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Course Overview

e Basic statistics — 24 pages

e Reducing backgrounds — 36 pages

e Estimation and fitting — 52 pages

e Significance, probability — 25 pages

e Systematic uncertainties — 12 pages
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Speaker introduction

The BaBar Detector

Working for the BaBar experiment
since 1998 -- CP Violation in the B
meson system

Occasionally, I will take some examples
from B physics, no material in this
course is specifically tied to any
experiment (including BaBar)




Basic Statistics

— Mean, Variance, Standard Deviation

— Gaussian Standard Deviation

— Covariance, correlations

— Basic distributions — Binomial, Poisson, Gaussian
— Central Limit Theorem

— Error propagation
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& Data — types of data

Lo

e Qualitative (numeric) vs Quantitative (non-numeric)

Not suitable for
" mathematical

treatment
v
Discrete Continuous
(Integers) (Reals)
:: { 5.6354
o 7.3625
1.,2_ 8.1635
: 9.3634
. : Binning 1.3846
0\|||||||\_ 4 ....................................... 0'2847
5 4 32 101 2 3 45 1.4763}
‘Histograms’ ‘N-tuples’
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Describing your data — the Average

sy

e Given a set of data (measurements)

{ X1 Xo, ooy Xt

then the mean value of x Is

N i

sé— X _

N T o R R mERET
N i

— where n; is bin count and Xx; is bin center

— Unbinned average more accurate due to rounding
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Describing your data — Spread

sy

of X expresses how much Xx is liable to
vary from its mean value X

V9 = a (- %)’
= 8 (¢ 2x+x)
1o , 1. 0o 1 ,0
= = . S 2% x +—x23 1
N X FaxTad
= x*- 2X°+X°
= - X2

s © NV(X) =Vx2- X2

Wouter Verkerke, UCSB



Different definitions of the Standard Deviation

S = \/Iilé' (x*- X)* is the S.D. of the data sample

e Presumably our data was taken from a parent
distributions which has mean mand S.F. s

Parent Distribution
(from which data sample was drawn)

VAN

-1:44-:1:14;?

Data Sample

L

£ 4 -2 I- a2 4 ] ] :I-
X — mean of our sample m— mean of our parent dist

s — S.D. of our sample G s — S.D. of our parent dist

Beware Notational Confusion! Wouter Verkerke, UCSB



Different definitions of the Standard Deviation

= Which definition of s you use, s, Or S o, IS Matter of

preference, but be clear which one you mean!

Parent Distribution
(from which data sample was drawn)

Data Sample

g
T
POF

Events i {02 )
EiLl
LR

Jm

Projaation of
o
F

e |n addition, you can get an unbiased estimate of s from a

given data sample using

parent

gédata:\/ié (x* - )_()zg
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More than one variable

e Given and a dataset consisting of pairs
of numbers

{ X1:Y1), (X5.Y2)s o (XnaYa) 3

= Definition of %, y, s,, s, as usual

e In addition, any described by
the

cov(X, y) =%é (% - X)(Y - V)

=(X-X)(y-y)
=Xy - XY (has dimension D(x)D(y))
e The dimensionless cov( X, Y)

is defined as I = 1 [-1,+]]

S8,

Wouter Verkerke, UCSB



Visualization of correlation
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Correlation & covariance in =2 variables

e Concept of covariance, correlation is easily extended to
arbitrary number of variables

COV( Xiys X)) = XiyXeiy = Xy Xy

e so that Vij = COV(X(i) , X(j)) takes the form of
a

e This is called the . or

e Similarly the correlation matrix becomes

S (i)S (j)

Wouter Verkerke, UCSB



Basic Distributions — The binomial distribution

e Simple experiment — Drawing marbles from a bowl
— Bowl with marbles, fraction p are black, others are white

— Draw N marbles from bowl, put marble back after each drawing

— Distribution of R black marbles in drawn sample:

Probability of a  Number of equivalent

specific outcome permutations for that
e.g. ‘BBBWBWW’ outcome

A A
4 N A\

(R p.N) = (1 )"
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Properties of the binomial distribution

e Mean: <r>:nxp

e Variance: V(r):np(]__ p) »)

p=0.1, N=4

p=0.1, N=1000

p=0.5, N=4

p=0.5, N=1000

T

s =./np(l-

p=0.9, N=4




Basic Distributions — the Poisson distribution

e Sometimes we don’t know the equivalent of the number
of drawings

— Example: Geiger counter

— Sharp events occurring in a (time) continuum

e What distribution to we expect in measurement over
fixed amount of time?

— Divide time interval | in n finite chunks,

— Take binomial formula with p=I /n and let n>¥

I r
n’

|
(1' I_)n_r I L | \\ _ nl
n r'(n-r)! L el

P(r;l /n,n)=

r

/ |
7 limg, (- )" =g
n

e-lll‘ ’/

P(r;l) =

r & Poisson distribution
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' Properties of the Poisson distribution
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el

More properties of the Poisson distribution P(r;l )= -

e Mean, variance: <r> = |

V)=l b s =4l

e Convolution of 2 Poisson distributions is also a Poisson
distribution with | =l .+l

P(r) = & P(ral )P - 12l o)

ra=0

WS N
=e're's g A'B
rJ(r-ry)!
gt (atle) g 1t 21, o' I, 0"
I AT IS e
gt (atl) @, 1, 8
r! L+l Tatlog

.
ag (Latle)
rl Wouter Verkerke, UCSB
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Basic Distributions — The Gaussian distribution

e Look at Poisson distribution in limit of large N

P(r;1)=¢" L
rl

. Take log, substitute, r = | + x

Fanduse In(r) »rinr-r+Iny2pr

In(P(r;1))=-1 +rInT- (rinr-r)- In/2pr
= | +r§n| - In(l (1+§))g+(l er)- |ﬂ«/ﬂ

3 (- 0 +X—2—- n(apl ) "
2
Take exp 2 - In(2pl )
:“"\ P(x) = e’ " Familiar Gaussian d|str|butlon':""'""'{é:.......
\/ﬂ (approximation reasonable for N>10) ~

e R
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Properties of the Gaussian distribution

P(x;m,s.):\/zllaiS

and
+¥

<x> = OP(x;ms )dx=m

V(X) = +ax— m*P(x;ms )dx =s ?

S =S

Integrals of Gaussian

2 2
e—(x- m)“</2s

Projectign of gguss
5 R o
T

o

o
2
@
\

PLE]
*

68.27%0 within 1s

90% - 1.645s

95.43% within 2s

95% - 1.96s

99.73% within 3s

99% > 2.58s

99.9% - 3.29s




Errors

e Doing an experiment - making measurements

e Measurements not perfect - imperfection quantified in
resolution or error

e Common language to quote errors

= sqrt(V(x))
— 68% probability that true values is within quoted errors

[NB: 68% interpretation relies strictly on Gaussian sampling distribution,
which is not always the case, more on this later]

e Errors are usually Gaussian if they quantify a result that
IS based on many independent measurements

Wouter Verkerke, UCSB



P

“' The Gaussian as ‘Normal distribution’

I _/C

e Why are errors usually Gaussian?

e The Central Limit Theorem says

— If you take the sum X of N independent measurements X;,
each taken from a distribution of mean m;, a variance V=s?,
the distribution for x

o)

(a) has expectation value <X> —am
[
. o Q .2
(b) has variance V (X) = aV.=as.

(c ) becomes Gaussian as N 2 ¥

— Small print: tails converge very slowly in CLT, be careful in assuming
Gaussian shape beyond 2s

Wouter Verkerke, UCSB



Demonstration of Central Limit Theorem

NN R RN R LN R RRN LR RN R R R

ha
[

- 5000 numbers taken at random from a
uniform distribution between [0,1].
h — Mean = 1/,, Variance = 1/,

- 5000 numbers, each the sum of 2
random numbers, i.e. X = X;+X,.

- - ha 5] =3
E B B B E
AN RREEEEEE R R e

— Triangular shape

- Same for 3 numbers,
X =X, + X, + X

- - ha ha =3 =3 3
E B BE B B B B, =2
AR LR sy e s T

- Same for 12 numbers, overlaid curve is
exact Gaussian distribution

_u.......ﬂ..
-+ % E E E E E &
T T o e g
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& Central Limit Theorem — repeated measurements

Lo

e Common case 1 : Repeated identical measurements
l.e.m=ms,=s for all i

=
\>_</|
1
- Qo
<
S
2 -
_. mo
<
B
1
Z| &
1

.
-
v
lllllllll
T

S (X) = W € Famous sqrt(N) law
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¢ Central Limit Theorem — repeated measurements

e Common case 2 : Repeated measurements with
Identical means but different errors
(i.e weighted measurements, m = m)

X =

ax/s’
é 1/s 2 Weighted average

1 N 1
V(X)_—éll _ZID S (X)

S, Jalls?

