks of ‘overtraining’
– Overtraining = You network tunes to statistical fluctuations 

specific to your training sample that are not representative of the 
parent distribution

– How to avoid detect and avoid overtraining:
Look simultaneously at error function evaluated from independent
input samples not used in training
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NN training iteration

Training sample

Independent test sample

If overtraining occurs error
function of independent test
sample will increase 
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Neural networks – Software and literature

• Basic Neural Net implementations for analysis use
– PAW: MLP ( multi-layer perceptron ) – built-in

– ROOT: TMultiLayerPerceptron – built-in

– Good enough for most basic analysis use

• More powerful standalone packages exist
– For example JETNET

• Further reading
– L. Lönnblad et al., Comp. Phys. Comm. 70 (1992), 167

– C. Peterson et al., Comp. Phys. Comm. 81 (1994), 185

– C.M. Bishop, Neural Nets for Pattern Recognition, Clarendon 
Press, Oxford (1995)

– B. Muller et al., Neural Networks: an Introduction, 2nd edition, 
Springer, Berlin (1995)
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Multivariate data selection – Probability density estimates

• Probability Density Estimate technique aims to construct 
S(x) and B(x) separately 
– rather than D(x) directly, like NN does

– Calculate

• Idea (1-dim): represent each event of your MC sample 
as a Gaussian probability distribution
– Add probability distributions from all events in sample

– Example:

Sample of events

Gaussian 
probability distributions 

for each event

Summed
probability distribution
for all events in sample
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Probability Density Estimates – Adaptive Kernel

• Width of single event Gaussian can of course vary
– Width of Gaussian tradeoff between smoothness and ability to 

describe small features

• Idea: ‘Adaptive kernel’ technique
– Choose wide Gaussian if local density of events is low

– Choose narrow Gaussian if local density of events is high

– Preserves small features in high statistics areas, minimize jitter in 
low statistics areas

Static Kernel
(with of all Gaussian identical)

Adaptive Kernel
(width of all Gaussian depends

on local density of events)
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Probability Density Estimates – Some examples

• Illustration: some PDEs from realistic data samples

Some
wobbliness

due to 
limited

statistics
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Probability Density Estimates

• Also works in multiple dimensions
– Analogy in N dimensions straightforward

– But watch for very low statistics regions, which are much more 
common in multi-dimensional problems 

• Key features of PDE technique
– Advantage: No training necessary, no functional form assumed

– Disadvantage: Prone to effects of low statistics

• Further reading
– K. Cranmer – Kernel Estimate Your Signal, Comp Phys Comm XXX

– S. Towers – PhySTAT2003 conference
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Multivariate data selection – empirical modeling

• Idea: Choose empirical model to describe your signal 
and background data
– Works best if you have little training data and you have an 

approximate idea what the functional form will look like

– Fit probability density functions SEmp(x;pS), BEmp(x;pB) functions 
to signal, background data to obtain best possible description for 
given model

– Calculate  
)(

)(
)(

xB

xS
xD

Emp

Emp
Emp =

BEmp(x)

SEmp(x)

-log(DEmp)

Cut on DEmp

Signal-like
Events

Bkg-like
Events
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Multivariate data selection – Likelihood description

• Most useful for multi-dimensional datasets
– Application of technique in N dimensions straightforward

• Why cut on DEmp(x) rather than using the result from the fit 
directly?
– Fitting multidimensional datasets is quite a bit of work

– If function does not describe data perfectly (especially difficult in 
multiple dimensions with correlations), accounting for discrepancy in 
fit result a lot of work. Failing to do so may result in wrong answer.

– With a cut on DEmp(x) efficiency of cut as measured on data or 
simulation will incorporate all such effects in the obtained cut
efficiency
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yxD =alternatively

Explicitly assumes that x and y 
are uncorrelated in signal and background
Easy, but possibly ignores information

Incorporates correlations.
Potentially more powerful, 

but more work
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Summary of background rejection methods

Quality of discriminant 
depends strongly on you 
guessing the correct 
functional form

Works well with low 
statistics training samples

Empirical Function Method

Does not work well with 
low statistics

No free parameters, 
conceptually easy

Probability

Training can be difficult Flexible, powerfulNeural Net

Does not exploit difference 
in variance

Conceptually easy, 
implementation easy

Fisher

May not be close to 
optimal for complex 
problems

Easy to understand, 
explain, correlation taken 
into account

Principal Component 
Analysis

Correlations not handled, 
doesn’t scale well to many 
variables

Easy to understand, 
explain

Box cut

DrawbacksMeritsMethod
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Finding the right method

• Which one is right for you? Depends on
– Complexity of your problem

– Time scale in which you would like to finish the analysis

• On finding the absolute best set of cuts
– All methods for finding discriminants are approximate when used with finite 

training/tuning statistics 

– Your experiments event simulation is imperfect – your performance on data 
can be different (usually it is less)

– You may a systematic error later that might depend on your choice of cuts

– Don’t hunt for upward statistical fluctuations in tuning data

– If it takes you 6 months of work to reduce your error by 10% keep in mind 
that your experiment may have accumulated enough additional data by 
them to reduce your statistical error by a comparable or larger amount

• It is more important to get the right(=unbiased) answer than 
the smallest possible statistical error
– Don’t use discriminating variables that you know are poorly modeled in 

simulation

– Always try to find a way to cross check your performance on data, e.g. by 
using a control sample
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Estimation & Fitting
— Introduction to estimation
— Properties of χ2, ML estimators 
— Measuring and interpreting Goodness-Of-Fit
— Numerical issues in fitting
— Understanding MINUIT
— Mitigating fit stability problems 
— Bounding fit parameters
— Fit validation studies

— Fit validity issues at low statistics
— Toy Monte Carlo techniques
— Simultaneous fitting
— Multidimensional fitting
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Estimation – Introduction

• Given the theoretical distribution parameters p, what 
can we say about the data

• Need a procedure to estimate p from D
– Common technique – fit!

Theory Data

Data Theory
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Probability
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Statistical
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A well known estimator – the χ2 fit

• Given a set of points
and a function f(x,p)
define the χ2

• Estimate parameters by minimizing the χ2(p) with 
respect to all parameters pi

– In practice, look for

• Well known: but why does it work? Is it always right? 
Does it always give the best possible error?
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Basics – What is an estimator?

• An estimator is a procedure giving a value for a 
parameter or a property of a distribution as a function of 
the actual data values, i.e.

• A perfect estimator is

– Consistent: 

– Unbiased – With finite statistics you get the right answer on average

– Efficient

– There are no perfect estimators!
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Likelihood – Another common estimator

• Definition of Likelihood 
– given D(x) and F(x;p)

– For convenience the negative log of the Likelihood is often used

• Parameters are estimated by maximizing the Likelihood, 
or equivalently minimizing –log(L)
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Variance on ML parameter estimates

• The estimator for the parameter variance is

– I.e. variance is estimated from 
2nd derivative of –log(L) at minimum

– Valid if estimator is
efficient and unbiased!

• Visual interpretation of variance estimate
– Taylor expand –log(L) around minimum 
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Properties of Maximum Likelihood estimators

• In general, Maximum Likelihood estimators are

– Consistent (gives right answer for Nà∞)

– Mostly unbiased (bias ∝1/N, may need to worry at small N)

– Efficient for large N (you get the smallest possible error)

– Invariant:                 (a transformation of parameters 
will Not change your answer, e.g

• MLE efficiency theorem: the MLE will be unbiased and 
efficient if an unbiased efficient estimator exists
– Proof not discussed here for brevity

– Of course this does not guarantee that any MLE is unbiased and 
efficient for any given problem

( ) ( )22ˆ pp =

Use of 2nd derivative of –log(L)
for variance estimate is usually OK
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More about maximum likelihood estimation

• It’s not ‘right’ it is just sensible

• It does not give you the ‘most likely value of p’ –
it gives you the value of p for which this data is most likely

• Numeric methods are often needed to find 
the maximum of ln(L)
– Especially difficult if there is >1 parameter

– Standard tool in HEP: MINUIT (more about this later)

• Max. Likelihood does not give you a goodness-of-fit measure
– If assumed F(x;p) is not capable of describing your data for any p, 

the procedure will not complain

– The absolute value of L tells you nothing!
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Properties of χ2 estimators

• Properties of χ2 estimator follow from properties of ML 
estimator

• The χ2 estimator follows from ML estimator, i.e it is
– Efficient, consistent, bias 1/N, invariant,

– But only in the limit that the error σi is truly Gaussian

– i.e. need ni > 10 if yi follows a Poisson distribution

• Bonus: Goodness-of-fit measure – χ2 ≈ 1 per d.o.f
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Maximum Likelihood or χ2 – What should you use?
• χ2 fit is fastest, easiest

– Works fine at high statistics 

– Gives absolute goodness-of-fit indication

– Make (incorrect) Gaussian error assumption on low statistics bins

– Has bias proportional to 1/N

– Misses information with feature size < bin size

• Full Maximum Likelihood estimators most robust 
– No Gaussian assumption made at low statistics

– No information lost due to binning

– Gives best error of all methods (especially at low statistics)

– No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually 
‘pretty bad’

– Has bias proportional to 1/N

– Can be computationally expensive for large N

• Binned Maximum Likelihood in between
– Much faster than full Maximum Likihood

– Correct Poisson treatment of low statistics bins

– Misses information with feature size < bin size

– Has bias proportional to 1/N

∑ −=−
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centerbinbinbinned );(ln)(ln pxFnpL
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Using weighted data in estimators

• χ2 fit of histograms with weighted data are straightforward

– NB: You may no longer be able to interpret                      as a Gaussian error
(i.e. 68% contained in 1σ)

• In ML fits implementation of weights easy, but interpretation of 
errors is not!

– Variance estimate on parameters will be proportional to

– If                 errors will be too small, if                 errors will be too large!

– Interpretation of errors from weighted LL fits difficult -- Avoid it if you can
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Estimating and interpreting Goodness-Of-Fit

• Fitting determines best set of parameters 
of given model to describe data
– Is ‘best’ good enough?, i.e.

– Is it an adequate description, 
or are there significant and 
incompatible differences?

• Most common test: the χ2 test

– If f(x) describes data then χ2 ≈ N,  if χ2 >> N something is wrong

– How to quantify meaning of ‘large χ2’?
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How to quantify meaning of ‘large χ2’

• Probability distr. for χ2 is given by

• To make judgement on goodness-of-fit, 
relevant quantity is integral of above:

• What does χ2 probability P(χ2,N) mean?
– It is the probability that a function which does genuinely describe 

the data on N points would give a χ2 probability as large or larger
than the one you already have.

• Since it is a probability, it is a number in the range [0-1]
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Goodness-of-fit – χ2

• Example for χ2 probability
– Suppose you have a function f(x;p) which gives a χ2 of 20 for 5 

points (histogram bins). 

– Not impossible that f(x;p) describes data correctly, just unlikely

– How unlikely? 

• Note: If function has been fitted to the data
– Then you need to account for the fact that parameters have been 

adjusted to describe the data

• Practical tips 
– To calculate the probability in PAW ‘call prob(chi2,ndf)’

– To calculate the probability in ROOT ‘TMath::Prob(chi2,ndf)’

– For large N, sqrt(2χ2) has a Gaussian distribution 
with mean sqrt(2N-1) and σ=1

∫
∞

=
20

22 0012.0)5,( χχ dp

paramsdata.d.o.f NNN −=
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Goodness-of-fit – Alternatives to χ2

• When sample size is very small, it may be difficult to 
find sensible binning – Look for binning free test

• Kolmogorov Test
1) Take all data values, arrange in increasing order and plot 

cumulative distribution

2) Overlay cumulative probability distribution

– GOF measure: 

– ‘d’ large à bad agreement; ‘d’ small – good agreement

– Practical tip: in ROOT: TH1::KolmogorovTest(TF1&)
calculates probability for you

)cum()cum(max pxNd −⋅=

1) 2)
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Practical estimation – Numeric χ2 and -log(L) minimization

• For most data analysis problems minimization of χ2 or –
log(L) cannot be performed analytically
– Need to rely on numeric/computational methods

– In >1 dimension generally a difficult problem!

• But no need to worry – Software exists to solve this 
problem for you:
– Function minimization workhorse in HEP many years: MINUIT

– MINUIT does function minimization and error analysis

– It is used in the PAW,ROOT fitting interfaces behind the scenes

– It produces a lot of useful information, that is sometimes 
overlooked

– Will look in a bit more detail into MINUIT output and functionality 
next
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Numeric χ2/-log(L) minimization – Proper starting values

• For all but the most trivial scenarios it is not possible to 
automatically find reasonable starting values of 
parameters
– This may come as a disappointment to some…

– So you need to supply good starting values for your parameters

– Supplying good initial uncertainties on your parameters helps too

– Reason: Too large error will result in MINUIT coarsely scanning a 
wide region of parameter space. It may accidentally find a far away 
local minimum

Reason: There may exist 
multiple (local) minima
in the likelihood or χ2

p
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o
g

(L
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Local 
minimum

True minimum
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Example of interactive fit in ROOT

• What happens in MINUIT behind the scenes
1) Find minimum in –log(L) or χ2 – MINUIT function MIGRAD

2) Calculate errors on parameters – MINUIT function HESSE

3) Optionally do more robust error estimate – MINUIT function MINOS
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Minuit function MIGRAD

• Purpose: find minimum 

**********
**   13 **MIGRAD        1000           1
**********
(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD    STATUS=CONVERGED 31 CALLS          32 TOTAL

EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE
EXT PARAMETER                                   STEP         FIRST   
NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
1  mean         8.84225e-02 3.23862e-01 3.58344e-04  -2.24755e-02
2  sigma        3.20763e+00 2.39540e-01 2.78628e-04  -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  3.338e-04 
3.338e-04  5.739e-02 
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00430   1.000  0.004
2  0.00430   0.004  1.000

Parameter values and 
approximate errors reported by 

MINUIT

Error definition (in this case 0.5 
for a likelihood fit)

Progress information,
watch for errors here
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Minuit function MIGRAD

• Purpose: find minimum 

**********
**   13 **MIGRAD        1000           1
**********
(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD    STATUS=CONVERGED 31 CALLS          32 TOTAL

EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE
EXT PARAMETER                                   STEP         FIRST   
NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02
2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  3.338e-04 
3.338e-04  5.739e-02 
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00430   1.000  0.004
2  0.00430   0.004  1.000

Approximate 
Error matrix

And covariance matrix

Value of c2 or likelihood at 
minimum

(NB: c2 values are not
divided by Nd.o.f)
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Minuit function MIGRAD

• Purpose: find minimum 

**********
**   13 **MIGRAD        1000           1
**********
(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD    STATUS=CONVERGED 31 CALLS          32 TOTAL

EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE
EXT PARAMETER                                   STEP         FIRST   
NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02
2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  3.338e-04 
3.338e-04  5.739e-02 
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00430   1.000  0.004
2  0.00430   0.004  1.000

Status: 
Should be ‘converged’ but can be ‘failed’

Estimated Distance to Minimum
should be small O(10-6)

Error Matrix Quality
should be ‘accurate’, but can be 
‘approximate’ in case of trouble
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Minuit function HESSE

• Purpose: calculate error matrix from 2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS      42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

Symmetric errors 
calculated from 2nd

derivative of –ln(L) or χ2
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Minuit function HESSE

• Purpose: calculate error matrix from 2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS      42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

Error matrix 
(Covariance Matrix) 

calculated from
1

2 )ln(
−










 −=
ji

ij dpdp
Ld
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Minuit function HESSE

• Purpose: calculate error matrix from 2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS      42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

Correlation matrix ρij
calculated from

ijjiijV ρσσ=
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Minuit function HESSE

• Purpose: calculate error matrix from 2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS      42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

Global correlation vector:
correlation of each 

parameter with  all other
parameters
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Minuit function MINOS

• Purpose: More rigorous determination of errors

• Warning: Can be very CPU intensive for large number of 
parameters

• Optional – activated by option “E” in ROOT or PAW

**********
**   23 **MINOS        1000
**********
FCN=257.304 FROM MINOS     STATUS=SUCCESSFUL     52 CALLS      94 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                  PARABOLIC MINOS ERRORS
NO.   NAME      VALUE            ERROR NEGATIVE      POSITIVE
1  mean         8.84225e-02   3.23861e-01 -3.24688e-01   3.25391e-01
2  sigma        3.20763e+00   2.39539e-01 -2.23321e-01   2.58893e-01

ERR DEF= 0.5

Symmetric error

(repeated result 
from HESSE)

MINOS error
Can be asymmetric

(in this example the ‘sigma’
error is slightly asymmetric)
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Practical estimation – Fit converge problems

• Sometimes fits don’t converge because, e.g. 
– MIGRAD unable to find minimum

– HESSE finds negative second derivatives 
(which would imply negative errors)

• Reason is usually numerical precision and stability 
problems, but
– The underlying cause of fit stability problems is usually 

by highly correlated parameters in fit

• HESSE correlation matrix in primary investigative tool

– In limit of 100% correlation, the usual point solution becomes a line 
solution (or surface solution) in parameter space. 
Minimization problem is no longer well defined

PARAMETER  CORRELATION COEFFICIENTS  
NO.  GLOBAL      1      2
1  0.99835   1.000  0.998
2  0.99835   0.998 1.000

Signs of trouble…
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Mitigating fit stability problems 

• Strategy I – More orthogonal choice of parameters
– Example: fitting sum of 2 Gaussians of similar width

),;()1(),;(),,,;( 221121 msxGfmsxfGssmfxF −+=

PARAMETER  CORRELATION COEFFICIENTS  
NO.  GLOBAL    [ f]   [ m]   [s1]   [s2]
[ f] 0.96973   1.000 -0.135  0.918 0.915
[ m] 0.14407  -0.135  1.000 -0.144 -0.114
[s1] 0.92762   0.918 -0.144  1.000  0.786
[s2] 0.92486   0.915 -0.114  0.786  1.000

HESSE correlation matrix

Widths s1,s2
strongly correlated
fraction f
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Mitigating fit stability problems 

– Different parameterization:

– Correlation of width s2 and fraction f reduced from 0.92 to 0.68

– Choice of parameterization matters!

• Strategy II – Fix all but one of the correlated parameters
– If floating parameters are highly correlated, some of them may be 

redundant and not contribute to additional degrees of freedom in your 
model

),;()1(),;( 2212111 mssxGfmsxfG ⋅−+

PARAMETER  CORRELATION COEFFICIENTS  
NO.  GLOBAL     [f]    [m]   [s1]   [s2]

[ f]  0.96951   1.000 -0.134  0.917 -0.681
[ m]  0.14312  -0.134  1.000 -0.143  0.127
[s1]  0.98879  0.917 -0.143  1.000 -0.895
[s2]  0.96156  -0.681 0.127 -0.895  1.000
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Mitigating fit stability problems -- Polynomials

• Warning: Regular parameterization of polynomials 
a0+a1x+a2x2+a3x3 nearly always results in strong 
correlations between the coefficients ai. 
– Fit stability problems, inability to find right solution common at 

higher orders

• Solution: Use existing parameterizations of 
polynomials that have (mostly) uncorrelated variables
– Example: Chebychev polynomials
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Practical estimation – Bounding fit parameters

• Sometimes is it desirable to bound the allowed range of 
parameters in a fit
– Example: a fraction parameter is only defined in the range [0,1]

– MINUIT option ‘B’ maps finite range parameter to an internal infinite 
range using an arcsin(x) transformation:
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Practical estimation – Bounding fit parameters

• If fitted parameter values is close to boundary, errors will 
become asymmetric (and possible incorrect)

• So be careful with bounds!
– If boundaries are imposed to avoid region of instability, look into other 

parameterizations that naturally avoid that region

– If boundaries are imposed to avoid ‘unphysical’, but statistically valid 
results, consider not imposing the limit and dealing with the ‘unphysical’
interpretation in a later stage
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Practical Estimation – Verifying the validity of your fit

• How to validate your fit? – You want to demonstrate that
1) Your fit procedure gives on average the correct answer ‘no bias’

2) The uncertainty quoted by your fit is an accurate measure for the statistical 
spread in your measurement ‘correct error’

• Validation is important for low statistics fits
– Correct behavior not obvious a priori due to intrinsic ML bias 

proportional to 1/N

• Basic validation strategy – A simulation study
1) Obtain a large sample of simulated events

2) Divide your simulated events in O(100-1000) samples with the same size as 
the problem under study

3) Repeat fit procedure for each data-sized simulated sample

4) Compare average value of fitted parameter values with generated value à
Demonstrates (absence of) bias

5) Compare spread in fitted parameters values with quoted parameter error à
Demonstrates (in)correctness of error
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Fit Validation Study – Practical example

• Example fit model in 1-D (B mass)
– Signal component is Gaussian 

centered at B mass

– Background component is 
Argus function (models phase 
space near kinematic limit)

• Fit parameter under study: Nsig

– Results of simulation study: 
1000 experiments 
with NSIG(gen)=100, NBKG(gen)=200

– Distribution of Nsig(fit) 

– This particular fit looks unbiased…

);();(),,,;( bkgsigbkgsig BSBS pmANpmGNppNNmF ⋅+⋅=
rr

Nsig(fit)

Nsig(generated)
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Fit Validation Study – The pull distribution