‘Sum-of-weights’ formula for
error on weighted measurements

Wouter Verkerke, UCSB



" Error propagation — one variable

A S

- Suppose we have f(X)=ax+b

e How do you calculate V(f) from V(x)?
V(f)=(f%)-(f)
= ((ax+b)?)- (ax+b)’
= azix2> +2ab(x) +b? - a(x)" - 2ab(x) - b’

— a2l/v2 2
= a <x > <x>)
=aV(x) < i.e.s.=|als,
aalf & df
e M - V(f)=¢c—=V(X) ; s, =|—s
ore genera (f) S (X) g

— But only valid if linear approximation is good in range of error



Error Propagation — Summing 2 variables

e Consider f =ax+by+c

vty =a(x?)- (x7)+b2(y?)- (y)2)+ 2ab((xy)- (x)(y))

=a’V(x) + bV (y) + 2abcov(x, y)

4
.. Familiar ‘add errors in quadrature’
""" only valid in absence of correlations,
I.e. cov(X,y)=0
e More general
2
alf & alf O asif cealf O
V() =¢—=V(X) +g—:V(y) + 2¢————=00v(X, y)
édx g dyg adx dyg
.2 .2 . ..
S; :a@—fgsf+a&£gs§+za@—f@%sxsy
edx g gdyg edx gdy g

But only valid if linear approximation The correlation coefficient
IS good in range of error r [-1,+1] is O if x,y uncorrelated



Error propagation — multiplying, dividing 2 variables
e Now consider f =X3y

V(1) =yV(x)+xV(y)

(math omitted)
&
X

— Result similar for T = X/ Y

+35_v

Y ¢

i

@D
X
Q I-O:,
Q-1-Ox

Q-I-1-05,
1
P

e Other useful formulas

S 1/x — S X . — S X
_ ’ S In(x) _
1/x X X
Relative error on Error on log is just
X,1/X is the same fractional error

Wouter Verkerke, UCSB



Dealing with backgrounds

— Comparing discriminating variables

— Choosing the optimal cut

— Working in more than one dimension

— Approximating the optimal discriminant

— Techniques: Principal component analysis,
Fisher Discriminant, Neural Network,
Probability Density Estimate, Empirical Modeling

Wouter Verkerke, UCSB



Backgrounds — Analysis strategy

e Reducing backgrounds in a central theme in most HEP
experiments and HEP data analyses

e For statistical analysis, problems introduced by
background are two-fold

1) Need to correct results for presence of background
‘subtract background’ or ‘include in fit’

2) It reduces the significance of the measurement,
10 events on top 1000 background events are less compelling
evidence of any new particle than 10 events on top of 2
background events

R L N L S N LS R R :n.'"I"'I'"I"'I"'I"'I"'I"'I"'I"'. pnd B R s RN R LR LR AR U

= ] = E #

g*ﬁ- t {n ﬁ gmm M *‘*

1 TR LI SR I |

G A *"Mﬁ* % i
Nsigzloo x Nsig:lOO " NSiQ:lOO “
Npyy=50 Npig=500 Npig=5000
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Analysis strategy — General structure

e General strategy for data analysis in presence of background

1) Reduce backgrounds:
— Exploiting information from your experiment to selecta -,
subset of events with less background Boundary

% between cutting
.. . i and fitting
2) Account for remaining backgrounds: ¢ is quite vague

— Developing procedures to incorporate uncertainty due
to background into error on final result

3) Compute statistical significance of your
result:

— State your result in terms of absolute probabilities, e.g.
‘the probability that background fakes my Higgs signal
Is less than 5x10-¢’

Wouter Verkerke, UCSB



Analysis strategy — General structure

e General strategy for data analysis in presence of background

1) Reducing backgrounds:

— Exploiting information from your experiment to select a
subset of events with less background

2) Accounting for remaini

— Developing procedure
to background into er

3) Summarize statisti
result:

— State your result in te
‘the probability that b
Is less than 5x10-¢’

Wouter Verkerke, UCSB



Intermezzo — Role of simulation in HEP data analysis

e Simulation is an essential and pervasive aspects of all
analysis step in HEP, e.g.

1) Reducing backgrounds:

Samples of simulated events help you to understand the
efficiency of your proposed cuts on signal and background
and to determine the ‘optimal’ cut

2) Accounting for remaining backgrounds

Simulation helps you to understand the behavior of your
fit, explore the validity of functions and assumptions

3) Summarize statistical significance of your result:

Simulation helps you to understand the robustness and
validity of the statistical procedures that you have used

Wouter Verkerke, UCSB



Intermezzo — Role of simulation in HEP data analysis

simulation is one of the most
to design and test

— ‘Monte Carlo’ is a generally directed at the problem of
computing integrals. In HEP the ° " aspect of the technique is
especially useful to from given distribution functions

- Typical layout of simulation facilities of HEP experiments

collider ® physicsprocess physicsprocesssimulation

Trigger Trigger ssmulation

Detector Detector ssmulation

Reconstrudion /

'‘DST'® ntuple ‘ssmulation DST'® ntuple

Wouter Verkerke, UCSB
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Simple example — one discriminating variable

sy

e Suppose we are looking at the decay D° - K*p-.
— We take two tracks and form the invariant mass m(Kp) _
-___'.—__..-Distribution of m(Kp) will peak around m(DO) for signal

— Distribution of m(Kp) will be more or less flat for combinatorial
background (random combinations of two tracks)

K+

-
*
'.
.
0
«
-
'0
..
..
«
N

Full Sample Signal Enriched Sample

_‘.|.|..|||||||||||||||||||||||||||||||||_ L L B L L L L I L LB L L LN BB
- " - -

EE\rents.{E.[ 0.8)

’0
0“
* DO

20| - i
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e

Simple example — one discriminating variable

sy

— We can enhance the purity of our sample by cutting on m(Kp)

Full Sample Signal Enriched Sample

K+

Events 4{ 0.8 )

K3
Q
o (6]
o - - - Q
20— — = _ . ‘0’ D

— We can choose cuts ‘by eye’ looking at the data — probably fine in
this case, but not always so easy

— More robust approach: Study separate samples of simulated
signal and background events and make informed decision

Wouter Verkerke, UCSB



" Optimizing cuts — Looking at simulated events

)

e Not all discriminating variables are equal — What is the
selection power of your event variable?

— Scan range of cut values and calculate signal, background
efficiency for each point. Plot eyy versus e,

>‘ 1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII - .
2 - Blad B T Background efficiency
QO 09C /A ; i i
2 0 9: Performance E aF function of signal efficiency
= 0.8F \ =
W C - ’ -
© - =
0 0.7 :
> : o R ]
O 0.6~ No discriminating o x=>0.7 —
5 = power: signal and  ,+° .
X 050 background reduced,.* =
(@) ' ,-*" at equal rate .’ .
© - S . .
m 0.4_— ........ "' .
u e 3
0.3 o = . _
- . 1  This type of plot is useful to
0.2 \ 4 compare the merits of various
- Good 4 discriminating variables
0.1— .- o1 Performance - but it doesn’t tell you where to cut
- X . m
o IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_
1

0 01 02 03 04 05 06 07 08 09
Signal Efficiency Wouter Verkerke, UCSB



" Optimizing cuts — Looking at simulated events

L S

1_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

This type of plot is useful to

compare the merits of various
discriminating variables

but it doesn’t tell you where to cut

0.9F
0.8

o.7§—
62% o.s;—

0.5E-

0.4—

34% 5

0.2

L
— *
— L4
0= -
R IS
— L4
-

T KR R Y RN A
60% 80%
e Choosing optimal cut require additional piece of
Information: the expected amount of signal, background

— Lot of signal / little background - Cut looser
— Little signal / lots of background - Cut harder

e Goal for optimization: minimize error on N(signal)

Wouter Verkerke, UCSB



Optimizing your cut for the best signal significance

sy

e Formula for approximate signal significance:

— Formula only good for large N,

> N
asymmetric Poisson shape of sanif (N. sig
distributions distorts results 9 ( 3'9) H \/N +N
at low N SIg bkg

Simulated bkg. Large Bkg Scenario
b S AR A AU A A A PR R = Make o _
: cut |x]<C

Strongly
peaked
optimum

4

S/sqrt(S+B)

(TR RN FRTH1 FNTRE FRTRI FRRRE FRTH1 SRR FRTRI P AT
1 2 ¥ 4 5 6 7 8 9 [

C

Au‘lll-ﬂ-ﬁ‘d-AleZdl\ﬂ‘lll
X

X
Simulated signal

A ETEETEE PR T FENE TR RTT T .
-"10-5-5440246810
x

X
Small Bkg Scenario

4 oyeld

G TR gy Make
& é r ] cut|x]<C Q= '
.- | . : 3
-t E 00 3 N
- - > £ o
2000 - - : - - 3 O Shallow
1000 E ] 0 optimum
- - 1000 - - 3 B 202_
"]‘M’W L e S T R S 1) W K T I S S T A
X X

X C



Optimizing your cut for the best signal significance

sy

N .
signif (N =
g (sig)uw\| Ny >

sig

S/sqrt(S+B)

................................................
1111111111

* If Ngjg << Np,q then Ng; +N,, . can be approximated by Ny,

= If you have no (good) background simulation, and Ng;, is small
you can also consider to replace Ny ,+N,,, by N(DATA)

e In the limit of low data (MC) statistics, SSB curve may exhibit
statistical fluctuations

— Don’t write algorithms that blindly finds the absolute maximum of S/sqrt(S+B)

— Be especially careful if you use data as tuning to those statistical fluctations
may bias your result