• What about the validity of the error?
– Distribution of error from simulated 

experiments is difficult to interpret…

– We don’t have equivalent of 
Nsig(generated) for the error

• Solution: look at the pull distribution

– Definition:

– Properties of pull:

• Mean is 0 if there is no bias

• Width is 1 if error is correct

– In this example: no bias, correct error
within statistical precision of study

σ(Nsig)

fit
N

true
sig

fit
sig NN

σ
−

=)pull(Nsig

pull(Nsig)
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Fit Validation Study – Low statistics example

• Special care should be taken when fitting small data 
samples
– Also if fitting for small signal component in large sample

• Possible causes of trouble 
– χ2 estimators may become approximate as Gaussian 

approximation of Poisson statistics becomes inaccurate

– ML estimators may no longer be efficient
à error estimate from 2nd derivative may become inaccurate

– Bias term proportional to 1/N of ML and χ2 estimators may 
no longer be small compared to 1/sqrt(N)

• In general, absence of bias, correctness of error can not 
be assumed. How to proceed?
– Use unbinned ML fits only – most robust at low statistics

– Explicitly verify the validity of your fit
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Demonstration of fit bias at low N – pull distributions

• Low statistics example:
– Scenario as before but now with 

200 bkg events and 
only 20 signal events (instead of 100)

• Results of simulation study

• Absence of bias, correct error at low statistics not obvious!
– Small yields are typically overestimated

NBKG(gen)=200

NSIG(gen)=20

Distributions become
asymmetric at low statistics

NSIG(fit) σ(NSIG) pull(NSIG)

NSIG(gen)

Pull mean is 2.3s away from 0 
à Fit is positively biased!
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Fit Validation Study – How to obtain 10.000.000 simulated events?

• Practical issue: usually you need very large amounts of 
simulated events for a fit validation study
– Of order 1000x number of events in your fit, easily >1.000.000 events

– Using data generated through a full GEANT-based detector 
simulation can be prohibitively expensive

• Solution: Use events sampled directly from your fit function
– Technique named ‘Toy Monte Carlo’ sampling

– Advantage: Easy to do and very fast

– Good to determine fit bias due to low statistics, choice of 
parameterization, boundary issues etc

– Cannot be used to test assumption that went into model 
(e.g. absence of certain correlations). Still need full GEANT-based 
simulation for that.
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Toy MC generation – Accept/reject sampling

• How to sample events directly from your fit function?

• Simplest: accept/reject sampling

1) Determine maximum of function fmax

2) Throw random number x

3) Throw another random number y

4) If y<f(x)/fmax keep x, 
otherwise return to step 2)

– PRO: Easy, always works

– CON: It can be inefficient if function 
is strongly peaked.
Finding maximum empirically 
through random sampling can
be lengthy in >2 dimensions

x

y

fmax
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Toy MC generation – Inversion method

• Fastest: function inversion

1) Given f(x) find inverted function F(x) 
so that f( F(x) ) = x

2) Throw uniform random number x

3) Return F(x)

– PRO: Maximally efficient

– CON: Only works for invertible functions

Take –log(x)
x

-ln(x)

Exponential
distribution
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Toy MC Generation in a nutshell

• Hybrid: Importance sampling

1) Find ‘envelope function’ g(x) 
that is invertible into G(x)
and that  fulfills g(x)>=f(x) 
for all x

2) Generate random number x 
from G using inversion method

3) Throw random number ‘y’

4) If y<f(x)/g(x) keep x, 
otherwise return to step 2

– PRO: Faster than plain accept/reject sampling
Function does not need to be invertible

– CON: Must be able to find invertible envelope function

G(x)

y

g(x)

f(x)
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Multi-dimensional fits – Benefit analysis

• Fits to multi-dimensional data sets offer opportunities but also 
introduce several headaches

• It depends very much on your particular analysis if fitting a 
variable is better than cutting on it

Pro Con
• Enhanced in sensitivity 

because more data and
information is used 
simultaneously

• Exploit information in 
correlations between 
observables

• More difficult to visualize 
model, model-data 
agreement

• More room for hard-to-find 
problems

• Just a lot more work

ß No obvious cut, 
may be worthwile to 
include in n-D fit

Obvious where to cut, 
probably not worthwile

to include in n-D fit à
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Ways to construct a multi-D fit model

• Simplest way: take product of N 1-dim models, e.g

– Assumes x and y are uncorrelated in data. If this assumption is 
unwarranted you may get a wrong result: Think & Check!

• Harder way: explicitly model correlations by writing 
a 2-D model

• Hybrid approach:
– Use conditional probabilities

)()(),( yGxFyxFG ⋅=

( )( )[ ]22/exp),( yxyxH +−=

)()|(),( yGyxFyxFG ⋅=

Probability for x, given a value of y

Probability for y ∫ ≡ 1)( dyyG

∫ ≡  yof  valuesallfor    1),( dxyxF
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• Overlaying a 2-dim PDF 
with a 2D (lego) data set 
doesn’t provide much insight

• 1-D projections usually easier

Multi-dimensional fits – visualizing your model

∫= dyyxFxf y ),()( ∫= dxyxFyfx ),()(

x-y correlations in data and/or model difficult to visualize
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Multi-dimensional fits – visualizing your model

• However: plain 1-D projections often don’t do justice to 
your fit
– Example: 3-Dimensional dataset with 50K events, 2500 signal events

– Distributions in x,y and z chosen identical for simplicity

• Plain 1-dimensional projections in x,y,z

• Fit of 3-dimensional model finds Nsig = 2440±64
– Difficult to reconcile with enormous backgrounds in plots

x y z
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Multi-dimensional fits – visualizing your model

• Reason for discrepancy between precise fit result and large 
background in 1-D projection plot
– Events in shaded regions of y,z projections can be discarded without 

loss of signal

• Improved projection plot: show only events in x projection 
that are likely to be signal in (y,z) projection of fit model
– Zeroth order solution: make box cut in (x,y)

– Better solution: cut on signal probability according to fit model in (y,z) 

x y z
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Multi-dimensional fits – visualizing your model

• Goal: Projection of model and data on x, with a cut on 
the signal probability in (y,z)

• First task at hand: calculate signal probability according 
to PDF using only information in (y,z) variables
– Define 2-dimensional signal and background PDFs in (y,z)

by integrating out x variable (and thus discarding any information 
contained in x dimension)

– Calculate signal probability P(y,z) 
for all data points (x,y,z)

– Choose sensible cut on P(y,z)

∫= dxzyxSzyFSIG ),,(),(

∫= dxzyxBzyFBKG ),,(),(

),(),(
),(),(

zyFzyF
zyFzyP

BKGSIG

SIG
SIG +

=

-log(PSIG(y,z))

Sig-like ß
events

à Bkg-like
events
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Plotting regions of a N-dim model – Case study

• Next: plot distribution of data, model with cut on PSIG(y,z)
– Data: Trivial

– Model: Calculate projection of selected regions with Monte Carlo method 

1) Generate a toy Monte Carlo dataset DTOY(x,y,z) from F(x,y,z)

2) Select subset of DTOY with PSIG(y,z)<C

3) Plot ∑=
TOYD

iiC zyxFxf ),,()(

NSIG=2440 ± 64

Plain projection (for comparison)Likelihood ratio projection
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Multidimensional fits – Goodness-of-fit determination

• Warning: Goodness-of-fit measures for multi-
dimensional fits are difficult
– Standard χ2 test does not work very will in N-dim because of 

natural occurrence of large number of empty bins

– Simple equivalent of (unbinned) Kolmogorov test in >1-D does 
not exist

• This area is still very much a work in progress
– Several new ideas proposed but sometimes difficult to calculate,

or not universally suitable

– Some examples
• Cramer-von Mises (close to Kolmogorov in concept)

• Anderson-Darling

• ‘Energy’ tests

– No magic bullet here

– Some references to recent progress:
• PHYSTAT2001, PHYSTAT2003
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Practical fitting – Error propagation between samples

• Common situation: you want to fit 
a small signal in a large sample
– Problem: small statistics does not 

constrain shape of your signal very well 

– Result: errors are large

• Idea: Constrain shape of your signal
from a fit to a control sample
– Larger/cleaner data or MC sample with 

similar properties

• Needed: a way to propagate the information from the 
control sample fit (parameter values and errors) to your 
signal fit
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Practical fitting – Error propagation between samples

• 0th order solution: 
– Fit control sample first, signal sample second – signal shape 

parameters fixed from values of control sample fit

– Signal fit will give correct parameter estimates

– But error on signal will be underestimated because uncertainties 
in the determination of the signal shape from the control sample
are not included

• 1st order solution
– Repeat fit on signal sample at p±σp

– Observe difference in answer and add this difference in 
quadrature to error:

– Problem: Error estimate will be incorrect if there is >1 parameter 
in the control sample fit and there are correlations between these 
parameters

• Best solution: a simultaneous fit

2/)( 222 pp

tot

p
sig

p
sigstat NN σσσσ +− −+=
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Practical fitting – Simultaneous fit technique

• given data Dsig(x) and model Fsig(x;psig) and
data Dctl(x) and model Fctl(x;pctl)

– construct χ2
sig(psig) and χ2

ctl(pctl) and

• Minimize χ2 (psig,pctl)= χ2
sig(psig)+ χ2

ctl(pctl)
– All parameter errors, correlations automatically propagated

Dsig(x), Fsig(x;psig) Dctl(x), Fctl(x;pctl)
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Commercial Break
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RooFit
A general purpose tool kit for data modeling

Wouter Verkerke (UC Santa Barbara)
David Kirkby (UC Irvine) 

This course comes with free software that helps you
do many labor intensive analysis and fitting tasks 
much more easily
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Implementation – Add-on package to ROOT

C++ command line 
interface & macros

Data management &
histogramming

Graphics interface

I/O support

MINUIT

ToyMC data
Generation

Data/Model
Fitting

Data Modeling

Model 
Visualization

libRooFitCore.so
libRooFitModels.so
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Data modeling – OO representation

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept

),;( qpxF
rrr

px,

x
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x
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Data modeling – Constructing composite objects

• Straightforward correlation between mathematical 
representation of formula and RooFit code

RooRealVar x

RooRealVar s

RooFormulaVar sqrts

RooGaussian g

� RooRealVar x(“x”,”x”,-10,10) ;
� RooRealVar m(“m”,”mean”,0) ;
� RooRealVar s(“s”,”sigma”,2,0,10) ;
� RooFormulaVar sqrts(“sqrts”,”sqrt(s)”,s) ;
� RooGaussian g(“g”,”gauss”,x,m,sqrts) ;

Math

RooFit
diagram

RooFit
code

RooRealVar m

),,( smxG

�
�

�

�

�
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Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…

Physics inspired
ARGUS,Crystal Ball, 
Breit-Wigner, Voigtian,
B/D-Decay,….

Non-parametric
Histogram, KEYS 
(Probability Density Estimate)

PDF Normalization
• By default RooFit uses numeric integration to achieve normalization 
• Classes can optionally provide (partial) analytical integrals
• Final normalization can be hybrid numeric/analytic form
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RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – (Re)using standard components

• Most physics models can be composed from ‘basic’ shapes

RooAddPdf
+

RooGaussian



Wouter Verkerke, UCSB

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

RooGaussian

Model building – (Re)using standard components

• Most physics models can be composed from ‘basic’ shapes

RooProdPdf*
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Model building – (Re)using standard components

• Building blocks are flexible
– Function variables can be functions themselves

– Just plug in anything you like

– Universally supported by core code 
(PDF classes don’t need to implement special handling)

g(x;m,s)m(y;a0,a1)
g(x,y;a0,a1,s)

RooPolyVar m(“m”,y,RooArgList(a0,a1)) ;
RooGaussian g(“g”,”gauss”,x,m,s) ;
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Model building – Expression based components

• RooFormulaVar – Interpreted real-valued function
– Based on ROOT TFormula class

– Ideal for modifying parameterization of existing compiled PDFs

• RooGenericPdf – Interpreted PDF
– Based on ROOT TFormula class

– User expression doesn’t 
need to be normalized

– Maximum flexibility

RooBMixDecay(t,tau,w,…)

RooFormulaVar w(“w”,”1-2*D”,D) ;

RooGenericPdf f("f","1+sin(0.5*x)+abs(exp(0.1*x)*cos(-1*x))",x)
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Using models - Overview

• All RooFit models provide universal and complete
fitting and Toy Monte Carlo generating functionality
– Model complexity only limited by available memory and CPU power

• models with >16000 components, >1000 fixed parameters
and>80 floating parameters have been used (published physics result)

– Very easy to use – Most operations are one-liners

RooAbsPdf

RooDataSet

RooAbsData

gauss.fitTo(data)

data = gauss.generate(x,1000)

Fitting Generating
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Using models – Toy MC Generation

data=pdf.generate(x,ydata)

data=pdf.generate(x,y,1000)

• Generate “Toy” Monte Carlo samples from any PDF
– Sampling method used by default, but PDF components can advertise 

alternative (more efficient) generator methods

– No limit to number of dimensions, 
discrete-valued dimensions also supported

– Subset of variables can be taken from a prototype dataset
• E.g. to more accurately model the statistical fluctuations in a particular sample.

• Correlations with prototype observables correctly taken into account

x
y

x y

x
y
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Using models – Plotting

• RooPlot – View of ≥1 datasets/PDFs projected on the same dimension

Curve always normalized to 
last plotted dataset in frame

For multi-dimensional PDFs:
appropriate 1-dimensional projection is 

automatically created:

∫
∫⋅=

ydxdyxF

ydyxF
NxF rr

rr

),(

),(
)]([Projection

Poisson
errors on 
histogram

Adaptive spacing of curve points
to achieve 1‰ precision, 
regardless of data binning
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Advanced features – Task automation

• Support for routine task automation, e.g. goodness-of-fit study

Input model Generate toy MC Fit model 

Repeat 
N times

Accumulate
fit statistics

Distribution of
- parameter values
- parameter errors
- parameter pulls

// Instantiate MC study manager
RooMCStudy mgr(inputModel) ;

// Generate and fit 100 samples of 1000 events
mgr.generateAndFit(100,1000) ;

// Plot distribution of sigma parameter
mgr.plotParam(sigma)->Draw()
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RooFit at SourceForge - roofit.sourceforge.net

RooFit available at SourceForge 
to facilitate access and 

communication 
with all users

Code access
–CVS repository via pserver

–File distribution sets for
production versions



Wouter Verkerke, UCSB

RooFit at SourceForge - Documentation

Documentation
Comprehensive 
set of tutorials 

(PPT slide show + 
example macros)

Five separate 
tutorials

More than 250 
slides and 20 

macros in total

Class reference in THtml style
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Significance & probability
— CLT revisited – interpreting your error 

beyond 2s as Gaussian 
— Null Hypothesis testing – P-values
— Classical or ‘frequentist’ confidence intervals
— Issues that arise in interpretation of fit result
— Bayesian statistics and intervals
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Significance and probability – introduction

• Suppose you have the final result 
from your analysis, e.g.