Wouter Verkerke, UCSB



Optimizing a cut on multiple discriminating variables

e An example with three discriminating variables:
Y(4s) - B*B-, B- > D° p-, D% 2 K*p-

m..(B*) E(B*)-E(Y4s/2) m(K+p-)
clever variation Measured vs expected E DO candidate
on B+ invariant mass of B* in Y4s 2-body system invariant mass

Tooo E— —E TO00 E_ _f
E"‘UUE— —E G000 E_ _E
5000%— —E SO0 %- _§
aoao 3 4000 E
aouoé_ —% 3000 E_ _E
2000%— —% 2000 E— —E
10005_ _E 1000 E— —E
B o x e v e Y ¢ ST %



Egﬂ

= Optimizing a cut on multiple discriminating variables

e Problem: need to find optimal S/sqgrt(S+B) Iin 3-dim space
— Difficult!

e A possible way forward — Iterative approach

1) Start with reasonable ‘by eye’ cuts for mgg,DE,m(Kp)
2) Tune each cut after all other cuts have been applied

3) Repeat step 2) until cuts no longer change

Result: a (hyper) cube-shaped cut in the three observables

« p -3 % 8

PR

Wouter Verkerke, UCSB



Multiple discriminating variables — correlations

e Warning: box cut may not be optimal if there are strong
correlations between the variables

Tuned Box Cut\ e —

Signal

Background

Scenario with
uncorrelated
X,Y in sig,bkg

N

S T R R 8

(Bl A = - M w e
T T

M A 8 u N

da

5] [

e -

Additional background
could have been reduced

at no cost with a differently
shaped cut

Need different approach...

Wouter Verkerke, UCSB



Multivariate data selection — constructing a 1D discriminant

e Instead of tuning a box cut in N observables,
that incorporates information from

all N observables.

— Why? It is awkward to work with many dimensions

— How? Try to compactify data and not loose ability to discriminate
between signal and background

— Given true signal and background probability

S(x) ; B(X)

the highest purity at a given efficiency

Is obtained by requiring

S(X)
B(X)

>C

where C controls the efficiency

>

Optimal Discriminant
S(X)
B(X)

D(X) =

Or any other function with a one-to-
one mapping to this function like
S/(S+B)



o

Multivariate data selection — constructing a 1D discriminant
e That’s very nice but:

— But we can try to estimate it from data, simulation etc

e A variety of techniques exist to estimate D(X) from
signal and background data samples such as

— Neural net
— Fisher discriminant
— Likelihood description

— Probability density estimate

e We’'ll now explore some of these techniques

— But keep in mind that the idea behind all these techniques is the
same: approximate the optimal discriminant D(X)=S(x)/B(x)

Wouter Verkerke, UCSB
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Multivariate data selection — Principal Component Analysis

e |dea:

e Back to example of multi-dimensional box cut

Tuned box
cut on original
variables x, y

F |

Background Signal

A better (1-dim) cut
along axis with largest
difference between signal
and background

Wouter Verkerke, UCSB



Multivariate data selection — Principal Component Analysis

e How to find principal axes of
signal data sample

— Goal: transform X=(X%;,X,) to U=(u,,u,)

1) Compute variance matrix Cov(X) of

2) Compute eigenvalues | ; 1—
and eigenvectors v; 2L

3) Construct rotation S :
matrix T = Col(v)T B e B B R m

4) Finally calculate u; = Tx;

e Eliminate u, with smallest amount of variation

— U4 in example

— Just cut on u,

e Software tip: in ROOT the class
TPri nci pal does all the hard work for you
Wouter Verkerke, UCSB



Combining discriminating variables — Linear discriminants

e A linear discriminant constructs D(x) from a
linear combination of the variables Xx;

N
(X) = § ax =ax

=1

— Optimize discriminant by chosing a; to maximize separation
between signal and background

e Most common form of the linear discriminant is the
Fisher discriminant

a
C N\
— _ — — T - 1—» R.A. Fisher
= (X) = (IT]S - ) X Ann. Eugen. 7(1936) 179.
Mean values%v Inverse of variance matrix
X, for sig,bkg of signal/background

(assumed to be the same)



Multivariate data selection — Linear discriminants

Vo

' Y
T -1 — R.A. Fisher
= (X) ( ) \Q( Ann. Eugen. 7(1936) 179.

Mean values in Inverse of variance matrix
X, for sig,bkg of signal/background
(assumed to be the same)

e Advantage of Fisher Discriminant:

— Ingredients m,m,,V can all be calculated directly from
data or simulation samples. No ‘training’ or ‘tuning’

e Disadvantages of Fisher Discriminant
— Fisher discriminant only exploits difference in means.

— If signal and background have different variance, this information
IS not used.

Wouter Verkerke, UCSB



' Example of Fisher discriminant

e The CLEO Fisher discriminant
— Goal: distinguish between
e+e- 2 Y4s - bb and uu,dd,ss,cc
— Method: Measure energy flow

|n_ 9 cpncentrlc con_es around Energy flow
direction of B candidate in bb

Energy flow
in u,d,s,c

Wouter Verkerke, UCSB




When is Fisher discriminant is the optimal discriminant?

e A very simple dataset

S= O Gauss(xi ’ lTiIS,S i ) Multivariate Gaussian distributions
' with different means but same width

B = C) Gauss(xi ; mB’S i ) for signal and background
[

e Fisher is optimal discriminant for this case

— In this case we can also directly correlate F(x)
to absolute signal probability

1
1+€ "

‘Logistic sigmoid function’

P(F) =

Projection of 1/{1+exp{-t)}
5
T | T T

e
N
7
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Multivariate data selection — Neural networks

e Neural networks are used in neurobiology, pattern
recognition, financial forecasting (and also HEP)

. s(t) is the activation function,
* usually a logistic sigmoid

e o) 6
N(X) = +A ax=< _ 1
sgao ai.al)qﬂ St 1+ e

e This formula corresponds to the ‘single layer perceptron’

— Visualization of single layer network topology

Xl
Since activation function s(t) is monotonic,
@) N(x) the single layer N(x) is equivalent
to the Fisher discriminant F(x)
XN
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" Neural networks — general structure

)

e The single layer model and easily be generalized to a
multilayer perceptron

N(Y() — S(ao + é a,-hi (7())
0 with i (X) = s(W, + én V%)
j=1

with a; and w;; weights
(connection strengths)

— Easy to generalize to arbitrary number of layers

— Feed-forward net: values of a node depend only on earlier layers
(usually only on preceding layer) ‘the network architecture’

— More nodes bring N(x) close to optimal D(x)=S(x)/B(x) but with
much more parameters to be determined
Wouter Verkerke, UCSB



e

Neural networks — training

sy

e Parameters of NN usually determined by minimizing the
error function

e=¢(N(®)- 0fBxdx + ¢(N(®)-21)°*S(X)dx

/

NN target value NN target value
for background for signal

, but cannot solve
analytically for general case

— In practice replace e with averages from training data from MC
(Adjusting parameters - ‘Learning’)

— Generally difficult, but many programs exist to do this for you
(‘error back propagation’ technique most common)

Wouter Verkerke, UCSB



- Neural networks — training example
Input Variables (9) Output Variables (1)
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Practical aspects of Neural Net training

e Choose input variables sensibly

Don't include badly simulated observables (such as #tracks/evt)
Some input variables may be highly correlated - drop all but one

Some input variables may contain little or no discriminating power
- drop them

Transform strongly peaked distributions into smooth ones (e.g.
take loQ)

Fewer inputs - fewer parameters to be adjusted - parameters
better determined for finite training data

e Choose architecture sensibly

— No ‘rules’ for number of hidden layers, nodes

— Usually better to start simple and gradually increase compexity

and see how that pays off

e Verify sensible behavior

— NN are not magic, understand what your trained NN is doing

Wouter Verkerke, UCSB



" Practical aspects of Neural Net training

Lo

e Training = iterative minimization of error function

e Beware risks of ‘overtraining’

— Overtraining = You network tunes to statistical fluctuations
specific to your training sample that are not representative of the
parent distribution

Error function

How to avoid detect and avoid overtraining:
Look simultaneously at error function evaluated from independent
iInput samples not used in training

50
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TprrrTrTrrTT T T T T T
If overtraining occurs error
function of independent test
sample will increase
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NN training iteration
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Neural networks — Software and literature

— PAW: MLP ( multi-layer perceptron ) — built-in
— ROOT: TMul ti Layer Per cept ron — built-in

— Good enough for most basic analysis use

e More powerful standalone packages exist
— For example JETNET

e Further reading
— L. Lonnblad et al., Comp. Phys. Comm. 70 (1992), 167
— C. Peterson et al., Comp. Phys. Comm. 81 (1994), 185

— C.M. Bishop, Neural Nets for Pattern Recognition, Clarendon
Press, Oxford (1995)

— B. Muller et al., Neural Networks: an Introduction, 2"d edition,
Springer, Berlin (1995)

Wouter Verkerke, UCSB
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Multivariate data selection — Probability density estimates

technigue aims to construct
S(x) and B(x) separately

— rather than D(X) directly, like NN does

— Calculate D(X) ZEPL((Y)%

e |dea (1-dim): represent each event of your MC sample
as a Gaussian probability distribution

— Add probability distributions from all events in sample

— Example:
Gaussian Summed
probability distributions  probability distribution
Sample of events for each event for all events in sample

o
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e

Probability Density Estimates — Adaptive Kernel

sy

single event can of course

— Width of Gaussian tradeoff between smoothness and ability to
describe small features

e ldea: technique
— Choose wide Gaussian if local density of events is low
— Choose narrow Gaussian if local density of events is high

— Preserves small features in high statistics areas, minimize jitter in
low statistics areas

Adaptive Kernel
(width of all Gaussian depends
on local density of events)

Static Kernel
(with of all Gaussian identical)

Projection of sum
ka
[
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o

Probability Density Estimates — Some examples

e |llustration: some PDEs from realistic data samples

B30
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Probability Density Estimates

sy

— Analogy in N dimensions straightforward

— But watch for very low statistics regions, which are much more
common in multi-dimensional problems

e Key features of PDE technique
— Advantage:

— Disadvantage: Prone to effects of low statistics

e Further reading
— K. Cranmer — Kernel Estimate Your Signal, Comp Phys Comm XXX

— S. Towers — PhySTAT2003 conference

Wouter Verkerke, UCSB



Multivariate data selection — empirical modeling

sy

e ldea: Choose empirical model to describe your signal
and background data

— Works best if you have little training data and you have an
approximate idea what the functional form will look like

— Fit probability density functions Sgy,,(X;Ps), Bemp(X;pg) functions
to signal, background data to obtain best possible description for
given model

Cut on Dgp,p

Eﬁ"'\"'l"'l‘”l"'l"'l”‘|"'|"'\"'_§ EME'W"'|"'|"'|S"'|"é|"§ "gnnf_llll ’Illlllillllllllllllllll_f
P mp X tHo0 3
%“: 5 g u %n; ;ﬁi _z
I ] 0= & 3
30 ] 1200[ 4 3
:> 10000 * jﬁi 3
20 800F st M =
5 5 w- |y 1 :
10f 00 .’ % =
[ 2000 * " E
: 1 Wsﬂséehs
4 | 3
(X) s - Og (DEmp) s,
_ SEmp g 5
— calculate D¢ (X) = Signal-like Bkg-like
=mp B Event Event
Emp(X) vents vents
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Multivariate data selection — Likelihood description

e Most useful for multi-dimensional datasets

— Application of technique in N dimensions straightforward

S, (X)>
D(X’ y) = X( ) Sy(y) alternatively D(X, y) — —S(X’ y)
B, (x)B,(y) B(X,y)
Explicitly assumes that x and y Incorporates correlations.
are uncorrelated in signal and background Potentially more powerful,
Easy, but possibly ignores information but more work

= Why cut on D ,(x) rather than using the result from the fit
directly?
— Fitting multidimensional datasets is quite a bit of work

— If function does not describe data perfectly (especially difficult in
multiple dimensions with correlations), accounting for discrepancy in
fit result a lot of work. Failing to do so may result in wrong answer.

— With a cut on Dg,,(X) efficiency of cut as measured on data or
simulation will incorporate all such effects in the obtained cut

efficiency
Wouter Verkerke, UCSB



Summary of background rejection

Method

Merits

methods

Drawbacks

Box cut

Easy to understand,
explain

Correlations not handled,
doesn’t scale well to many
variables

Principal Component
Analysis

Easy to understand,
explain, correlation taken
into account

May not be close to
optimal for complex
problems

Fisher Conceptually easy, Does not exploit difference
iImplementation easy in variance

Neural Net Flexible, powerful Training can be difficult

Probability No free parameters, Does not work well with

conceptually easy

low statistics

Empirical Function Method

Works well with low
statistics training samples

Quality of discriminant
depends strongly on you
guessing the correct
functional form

Wouter Verkerke, UCSB



Finding the right method

Which one is right for you? Depends on

On

Complexity of your problem
Time scale in which you would like to finish the analysis

finding the absolute best set of cuts

All methods for finding discriminants are approximate when used with finite
training/tuning statistics

Your experiments event simulation is imperfect — your performance on data
can be different (usually it is less)

You may a systematic error later that might depend on your choice of cuts
Don’t hunt for upward statistical fluctuations in tuning data

If it takes you 6 months of work to reduce your error by 10% keep in mind
that your experiment may have accumulated enough additional data by
them to reduce your statistical error by a comparable or larger amount

It is more important to get the right(=unbiased) answer than
the smallest possible statistical error

Don’t use discriminating variables that you know are poorly modeled in
simulation

Always try to find a way to cross check your performance on data, e.g. by
using a control sample



Estimation & Fitting

— Introduction to estimation
— Properties of c2, ML estimators
— Measuring and interpreting Goodness-Of-Fit
— Numerical issues in fitting
— Understanding MINUIT
— Mitigating fit stability problems
— Bounding fit parameters
— Fit validation studies
— Fit validity issues at low statistics
— Toy Monte Carlo techniques
— Simultaneous fitting
— Multidimensional fitting

Wouter Verkerke, UCSB
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Estimation — Introduction

T(X; P)

Theory

Probability

>

Calculus

D(X)

Data

e Given the theoretical distribution parameters p, what
can we say about the data

D(X)

Data

>

Statistical
inference

T(X; P)

Theory

Need a procedure to estimate p from D

— Common technique — fit!

Wouter Verkerke, UCSB



A well known estimator — the c2 fit

e Given a {(X’M’Si)}

and a function

— o)
c’(P)=a ;
| S y
e Estimate parameters by with

respect to all parameters p;

¢ ! Error on p; is
EQEL given by c2
‘71 variation of +1

— In practice, look for

dCdF()_pi) -0 :>

Value of p; at
E minimum is
4§ estimate for p,

e Well known: but why does it work? Is it always right?
Does it always give the best possible error?



Basics — What I1s an estimator?

e An IS a giving a value for a
parameter or a property of a distribution as a function of
the actual data values, I.e.

. 1o
m(X) = Na X < Estimator of the mean

- 1o .
V(X) = Na (X| - m)2 < Estimator of the variance

e A perfect estimator is
IIrnn®¥ (a) =a
— With finite statistics you get the right answer on average

V(&) =((a- (8))°)

— There are no perfect estimators!
Wouter Verkerke, UCSB



Likelihood — Another common estimator

. . NB: Functions used in likelihoods
of Likelihood must be Probability Density Functions:
— given D(;) and F(;;B) O-(X;pdx°1, F(x;p)>0

L(ﬁ)=C)F(X;ﬁ), l.e. L(p)=F(Xo; P) X (X; P) X (X5 P).--.
— For convenience the Is often used
-InL(P) =- A InF(%; P)

e Parameters are estimated by maximizing the Likelihood,
or equivalently minimizing —log(L) B
dinL(Pp)

dp

=0

p=p

Wouter Verkerke, UCSB



Variance on ML parameter estimates

e The estimator for the parameter variance iIs

S (P =V (p)= gd'Z”LS v..

— l.e. variance is estimated from
2nd derivative of —log(L) at minimum

— Valid if estimator is

efficient and unbiased! "~

" inequality b
v(p)*
P dZInL)
d%p

v in limit of efficient estimator

From Rao-Cramer-Frechet

b = bias as function of p,
inequality becomes equality

e Visual interpretation of variance estimate

— Taylor expand —log(L) around minimum

.. dinL ., d?InL
InL(p) =InL(P)+ (p- P)+3 2
p=p P o=
2 a2
CinL +d Ian\ (p- P)
d P ‘p=f> 2
A 2
=ik, + PP b npes) =inL,, -

p

(p- P)°

.
.
N~ R
g
.
age?

L

N W

-log(L)

-----

.5



" Properties of Maximum Likelihood estimators

L S

e In general, Maximum Likelihood estimators are

— Consistent (gives right answer for N>¥)
— Mostly unbiased (bias p1/N, may need to worry at small N)

— Efficient for large N (you get the smallest possible error)

i N
— Invariant: (a transformation of parameters (A)z ( 2)
P) =\P

will Not change your answer, e.g

.. Use of 2nd derivative of —log(L)
for variance estimate is usually OK

e MLE efficiency theorem: the MLE will be unbiased and
efficient if an unbiased efficient estimator exists

— Proof not discussed here for brevity

— Of course this does not guarantee that any MLE is unbiased and
efficient for any given problem

Wouter Verkerke, UCSB



More about maximum likelihood estimation

e |t does not give you the ‘most likely value of p’ —
It gives you the value of p for which this data is most likely

to find
the maximum of In(L)

— Especially difficult if there is >1 parameter

— Standard tool in HEP: MINUIT (more about this later)

e Max. Likelihood does give you a measure

— If assumed F(X;p) is not capable of describing your data for any p,
the procedure will not complain

— The absolute value of L tells you nothing!