Nsig = 25 ± 7

• What does this mean?
– Is it sufficiently different from 0 to claim discovery of a new particle?

– Or should you be more cautious?

• Need to state results in terms of absolute probabilities
– For example, probability result is due to bkg fluctuation is <0.001%

25
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Significance – Gaussian error assumption

• Naïve interpretation of Nsig = 25 ± 7 :

significance is

– So probability that signal is fake 
corresponds to fraction of Gaussian 
beyond 3.5σ, which is < 0.1% 

– Is this correct?

• Assumption made: Your sampling distribution is Gaussian
– In other words, if you would repeat the experiment many times the 

resulting distribution of results is perfectly Gaussian

– Not necessarily bad assumption: Central Limit Theorem predicts 
converge to a Gaussian sampling distribution at high statistics, but 
convergence beyond 2-3s range can take relatively large N

σ5.3
7

025
=

−

25
1σ

3.5σ
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Significance – Gaussian sampling distribution

• Sampling distribution = Distribution you obtain if you 
repeat experiment many times

Assumed distribution with
Gaussian error interpretation

0.27% outside 3σ

4.57% outside 2σ

31.73% outside 1σ

Gaussian integral fractions

Actual sampling distribution
for hypothetical low N measurement

Actual integral fractions

33%

4.8%

1.6%

0.18% within 3σ

4.35% within 2σ

32.23% within 1σ

Relative
Discrepancy

Tails of sampling distribution converge more slowly to Gaussian 
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Significance – Example N=25±7 continued

• So be careful assigning Gaussian probabilities when 
looking at >2σ deviations 
– Monte Carlo study of sampling distribution may be necessary

• But wait – there is another issue!
– Just measured probability that true signal yield is zero, 

given a measurement of 25 ± 7 events

– This is not the number you’re most interested in 
to claim a discovery…

• What you really want know
– What is the probability that my background will 

fluctuate upwards to 25 events and fake the signal
we observe 

– Technical term: ‘P-value’ – Probability that the 
null hypothesis (in this case 0 signal events) reproduces
the observed signal

These 
numbers
are
generally
not the same
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Calculating P-values – Pearson's χ2 test

• Idea: Calculate χ2 of data 
with respect to null hypotheses 

• P-value given by

• Example: χ2 = 29.8 for N=20 d.o.f à P(χ2)=0.073 = P-value

• Warning: P(χ2) probability interpretation only valid for normal 
sampling distribution.
– If statistics are low P(χ2) distribution will distort à Use Monte Carlo study to 

calculate correct shape for your sample

– Monte Carlo adjusted result for above example P(χ2) = 0.11

∑
=

−
=

N

i
null

i

null
ii
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Calculating P-values – ∆ln(L) method

• Significance from ML fit is similar to Pearson’s χ2 test
1) Perform regular Maximum Likelihood

fit to determine Nsig

2) Repeat ML fit with Nsig parameter fixed

– From difference in log(L) values
in fits 1) and 2) calculate

– Significance interpretation assumes normal sampling distribution

2
2
1)ln-( σ=∆ L ß P-value from Gaussian σ interpretation

Regular fit

Fit with Nsig=0

∆(-lnL)

0 Nsig



Wouter Verkerke, UCSB

Significance, Normal Sampling & Confidence intervals

• Calculating the significance of a result by means of a 
P-value is straightforward for normal sampling distributions
– If statistics become low, methods discussed are in inaccurate

– But you can correct these method through Monte Carlo studies (e.g. 
computing the distorted χ2 distribution for a low statistics sample 
rather than relying on the standard χ2 distribution)

• You can avoid this altogether when you explicitly construct 
a confidence interval for your result

• Example of Confidence interval

18 < N < 32 at 68% Confidence Level (C.L.)

– No Gaussian assumptions made in this statement

– Confidence intervals often used for results where interpretation of 
uncertainties is non-trivial (i.e. non-Gaussian)
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Confidence intervals – the basics

• Definition of a classic or ‘frequentist’ confidence interval 
at CL% confidence level
– If you repeat a measurement X many times 

and calculate a confidence interval [X-,X+] for each of them, 
CL% of the time the true value will be contained in the interval.

• Note that a frequentist confidence interval makes no statement about the true 
value of x. For a given experiment and corresponding interval, the true value either 
is or isn’t in the interval, no statement is made about that. It just says that if you 
repeat the experiment and interval calculation many times, CL% of the time the 
true value is inside the interval

• Note: this definition is ambiguous
– Examples below are all 3 valid 68% C.L confidence intervals

of a Gaussian sampling distribution 
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Confidence intervals – the basics

• Resolve ambiguity in definition by requiring either
– 1) Symmetry: x-,x+ are equidistant from mean

– 2) Shortest interval: choose x-,x+ such that |x--x+| is smallest

– 3) Central

– For Gaussian sampling distributions all 3 requirements result in
same confidence interval

2
..1

)()(
LC

dxxPdxxP
x

x −
== ∫∫

∞
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Confidence intervals – How do you make one?

• Example: Given a measurement xobs of a true value Xtrue

• Step 1: For a given value of Xtrue find interval [x+,x-] 
that contain 68% of the values of xobs

– Monte Carlo approach common:

1) Generate O(1000) data samples 
with true value X

2) For each sample, execute analysis
and find measured value x

3) Find interval in x that contains
68% of values of x

[NB: This interval is in xobs.
It is NOT the confidence interval,
which will be in Xtrue ]

• Repeat procedure for a wide range of value for Xtrue

x

Xtrue=0

Interval in x for X=0
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Frequentist confidence intervals – the Confidence Belt

• Result of step 1

xobs

Xtrue
Xtrue

Each point measurement xobs from 
a MC dataset generated with Xtrue

Intervals that contains 68% 
of values of xobs for each Xtrue

xobsx

Xtrue=0

‘Confidence Belt’
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Frequentist confidence intervals – the Confidence Belt

• Step 2 – Given data measurement of xobs read off 
confidence interval in Xtrue

xDATA

Confidence
interval
in Xtrue

NB: Width of confidence 
interval may vary with 
observed value of x,

But 68% coverage is constant:

regardless of the value of Xtrue
the probability that it is 
contained in the confidence 
interval is always 68%

Important concept in frequentist intervals
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Frequentist Confidence Interval – the Gaussian case

• Confidence intervals make no assumption of a Gaussian 
sampling distribution
– but what do they look like if we have one?