Wouter Verkerke, UCSB



7 Properties of c2 estimators

e Properties of c? estimator follow from properties of ML
estimator

F(X;p)=exp

Take log,
Sum over all points X;

o - f _;—> Q'“ e
nL(p) =34 CeP2 e

Probability Density Function
in p for single data point x;(s;)
and function f(x;;p)

D P @ D

By, - f(X., p)
:

The Likelihood function in p
: «— for given points x,(s;)
X K and function f(x;; p)

The c? estimator follows from ML estimator

cl.eitis
— Efficient, consistent, bias 1/N

, Invariant,
— But only in the limit that the error s; is truly Gaussian

— 1.e. need n;> 10 if y; follows a Poisson distribution

e Bonus: Goodness-of-fit measure — c? » 1 per d.o.f



Maximum Likelihood or c2 — What should you use?

e c?fit is fastest, easiest
— Works fine at high statistics
— Gives absolute goodness-of-fit indication
— Make (incorrect) Gaussian error assumption on low statistics bins
— Has bias proportional to 1/N
— Misses information with feature size < bin size

e Full Maximum Likelihood estimators most robust
— No Gaussian assumption made at low statistics
— No information lost due to binning
— Gives best error of all methods (especially at low statistics)

— No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually
‘pretty bad’

— Has bias proportional to 1/N
— Can be computationally expensive for large N

e Binned Maximum Likelihood in between - INL(P)yme =& Nin INF Ksin. cervers P)
— Much faster than full Maximum Likihood e
— Correct Poisson treatment of low statistics bins
— Misses information with feature size < bin size
— Has bias proportional to 1/N Wouter Verkerke, UCSB



Using weighted data in estimators

sy

e c2 fit of histograms with weighted data are straightforward

From C.L.T

o o - f 0
Vi =4 w ag S(_X D)2 J/wz
From C.L.T |
S(p)° YV(p)

(i.e. 68% contained in 1s)

e In ML fits implementation of weights easy, but interpretation of

errors is not!
.¥  Event weight

'lnL(ﬁ)wdghtw_ annF(XI p)

’’’’

o)
a ;W
o Q :
— If @ W <N errors will be too small, if @ W > N errors will be too large!

— Inte'rpretation of errors from weighted LL fits difficult -- Avoid it if you can
Wouter Verkerke, UCSB



Estimating and interpreting Goodness-Of-Fit

sy

- Fitting determines best set of parameters =R

16F

of given model to describe data ¢
I.e. 105— 3

— Is it an adequate description, : g
or are there significant and o E
incompatible differences? 0 bbbl

‘Not good enough’

e Most common test:

2
_s & - f(%:po
CZ_ | <

A s

— If f(X) describes data then c2 » N, if c2 >> N something is wrong

— How to quantify meaning of ‘large ¢2’?

Wouter Verkerke, UCSB
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How to quantify meaning of ‘large c?

e Probability distr. for c? is given by

2-N/2
N-2 -¢c?/2

G(N/2)

:é&;/i m9 > p(CZ,N):
ig S B

e To make judgement on goodness-of-fit,
relevant quantity is integral of above:

P(c?; N) = i‘)p(cz';N)dcz'

C2

— It is the probability that a function which does genuinely describe
the data on N points would give a c? probability as large or larger
than the one you already have.

e Since it is a probability, it is a number in the range [0-1]
Wouter Verkerke, UCSB



Goodness-of-fit — c2

e Example for c? probability

— Suppose you have a function f(x;p) which gives a c? of 20 for 5
points (histogram bins).

— Not impossible that f(x;p) describes data correctly, just unlikely
¥

— How unlikely?  Ap(c?5)dc ® = 0.0012

20
e Note: If function has been fitted to the data

— Then you need to account for the fact that parameters have been
adjusted to describe the data

Nyos. = Ngga - N

params

e Practical tips
— To calculate the probability in PAW ‘cal | prob(chi 2, ndf)’
— To calculate the probability in ROOT ‘TMat h: : Prob(chi 2, ndf)”’

— For large N, sgrt(2c?) has a Gaussian distribution
with mean sqrt(2N-1) and s=1 Wouter Verkerke, UCSB



Goodness-of-fit — Alternatives to c?2

e When sample size is very small, it may be difficult to
find sensible binning — Look for binning free test

1) Take all data values, arrange in increasing order and plot
cumulative distribution

2) Overlay cumulative probability distribution

w12 a0 30
g‘ln'- 4 250 ] 2L
wor ] [ ] [

al 1 20 . ol

&L . 5[ . r

al . 10f 1 10f

al . s[ . 5[

L 7 ] r 1 r ]
a AT T P P T P -, " § o ] WPR FURT BT PR TR PR IR PO o AP TR P EETS A T PO
0 & -6 4 2 0 2 4 €8 10 0 -8 6 4 -2 D 2 4 € 8B 10 0 8 & 4 2 0 24 B B 1

x o

d=+/N xmax|cum( ) - CUFT;( p)|

— ‘d’ large - bad agreement; ‘d’ small — good agreement

— Practical tip: in ROOT: THL: : Kol nogor ovTest ( TF1&)
calculates probability for you Wouter Verkerke, UCSB



Practical estimation — Numeric c? and -log(L) minimization

e [For most data analysis problems minimization of c? or —
log(L)
— Need to rely on numeric/computational methods

— In >1 dimension |

e But no need to worry — Software exists to solve this
problem for you:

— MINUIT does function minimization and error analysis
— It is used in the PAW,ROOT fitting interfaces behind the scenes

— It produces a lot of useful information, that is sometimes
overlooked

— Will look in a bit more detail into MINUIT output and functionality
next

Wouter Verkerke, UCSB



Numeric c?/-log(L) minimization — Proper starting values

e For all but the most trivial scenarios it is not possible to
automatically find reasonable starting values of
parameters

— This may come as a disappointment to some...

— S0 you need to supply good starting values for your parameters

Reason: There may exist
multiple (local) minima
in the likelihood or c?

-log(L)

Local
minimum

ITrtljeminilrnulm

s 6 4 2 0 2 r 8

p
— Supplying good initial uncertainties on your parameters helps too

— Reason: Too large error will result in MINUIT coarsely scanning a

wide region of parameter space. It may accidentally find a far away

local minimum Wouter Verkerke, UCSB



{=IES
00 | port | pot2 | pots | pote
pois | o | por | pos | pos
expo | user
Quiet | Verbose | Same Pcture|

= What happens in MINUIT, behind the scenes
1) Find minimum in —log(L) or ¢2 — MINUIT function MIGRAD

2) Calculate errors on parameters — MINUIT functlon HESSE

3) Optionally do more robust error estimate — MINUIT function MINOS
Wouter Verkerke, UCSB



Minuit function MIGRAD

* Purpose: find minimum Progress information,

watch for errors here

kkkh*kkhkkk*k*%x

* 13 **M GRAD 1000 1
k) kkkk k) k%

sone_out put _oni tted)

M GRAD M NI M ZATI ON HAS CONVERGED.

M GRAD W LL VER FY CONVERGENCE AND ERROR NATRI X
COVARI ANCE MATRI X CALCULATED SUCCESSFULLY

FCNE257. 304 FROM M GRAD STATUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2. 36773e- 06 STRATEGY= 1 ERROR MATRI X ACCURATE
EXT PARAMETER STEP FI RST
NO. NANME VALUE ERROR Sl ZE DERI VATI VE
1 nean 8. 84225e-02 3. 23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2. 39540e-01 2.78628e-04 -5.34724e-02
ERR DEF= 0.5
EXTERNAL ERROR MATRI X NDI M= 25 NP, ERR DEF=0. 5

1.049e-01 3.338e-04
3.338e-04 5.739e-02 \
PARAVETER CORRELATI ON CCEFFI Cl ENTS Parameter values and
NO G.OBAL 1 2 approximate errors reported by
1 0.00430 1. 000 0.004 MINUIT
2 0.00430 0.004 1.000

Error definition (in this case 0.5

\ for a likelihood fit) /




Minuit function MIGRAD

e Purpose: find minimum

Kk kkkkk Kok /Value of c2 or likelihood at\
* * 13 **M GF minimum

kkkkkkkkk*%x

(sone out put ©
M GRAD M NI M Z

(NB: ¢2 values are not
divided by N, ¢

COVARI CULATED SUCCESSFULLY
FCN=257. 304 |FROM M GRAD STATUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2. 36773e- 06 STRATEGY= 1 ERROR MATRI X ACCURATE
EXT PARAMETER STEP FI RST
NO. NANME VALUE ERROR Sl ZE DERI VATI VE
1 nean 8. 84225e-02 3. 23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2. 39540e-01 2.78628e-04 -5.34724e-02
FRR F= 0.5
EXTERNAL ERROR MATRI X. NDI M= 25 NPAR= 2 ERR DEF=0.5

1.049e-01 3.338e-04
3.338e-04 5.739e-02
PARAVETER CORRELATI ON CCEFFI C ENTS
NO. G.OBAL 1 2
1 0.00430 1. 000 0.004
2 0.00430 0.004 1.000

Approximate
Error matrix
And covariance matrix

Wouter Verkerke, UCSB



Minuit function MIGRAD

/

e Purpose: find minimu

kkkh*kkhkkk*k*%x

o 13 **M GRAD 1000

kkkkkkkkk*%x

(sone output omtted)
M GRAD M NI M ZATI ON HAS CONVERGED:
M GRAD WLL VERI FY CONVERGENCE AND

Should be ‘converged’ but can be ‘failed’

Status: \

Estimated Distance to Minimum
should be small O(10-%)

Error Matrix Quality
should be *accurate’, but can be
‘approximate’ in case of trouble /

COVARI ANCE NMATRI X Y
FCN=257. 304 FROM M D STATUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2. 36773e- 06 STRATEGY= 1 ERROR MATRI X ACCURATE
EXT PARAMETER STEP H RST
NO. NANME VALUE ERROR Sl ZE DERI VATI VE
1 nean 8. 84225e-02 3. 23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2. 39540e-01 2.78628e-04 -5.34724e-02
ERR DEF= 0.5

EXTERNAL ERROR MATRI X. NDI M= 25
1.049e-01 3.338e-04
3.338e-04 5.739%e-02
PARAVETER CORRELATI ON CCEFFI C ENTS
NO GLOBAL 1 2
1 0.00430 1. 000 0.004
2 0.00430 0.004 1.000

NPAR= 2 ERR DEF=0.5

Wouter Verkerke, UCSB




Minuit function HESSE

: d2L
e Purpose: calculate error matrix from e
P
*kk*kkkikkk*k*%k
*% 18 **HESSE 1000 — )
Kk khkkkkhkKk* Symmetrlc errors
COVARI ANCE MATRI X CALCULATED SUCCESSFULLY calculated from 2nd
FCN=257. 304 FROM HESSE STATUS=CK derivative of —In(L) or ¢ pHra
EDVE2. 36534e-06  STRAT RATE
EXT PARAVETER | NTERNAL
NO.  NAME VALUE ERROR STEP SI ZE VALUE
1 nean 8.84225e-02 | 3.23861e-01 | 7.16689e-05 8.84237e-03
2 sigm 3.20763e+00 | 2.39539e-01 | 5.57256e-05 3.26535e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRI X NDIM= 25  NPAR= 2 ERR DEF=0.5

1.049e-01 2. 780e-04
2. 780e-04 5.739%e-02
PARAMETER CORRELATI ON CCEFFI Cl ENTS
NO GLOBAL 1 2
1 0.00358 1. 000 0.004
2 0.00358 0.004 1.000

Wouter Verkerke, UCSB



Minuit function HESSE

2

e Purpose: calculate error matrix from 3;
* ok kkk ok Ak k
** Error matrix \
*rE (Covariance Matrix)
oV calculated from JOCESSFULLY
FON , 1 JUS=XK 10 CALLS 42 TOTAL

&l“(- InL) Q@ le-06  STRATEGY= 1 ERROR MATRI X ACCURATE
X V= H | NTERNAL | NTERNAL
NG dpdp; ERROR STEP S| ZE VALUE
1 3.23861le-01  7.16689e-05 8. 84237e-03
2\\ETz///,,/"“3726763§¢66/) 2.39539e-01  5.57256e-05 3. 26535e- 01
ERR DEF= 0.5

EXTERNAL ERROR MATRIX|  NDIME 25 ~ NPAR= 2 ERR DEF=0.5

1.049e- 01 2. 780e- 04

2.780e- 04 5. 739e-02

CCEFFI CI ENTS
N0 GLOBAL 1 2
1 0.00358 1.000 O.004
2 0.00358 0.004 1.000

Wouter Verkerke, UCSB



Minuit function HESSE

: d’L
e Purpose: calculate error matrix from e
P
k) kkkkkk*k*
**x 18 **HESSE 1000
*kkkikkkk*k*k*k*%x
COVARI ANCE MATRI X CALCULATED SUCCESSFULLY
FON=257. 304 FROM HESSE STATUS=CK 10 CALLS 42 TOTAL
EDME2. 36534e- 06 STRATEGY= 1 ERRCR MATRI X ACCURATE
EXT PARAMETER | NTERNAL | NTERNAL
NO.  NAME VALUE ERROR STEP VAL UE
1 mean 8 842256- 02 /Correla'non matr|x r . 8 842376- 03
2 signa 3.20763e+00 calculated from 3.26535e-01
EXTERNAL ERROR MATRI X.  NDI N \/ij =SS jr i F=0. 5

1.049e-01 2. 780e-04

2. 780e-04 5.739%e-02

PARAMETER CORRELATI ON CCEFFI C E
NO GLOBAL 1 2

1 0.00358 1. 000 0.004

2 0.00358 0.004 1.000

Wouter Verkerke, UCSB



Minuit function HESSE

. d’L
e Purpose: calculate error matrix from e
P
ER R R S e I Sk
o 18 **HESSE 1000
kkkkkkkkk*%x
COVARI ANCE MATRI X CALCULATED SUCCESSFULLY
FCN=257. 304 FROM HESSE STATUS=CK 10 CALLS 42 TOTAL
EDME2. 36534e- 06 STRATEGY= 1 ERROR MATRI X ACCURATE
EXT PARAMVETER | NTERNAL | NTERNAL
NO. NANVE MALLIE ERROR STEP SI ZE VALUE

7.16689e-05 8. 84237e-03

Global correlation vector:
5. 57256e- 05 3. 26535e-01

correlation of each
parameter with all other

1 nean
2 signha

2 ERR DEF=0.5

EXTERNAL E parameters
1. 049e- 01
2. 780e- 04 :
PARAMETER CORREL CCEFFI Cl ENTS
NO.  G_OBAL 1 2

1 0. 00358 1. 000 0.004
2 ]0. 00358 0. 004 1.000

Wouter Verkerke, UCSB



Minuit function MINOS

e Purpose: More rigorous determination of errors

e Warning: Can be very CPU intensive for large number of
parameters

e Optional — activated by option “E” in ROOT or PAW

*kkhkkkkhkkkikk*x

*x 23 **M NOS 1000
kkkkkkkkk*%x
FCN=257. 304 FROM M NOS STATUS=SUCCESSFUL 52 CALLS 94 TOTAL
EDME2. 36534e-06  STRATEGY= 1 ERROR MATRI X ACCURATE
EXT PARAMVETER PARABCLI C M NOS ERRORS
NO.  NAME VALUE ERROR NEGATI VE PCSI Tl VE
1 nean 8.84225e-02 | 3.23861e-01 ||-3.24688e-01  3.25391e-01
2 sigm 3.20763e+00 | 2.39539e-01 ||-2. 23321e-01 2. 58893e-01

%A: 0.5 /-/\
/S MINOS error \

ymmetric error
Can be asymmetric

(repeated result
from HESSE) (in this example the ‘sigma’

error is slightly asymmetric
\_ ), N ghtly asy )




Practical estimation — Fit converge problems

sy

e Sometimes fits don’t converge because, e.g.
— MIGRAD unable to find minimum

— HESSE finds negative second derivatives
(which would imply negative errors)

e Reason is usually numerical precision and stability
problems, but

— The of fit stability problems is usually
by in fit

e HESSE correlation matrix in primary investigative tool

PARAVETER CORRELATI ON CCEFFI C ENTS
NO. GLOBAL 1 2
1 0.99835 1.000 0.998
2 0.99835 0.998 1.000

— In limit of 100% correlation, the usual point solution becomes a line
solution (or surface solution) in parameter space.
Minimization problem is no longer well defined \y, ter verkerke. UCSB