– Gaussian sampling distribution:

• Result of step 1 with Gaussian sampling distribution

( )[ ]2
trueobs2

1
trueobs /)(exp)( σXxXx −−=

[ ]σσ +−= XX ,C.I.%68

Width of confidence belt in Xtrue = 2σ

Width of confidence belt in xobs = 2σ

Gaussian case gives familiar result
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Frequentist Confidence Interval – Eternal sunshine?

• Frequentist confidence intervals are properly defined in 
case of non-Gaussian sampling distributions 
– Valid intervals are obtained for e.g. low statistics fits

– In case of a Gaussian sampling distribution the familiar Gaussian 
errors are obtained

– But does it always tell you want you want to know?

• Two (arbitrary) examples at low statistics
– A) we measure Nsig = 20 ± 10  à [0,+40] 68% C.L.

– B) we measure Nsig= -20 ± 10  à [-40, 0] 68% C.L.

• In case A) we are happy, no questions asked…

• In case B) we are not: We ‘know’ that Nsig must be >0!
– Nevertheless the interval is well defined! If you repeat the 

experiment many times 68% of the reported confidence intervals 
will contain the true value
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Experimental summary versus Interpretation

• Key problem: Interval is statistically well defined, 
but physical interpretation makes no sense

• Solution depends on what you want!
1) Summary of experimental result, or

2) Incorporate physical interpretation/constraints in your result

– These are two different things, 
and cannot really be accomplished simultaneously

• Frequentist Confidence Interval accomplishes 1), how do 
you do 2)?

-40 < Nsig < 0  at 68% C.L. Nsig my is number of Higgs 
decays so it must be ≥ 0. 

?
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Bayesian statistics – Decision making

• Bayesian statistics interprets probabilities very differently 
from Frequentist statistics 
– It provides a natural framework to include prior beliefs (such as Nsig>0)

• Essential Bayesian formulas:

)(
)(

)|(
)|( Ap

Bp
ABp

BAp =Bayes Theorem:

Notation of conditional probabilities:
p(A|B) is probability of A given B

∑
=

i
ii theptheresp

theptheresp
resthep

)()|(
)()|(

)|(

∑=
i

ii thePtheresPresp )()|()(

Law of Total ProbabilitySay ‘A’ = ‘theory’
‘B’ = ‘exp. result’
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Bayesian statistics – Decision making

• How to read this formula 

∑
=

i
ii theptheresp

theptheresp
resthep

)()|(
)()|(

)|(

P(the) = Prior Belief 
(e.g Nsig>0)

P(res|the) = Your measurement
the probability of an experimental
under a given theoretical hypothesis

P(the|res) = Your new belief in
the theory, given the just obtained
experimental result ‘interpretation’

Normalization term
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Bayesian statistics – Medical example

• Medical example: P(disease) = 0.001
– Prior belief (your input theory)

– E.g. based on population average

• Consider test for disease, result is either + or –
– P(+|+) = 0.98 – Prob that test will correctly ID disease

– P(-|+) = 0.02 – Prob that test will give false negative

– P(+|-) = 0.03 – Prob that test will give false positive

– P(-|-) = 0.97 – Prob that test will correctly ID absence of disease

• Suppose you test positive – should you be worried?

– Posterior belief is 0.032, larger than initial belief but still not 
very large!

032.0
999.003.0001.098.0

001.090.0
)()|()()|(

)()|(
)|( =

⋅+⋅
⋅

=
−−+++++

++
=++

PPPP
diseasePP
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Bayesian statistics – Medical example

• Medical example deals with simple hypothesis (true or 
false)

• In physics we often deal with composite hypothesis
– I.e. our hypothesis has parameters

– We will use Probability Density Functions as function of vector of 
parameters a rather than with total probabilities, i.e.

032.0
999.003.0001.098.0

001.090.0
)()|()()|(

)()|(
)|( =

⋅+⋅
⋅

=
−−+++++
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=++
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Physics Example – Measurement of parameter Q=Q0 ± σ(Q)

Initial belief on Q ‘prior’ :
we know nothing

Measurement of Q=Q0±σ(Q): 
Gaussian PDF with mean 

of Q0 and width of σ(Q)

Posterior belief on Q 
is product of prior belief

and measurement

Bayesian 68% interval = Area that integrates 68% 
of posterior Bayesian distribution

(Resolve ambiguity in definition in the 
same way as for a frequentist confidence interval)

);|(
);();|(

);|();(
Qresthep

QthepQtheresp
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i
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=
⋅
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NB: In this Gaussian example Bayesian interval is same as Frequentist interval
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Bayesian Physics Example – Incorporating any measurements

Initial belief on Q ‘prior’ :
we know nothing

Measurement of Q
from ML fit 

Posterior belief on Q 
is product of prior belief

and measurement

Very practical aspect of Bayesian analysis:
Measurement of Q = Likelihood distribution from fit!
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Including prior knowledge – Using a non-trivial prior

New initial belief on Q
it must be >0

Measurement of Q 
Posterior belief on Q 

is product of prior belief
and measurement

);|(
);();|(

);|();(
Qresthep
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i
ii

=
⋅
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Bayesian interval
changed to take

initial belief into account

Baysian interval with this prior will be different from Frequent interval

Values below
0 now a priori
forbidden

E
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d
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Bayesian statistics – a word of caution

• Bayesian framework provides easy mechanism to 
incorporate ‘prior’ knowledge via p(the;a)
– Difficulties arise when we want to express ‘no prior knowledge’, i.e.

• Is a flat prior really equivalent to complete ignorance?
– Apparent problem: if we declare all values of Q to be equally 

probable, then all values of Q2 are not equally probable!

– Example: Complete ignorance in Q translates into prior preference for 
low values of Q2

– Posterior Bayes distribution, interval will depend on choice of 
parameterization…

• Be careful with concept of ‘prior ignorance’
– If you go for prior ignorance, try a few choices of parameterization

– If it matters, be warned!
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One-sided versus two-sided intervals

• By default confidence intervals are two-sided intervals e.g.

18 < X < 30  (68% C.L.)

• In preceding Bayesian example we have explicitly 
excluded the range below zero through a prior

0 < X < 5.3 (68% C.L.) 

which is then usually quoted as a one-sided confidence 
interval

X < 5.3 (68% C.L.)

– One sided intervals are customarily quoted when you see no signal.
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Special issue – Frequentist confidence intervals with constraints

• There exist recent methods to construct proper frequentist 
confidence intervals in the presence of boundaries
– Example: ‘A Unified Approach to the Classical Statistical Analysis of Small 

Signals’, Gary J Feldman and Robert D Cousins [ PRD 57, 3873 (1998) ]

– Treatment of Feldman & Cousins beyond scope of this lecture

• Main feature of Feldman & Cousins: it decides for you 

when to quote a 1-sided interval [X<N] at X% C.L and
when to quote a 2-sided interval [X<N<Y] at X% C.L.

– Preserves main characteristic of frequentist interval: coverage is independent of 
true value of N

– If you would decide by yourself this would be the case probably.

• Does this help you? Sometimes
– Intrinsic problem with 1-sided intervals remains: they are difficult to average a 

posteriori. E.g. given two results A,B

• NA=15±13, NB=10±7 à NAB=13±6

• NA<28,  NB<17 à NAB=???
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Frequent vs Bayesian – Summary of options

• NB: This is often a hotly debated topic among physicists!