Mitigating fit stability problems

sy

e Strategy | — More orthogonal choice of parameters

— Example: fitting sum of 2 Gaussians of similar width

F(x f.ms,s) = fG,(xs,m+(L- f)G,(xs,m

HESSE correlation matrix

PARAVETER CORRELATI ON CCEFFI Cl ENTS

~~~~~~~~~~ NO. GOBAL [ f] [ m [sl] [s2]

........... [ f] 0.96973 1.000 -0.135 0.918 0.915

Widths s,,s, e [ m 0.14407 -0.135 1.000 -0.144 -0.114
strongly correlated [s1] 0.92762 0.918 -0.144 1.000 O0.786

fraction f [s2] 0.92486 0.915 -0.114 0.786 1.000



Mitigating fit stability problems

— Different parameterization:
G (x5, m)+(1- 1)G,(X5>8,,m,)

PARAVETER CORRELATI ON COEFFI Cl ENTS
NO.  GLOBAL [f] [mM  [s1l] [s2]

[ f] 0.96951 1.000 -0.134 0.917 -0.681

[ M 0.14312 -0.134 1.000 -0.143 0.127
[s1] 0.98879 0.917 -0.143 1.000 - 0. 895
[s2] 0.96156 .»0.681 0.127 -0.895 1.000

— Correlation of Wi?:lth s2 and fraction f reduced from 0.92 to 0.68

— Choice of parameterization matters!

e Strategy Il — Fix all but one of the correlated parameters

— If floating parameters are highly correlated, some of them may be
redundant and not contribute to additional degrees of freedom in your
model

Wouter Verkerke, UCSB



Mitigating fit stability problems -- Polynomials

sy

Regular parameterization of polynomials
a,+a, X+a,x?+a,x3 nearly always results in strong
correlations between the coefficients a,.

— Fit stability problems, inability to find right solution common at
higher orders

Use existing parameterizations of
polynomials that have (mostly) uncorrelated variables

— Example: Chebychev polynomials

T4(x) Tyx)  Telx)
Tl = 1 \ 3 A :

H{I} T[ E'r:!'___.-"'#"[
Ti(z) = =« _ HI_,
To(z) = 2z° -1 I|I 0.5 \#, f’(

l lI.l _.-"""' g
Tyz) = 423 —_ /[ NN |
‘1\ 109 7 \0.5 1 ¥

Tus) = =87 +1 \ /]~ \

\ L ‘ f
Ts(z) = 162° — 20z + 5z HH -0ls H\x !
To(z) = 322°% —482" +182° — 1. J ,“\ . \/

T5(x)

Wouter Verkerke, UCSB



" Practical estimation — Bounding fit parameters

)

e Sometimes is it desirable to bound the allowed range of
parameters in a fit

— Example: a fraction parameter is only defined in the range [0,1]

— MINUIT option ‘B’ maps finite range parameter to an internal infinite
range using an arcsin(x) transformation:

[
(2
=|III||II:|I|IIII III:I|II|I|IIII|

External Error

-

Bounded Parameter space

PR N SRR N AT TN N A M IEI |E| PR SN AU SN T AN S T NN SN SO S O T
-6 -4 -2 0 2 4 6 8

MINUIT internal parameter space (-8 ,+8 )

L/

Internal Error Wouter Verkerke, UCSB
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Practical estimation — Bounding fit parameters

e |If fitted parameter values is close to boundary, will
become (and possible incorrect)

-
tn

]
n
n|||:||| III|IIII IIII|:IIII|IIII|

-

e
tn

=

Bounded Parameter space

External error

K-|IIII|IIII|IIII IIII|IIII|IIII|

-

h
L]
(=]

-
oo

MINUIT internal parameter space (-8 ,+8)

—

) Internal error
e SO0 be careful with bounds!

— If boundaries are imposed to avoid region of instability, look into other
parameterizations that naturally avoid that region

— If boundaries are imposed to avoid ‘unphysical’, but statistically valid
results, consider not imposing the limit and dealing with the ‘unphysical’
interpretation in a later stage Wouter Verkerke, UCSB



" Practical Estimation — Verifying the validity of your fit

How to validate your fit? — You want to demonstrate that
1) Your fit procedure gives on average the correct answer ‘no bias’

2) The uncertainty quoted by your fit is an accurate measure for the statistical
spread in your measurement ‘correct error’

Validation is important for low statistics fits

— Correct behavior not obvious a priori due to intrinsic ML bias
proportional to 1/N

Basic validation strategy — A simulation study

1) Obtain a large sample of simulated events

2) Divide your simulated events in O(100-1000) samples with the same size as
the problem under study

3) Repeat fit procedure for each data-sized simulated sample

4) Compare average value of fitted parameter values with generated value -
Demonstrates (absence of) bias

5) Compare spread in fitted parameters values with quoted parameter error -
Demonstrates (in)correctness of error

Wouter Verkerke, UCSB



Fit Validation Study — Practical example

sy

e Example fit model in 1-D (B mass)

- N
o m S

Events /1 0.0025)

Signhal component is Gaussian
centered at B mass

Background component is .
Argus function (models phase i
space near kinematic limit)

F (M5 Ngg s Nig» Pss Pe) = Ngg XG(M; ps) + Ny XA(M Pg)

] NS,g(generat”efJI)“

Results of simulation study:
1000 experiments
with Ng,5(gen)=100, Ngks(gen)=200

Distribution of Ngig(fit) -oomrimicmies >

Events /{ 2.5 )

"] B

= A

] ] |
—— E

= M
m =
II LI I
|—.—|.
——

This particular fit looks unbiased...

.
L

M ‘#0450 "-I'Yu'r"-ii'i:' iz

N...(fit)

sig




. ‘.. i

Fit Validation Study — The pull distribution

e What about the validity of the error?

— Distribution of error from simulated

experiments is difficult to interpret...

— We don’t have equivalent of
Ngg(generated) for the error

e Solution: look at the pull distribution

fit true

— Definition:  pull(N,,) = 29 o 29
SN

— Properties of pull:
e Mean is O if there is no bias

 Width is 1 if error is correct

— In this example: no bias, correct error

within statistical precision of study

%Emﬂlaﬁn.sg

{015)

[ | pullSigma = 1.039+ 0.040
[ | pullMean = 0.012 + 0.053

Evants |
[.X]




P

Fit Validation Study — Low statistics example

sy

e Special care should be taken when fitting small data
samples

— Also if fitting for small signal component in large sample

e Possible causes of trouble

— c¢2 estimators may become approximate as Gaussian
approximation of Poisson statistics becomes inaccurate

— ML estimators may no longer be efficient
- error estimate from 2" derivative may become inaccurate

— Bias term proportional to 1/N of ML and c? estimators may
no longer be small compared to 1/sqrt(N)

e In general,
. How to proceed?

— Use unbinned ML fits only — most robust at low statistics

— Explicitly verify the validity of your fit

Wouter Verkerke, UCSB



Demonstration of fit bias at low N — pull distributions

= Low statistics example: = Nsic(gen)=29 E
& - E

— Scenario as before but now with e E
200 bkg events and o= -

only 20 signal events (instead of 100) '

AT SO ¥
527 528 520 53
0 ES

N&@(gen)ZZOoi

S . . . ;
85521 522 523 524 525 528

e Results of simulation study

Distributions become Pull mean is 2.3s away from O
asymmetric at low statistics > Fit is positively biased!
Ng,c(gen) - T
2wl T 0 e e e, ]
g 3 :_-Sq’ B =55 | pullMean = 0.138 + 0.060 3
§30 %- % 3 %4‘“ o 0."‘. }H} . g :
252_ }} = " ’.‘H+ % _; 15:
R T N O PO N . SO .
Ng,c(fit) s (Nsj@) Pull(Ns;c)

e Absence of bias, correct error at low statistics not obvious!

— Small yields are typically overestimated



Fit Validation Study — How to obtain 10.000.000 simulated events?

e Practical issue: usually you need very large amounts of
simulated events for a fit validation study

— Of order 1000x number of events in your fit, easily >1.000.000 events

— Using data generated through a full GEANT-based detector
simulation can be prohibitively expensive

e Solution:
— Technique named ‘Toy Monte Carlo’ sampling
— Advantage: Easy to do and very fast

— Good to determine fit bias due to low statistics, choice of
parameterization, boundary issues etc

— Cannot be used to test assumption that went into model

(e.g. absence of certain correlations). Still need full GEANT-based
simulation for that.

Wouter Verkerke, UCSB



_.’“ Toy MC generation — Accept/reject sampling

L S

e How to sample events directly from your fit function?

e Simplest: accept/reject sampling

1) Determine maximum of function f, .
2) Throw random number x

3) Throw another random number vy ‘

) If y<f(xX)/T,.x keep x,
otherwise return to step 2)

— PRO: Easy, always works fg‘fan
I

— CON: It can be inefficient if function e
Is strongly peaked. “of

Finding maximum empirically aof

through random sampling can 20f
be lengthy in >2 dimensions




sy

Toy MC generation — Inversion method

e Fastest: function inversion

1) Given f(x) find inverted function F(X)
so that f( F(xX) ) = x

2) Throw uniform random number X -

3) Return F(x)

— PRO: Maximally efficient

— CON: Only works for invertible functions

.......... o

2 I
PR

150 ]
1001 -

o_llllllIII|IIII|IIIIIIIIIIIIIIIIIIIIIIII|IIII|IIII_
0 01 02 03 04 05 06 0.7 0.8 09 1

-8

- Exponential;
distribution?}

_. Events [{0.25)
s

-
l
: I—.—!F'_'
|—ﬁ<_'
E ——8—
——
E——
==
]
|




" Toy MC Generation in a nutshell

Lo

e Hybrid: Importance sampling

045 -
1) Find ‘envelope function’ g(x) EU_ME_
that is invertible into G(x) 30355—
and that fulfills g(x)>=f(x) £ f
for all x 1

2) Generate random number x u'mé_
from G using inversion method v
3) Throw random number ‘y’ e
4) If y<f(x)/g(x) keep X,
otherwise return to step 2

b

0.005F

II'2 B
> t

G(X)

— PRO: Faster than plain accept/reject sampling
Function does not need to be invertible

— CON: Must be able to find invertible envelope function
Wouter Verkerke, UCSB



"" Multi-dimensional fits — Benefit analysis

)

e Fits to multi-dimensional data sets offer opportunities but also
introduce several headaches

Pro Con
e Enhanced in sensitivity e More difficult to visualize