• Frequentist confidence intervals
– Provide ‘summary of information content’ of measurement

– No interpretation of result is made à Intervals may include values 
deemed unphysical (though Feldman & Cousins can help here)

• Bayesian intervals
– Support physical interpretation of result.

– Provides easy framework for incorporating physical constraints etc 
(these are all ‘prior’ beliefs)

– But you can run into difficulties incorporating prior ignorance

• For normal (Gaussian) sampling distributions Bayesian 
interval with uniform prior and Frequentist intervals are 
identical
– In that case both are also identical to interval defined by ∆(-lnL)=0.5
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Systematic errors
— Sources of systematic errors
— Sanity checks versus systematic error studies
— Common issues in systematic evaluations
— Correlations between systematic uncertainties
— Combining statistical and systematic error
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Systematic errors vs statistical errors

• Definitions 

Statistical error = any error in measurement due to
statistical fluctuations in data

Systematic errors = all other errors

Systematic uncertainty ≡ Systematic error

• But Systematic error ≠ Systematic mistake!
– Suppose we know our measurement needs to be 

corrected by a factor of 1.05 ± 0.03

– Not correcting the data by factor 1.05 introduces 
a systematic mistake

– Right thing to do: correct data by factor 1.05 
and take uncertainty on factor (0.03) as a systematic error
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Source of systematic errors – ‘Good’ and ‘Bad’ errors

• ‘Good’ errors arise from clear causes and can be evaluated
– Clear cause of error

– Clear procedure to identify and quantify error

– Example: Calibration constants, 
efficiency corrections from simulation

• ‘Bad’ errors arise from clear causes, but can not be evaluated
– Still clear cause

– But no unambiguous procedure to quantify uncertainty

– Example: theory error: 

• Given 2 or more choices of theory model you get 2 or more different answers. 

• What is the error? 
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Sources of systematic errors – ‘Ugly’ errors

• ‘Ugly’ errors arise from sources that have been overlooked
– Cause unknown à error unquantifiable

• ‘Ugly’ errors are usually found through failed sanity checks
– Example: measurement of CP violation on a sample of events that is 

known to have no CP-violation: You find ACP=0.10 ± 0.01

– Clearly something is wrong – What to do?

– 1) Check your analysis

– 2) Check your analysis again

– 3) Phone a friend

– 4) Ask the audience
…

– 99) Incorporate as systematic error 
as last and desperate resort!
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What about successful sanity checks?

• Do not incorporate successful checks in your systematic 
uncertainty
– Infinite number of successful sanity checks would otherwise lead

to infinitely large systematic uncertainty. Clearly not right! 

• Define beforehand if a procedure is a sanity check
or an evaluation of an uncertainty
– If outcome of procedure can legitimately be different from zero, it 

is a systematic uncertainty evaluation

– If outcome of procedure can only significantly different from zero 
due to mistake or unknown cause, it is a sanity check
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• Two values – corresponding to use of two (theory) models A,B
– What is a good estimate for your systematic uncertainty?

• I) If A and B are extreme scenarios, and the truth must 
always be between A and B
– Example: fully transverse and fully longitudinal polarization

– Error is root of variance with uniform distribution with width A-B

– Popular method because sqrt(12) is quite small, but only justified if A,B are 
truly extremes!

• II) If A and  B are typical scenarios
– Example: JETSET versus HERWIG (different Physics simulation packages)

– Error is difference divided by sqrt(2)

2
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Common scenarios in evaluating systematic errors

• Two variations of the analysis procedure on the same data
– Example: fit with two different binnings giving A ± σA and B ± σB

– Clearly, results A,B are correlated so                is not a good measure 
of smallness of error 

• Generally difficult to calculate, but can estimate 
uppper,lower bound on systematic uncertainty

– Where σA>σB and σ0 is the Minimum Variance Bound.

– If the better technique (B) saturates the MVB the range reduces to

– If MVB is not saturated (e.g. you have low statistics) you will need to 
use a toy Monte Carlo technique to evaluate σA-B
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Common scenarios in evaluating systematic errors

• Perhaps most common scenario in HEP analysis: 
you need to assign systematic uncertainty to 
(in)accuracy of full Monte Carlo simulation

• Popular technique: ‘Cut variation’
– Procedure: vary each of your cuts by a little bit. For each change, 

1) Measure new yield on data 

2) Correct with new MC efficiency. 

3) Difference between efficiency corrected results is systematic 
uncertainty.

– Example, for a nominal cut in x at ‘p’ you find N(data)=105, with 
a MC efficiency εMC=0.835 so that N(corrected)=125.8

124.50.803100p-∆p

127.20.865110p+∆p

N(corrected)ε(MC)N(data)

4.12/)5.1242.127( =−=p
sysσ

4.18.125 ±=x
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Common scenarios in evaluating systematic errors

• Warning I: Cut variation does not give an precise 
measure of the systematic uncertainty due data/MC 
disagreement!
– Your systematic error is dominated by a potentially large statistical 

error from the small number of events in data between your two 
cut alternatives

• This holds independent of your MC statistics

– You could see a large 
statistical fluctuation
à error overestimated

– You could see no change due 
to a statistical fluctuation 
à error underestimated
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Data and Simulation
give same efficiency
for nominal and
alternate cut, sp 

Zero systematic 
is evaluated 
(in limit Nà8 )

Even though data and
MC are clearly different

Common scenarios in evaluating systematic errors

• Warning II: Cut variation doesn’t catch all types of 
data/MC discrepancies that may affect your analysis
– Error may be fundamentally underestimated

– Example of discrepancy missed by cut variation:

Data
Simulation

Nominal cut

Alternate cut

Cut variation is a good sanity check, 
but not necessarily a good estimator for systematic uncertainty
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Systematic errors and correlations

• Pay attention to correlation between systematic errors

• If error uncorrelated, ρ=0
– Add in quadrature

• If error 100% correlated, then ρ=1. 
– E.g. tracking efficiency uncertainty per track for 6 tracks,

σ3trk = σtrk+σtrk+σtrk = 3⋅σtrk (not √3 ⋅σtrk)

• If errors 100% anti-correlated, then ρ=-1
– This can really happen!

– Example BF(D*0 à D0π0) =67%  and  BF(D*0àD0γ) =33%
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Combining statistical and systematic uncertainty

• Systematic error and statistical error are independent 
– They can be added in quadrature to obtain combined error

– Nevertheless always quote (also) separately!

– Also valid procedure if systematic error is not Gaussian: 
Variances can be added regardless of their shape

– Combined error usually approximately Gaussian anyway (C.L.T)

• Combining errors a posteriori not only option
– You can include any systematic error directly in your χ2 or ML fit:

– Or, for multiple uncertainties with correlations
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The End

• This course will be available at

• Some material for further reading
– R. Barlow, Statistics: A Guide to the Use of Statistical Methods in 

the Physical Sciences, Wiley, 1989

– L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge 
University Press,

– G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
(See also his 10 hour post-graduate web course: 
http://www.pp.rhul.ac.uk/~cowan/stat_course)

http://www.slac.stanford.edu/~verkerke/bnd2004/data_analysis.pdf