because more data and model, model-data
information is used agreement

simultaneously e More room for hard-to-find

e Exploit information in problems
correlations between

e Just a lot more work
observables

e |t depends very much on your particular analysis if fitting a
variable is better than cutting on it

"d € No obvious cut, 2
may be worthwile to 28
include in n-D fit iy

Events / (0.5}

Obvious where to cut, 3

....................... | 2

probably not worthwile 1
to include in n-D fit 2>

R T T T
0 2 4 6 B 10 12 14 16 18 20



Ways to construct a multi-D fit model

sy

e Simplest way: take product of N 1-dim models, e.g
FG(x y) = F(x)°G(y)

— Assumes x and y are uncorrelated in data. If this assumption is
unwarranted you may get a wrong result: Think & Check!

e Harder way: explicitly model correlations by writing
a 2-D model

H(xy) =exp|- (x+y)/2)]

e Hybrid approach:

— Use conditional probabilities

FG(X, y)/:vF(x| y)>G(y)~— Probability for y (f5(y)dy° 1

Probability for x, given a value of y
O (x,y)dx© 1 foral valuesof y Wouter Verkerke, UCSB



Multi-dimensional fits — visualizing your model

e Overlaying a 2-dim PDF
with a 2D (lego) data set
doesn’t provide much insight

e 1-D projections usually easier
f,(x) = gF (x, y)dy
b

f(y) = g (X y)ax

50/~ 7

[¥]
(=]

Events / { 025 )
g
I
1
Events / { 0.25)
8
T T T T
—.—

] [
] =]

qﬁ_llll-llllll-Sllll-zllll-‘lllllﬂ”I1””2H”3””4””5
Yy
; ; - rke, UCSB
x-y correlations in data and/or model difficult t8"Vistialize



e

Multi-dimensional fits — visualizing your model

sy

e However: plain 1-D projections often don’t do justice to
your fit

— Example: 3-Dimensional dataset with 50K events, 2500 signal events

— Distributions in X,y and z chosen identical for simplicity

e Plain 1-dimensional projections in X,y,z

igoo igoof igoof

s f s | s [

oo} 2o0] t00f

gﬂﬂ_ gnn ﬂﬂﬂz

1000 1000 1000

BoOL BoOL - 800 3
s00 600 ] s00- :
aoof 400~ - 400 7
2000 2001 . 200 3
0: 0_||||||||||||||||||||||||||||||||||||||||||||||||| 0:|||||||||||||||||||||||||||||||||||||||||||||||||
-5 S5 4 3 2 <1 40 1 2 3 4 5 S5 4 3 2 <1 0 1 2 3 4 ]

- Fit of 3-dimensional model finds Ny, = 2440164

— Difficult to reconcile with enormous backgrounds in plots



Multi-dimensional fits — visualizing your model

e Reason for discrepancy between precise fit result and large
background in 1-D projection plot

— Events in shaded regions of y,z projections can be discarded without
loss of signal

1g00}
d L
e
énn i
o [
1000
soo[-
600 —
400 —

2001

%

1qoo
tz00]
oo
1000:

800

- show only events in x projection
that are likely to be signal in (y,z) projection of fit model

— Zeroth order solution: make box cut in (X,y)

— Better solution: cut on signal probability according to fit model in (y,z)



sy

Multi-dimensional fits — visualizing your model

e Goal: Projection of model and data on X,

e First task at hand:
to PDF

according
variables

— Define 2-dimensional signal and background PDFs in (y,z)
by integrating out x variable (and thus discarding any information

contained in x dimension)
Fac(y,2) = (S(x,y, 2)dx
Fac (Y, 2) = ( B(X, Y, z)dx

— Calculate signal probability P(y,z)
for all data points (x,y,z)

Fac(Y, 2)
Fac (Y, 2) + Fg (Y 2)

Poc(Y:2) =

— Choose sensible cut on P(y,z)

200L

$oof
=
f8ooL

- events b @ events
00

fdoof
1200}
1000[

4 o
Sig-like < ~> Bkg-like 3

-log(Pgc(Y:2))



Plotting regions of a N-dim model — Case study

= Next: plot distribution of data, model with cut on Pg,;(Y,z)
— Data: Trivial
— Model: Calculate projection of selected regions with Monte Carlo method

1) Generate a toy Monte Carlo dataset D,,,(X,y,z) from F(X,y,z)
2) Select subset of Dy, with Pg,;(y,z)<C

3 pot fc(X)=a F(XY.2)
I:)TOY

Likelihood ritic» projection Plain projection (for comparison)
g oo
A s20of
Zeof 100
2 ¢ 2
Em: Enn
4“3 1000
- B0O[ 3
30
- - 600[- 3
200 L7 l_.e=v"T
400 -
10 200
: NS,G—2440 + 64 g E
Ol oo v b b b bvaas Lol b Ol Lo bevrs bvens b b bevra benin Bvaan Lo 1l

-5 -4 3 012345 5 4 -3 2 1 0 1 2 3 4 b5



Multidimensional fits — Goodness-of-fit determination

e Warning: Goodness-of-fit measures for multi-
dimensional fits are difficult

— Standard c? test does not work very will in N-dim because of
natural occurrence of large number of empty bins

— Simple equivalent of (unbinned) Kolmogorov test in =1-D does
not exist

e This area is still very much a work in progress

— Several new ideas proposed but sometimes difficult to calculate,
or not universally suitable

— Some examples
= Cramer-von Mises (close to Kolmogorov in concept)

e Anderson-Darling

= ‘Energy’ tests
— No magic bullet here

— Some references to recent progress:

e PHYSTAT2001, PHYSTAT2003
Wouter Verkerke, UCSB



" Practical fitting — Error propagation between samples

e Common situation: you want to fit
a small signal in a large sample

— Problem: small statistics does not
constrain shape of your signal very well

Events / { 0.8 )

— Result: errors are large

e ldea: Constrain shape of your signal
from a fit to a control sample

— Larger/cleaner data or MC sample with mi
similar properties :

Events /(0.8 )
F ]

[

e Needed: a way to propagate the information from the
control sample fit (parameter values and errors) to your
signal fit

Wouter Verkerke, UCSB



Practical fitting — Error propagation between samples

e (Ot order solution:

— Fit control sample first, signal sample second — signal shape
parameters fixed from values of control sample fit

— Signal fit will give correct parameter estimates

— But error on signal will be underestimated because uncertainties
in the determination of the signal shape from the control sample
are not included

e 1st order solution
— Repeat fit on signal sample at pts,

— Observe difference in answer and add this difference in
quadrature to error: ) p-s P+S .\ 2
S _Sstat+(Nsig P - Nsig p) /2

tot

— Problem: Error estimate will be incorrect if there is >1 parameter
in the control sample fit and there are correlations between these
parameters

e Best solution: a simultaneous fit

Wouter Verkerke, UCSB



Practical fitting — Simultaneous fit technique

= given data Dy (x) and model Fg (X;pg,) and
data D_,(x) and model F_,(X;Pc)

— construct czsiig(psig) and czct,(pcy) and

"0 0“
Dct(X), Ferul(X;Petn)

Dsig (X) ’ I:sig (X ) psig)

-~
LI B T T T

R IR AR KRV EREI IRV VR R I
M0 8 6 24 2 0 2 4 [ B 10
X

e Minimize c? (psigspctl): Czsig(psig)_l_ CZcu(Peur)

— All parameter errors, correlations automatically propagated
Wouter Verkerke, UCSB



Commercial Break

Wouter Verkerke, UCSB



This course comes with free software that helps you

do many labor intensive analysis and fitting tasks
much more easily

RooFiIt

A general purpose tool kit for data modeling

1 1 L 1 1
20 15 a0 5 1] 5 0 15 ‘EI

Wouter Verkerke (UC Santa Barbara)
David Kirkby (UC Irvine)

1 | — 1
06 08 1 12 14 16 I.S
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f Implementation — Add-on package to ROOT

*1'i bRoOFi t Cor e. sO [Roo
11 bRoOFi t Model s. S0 it

Data Modeling

ToyMC data Model Data/Model
‘| Generation Visualization Fitting

MINUIT

C++ command line
interface & macros

Data management &
histogramming

1/0 support

y
Graphics interface

---------------Weu{er--Vef-i(erke, UCSB



& Data modeling — OO representation

e Mathematical objects are represented as C++ objects

Mathematical concept RooFit class

variable X, p

RooReal Var

function f (X) RooAbsReal

PDF F(X; P, Q) RooAbs Pdf

space point X RooAr gSet
Xmax

integral (\)f (X)dX

RooReal | nt egr al

—

| Xoin
list of space points Xk RooAbsDat a

1114

Wouter Verkerke, UCSB



Data modeling — Constructing composite objects

e Straightforward correlation between mathematical
representation of formula and RooFit code

Math

RooFit
diagram

RooOFit
code

® RooReal Var x

OO

G(Xx,m, \E)

® RooGaussi an g

e

@

|

AN

RooReal Var m  RooFornul avVar sqrts @

AN

3 RooReal Var s

RooReal Var x(“x”,”x”,-10, 10) ;

RooReal Var n(“ni, ”"nmean”, 0) ;

RooReal Var s(“s”,”sigm”, 2,0, 10) ;

RooFor nmul avar sqrts(“sqrts”,”sqrt(s)”,s) ;

RooGaussi an g(“g

,7gauss”, x, msqrts) ;
Wouter Verkerke, UCSB



o

e RooOFit provides a

RooPol ynom al E

RooHi st Pdf if

F ]

RooAr gusBG¢

RooBM xDecay E

Model building — (Re)using standard components

< Physics inspired
ARGUS,Crystal Ball,

RooGaussi an

| Non-parametric

Breit-Wigner, Voigtian,
/ B/D-Decay,....

L) Histogram, KEYS
+ & s & (Probability Density Estimate)

7 8 9 1

| Basic

/I
\I

‘r 8 sL"u Gaussian, Exponential, Polynomial,...

IFETRIRTRTI FRTR
L275.28 5.29 5:.2

e By RooFit uses to achieve normalization
» Classes can provide (partial) integrals

» Final normalization can be numeric/analytic form



o

Model building — (Re)using standard components

e Most physics models can be composed from ‘basic’ shapes

RooBM xDecay E /.\

RooPol ynom al E

RooH st Pdf if |—| /

RooAr gusBG¢

RooGaussi an

RooAddPdf




Model building — (Re)using standard components

e Most physics models can be composed from ‘basic’ shapes

RooBM xDecay

RooPol ynom al

RooH st Pdf :

RooAr gusBG¢

4

RooGaussi an 6 8 A

L275.28 5.29 5:..::

RooPr odPdf |Enu1

=
-

[ AR AR

- g ! 5

g i““ TR
o

it
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Model building — (Re)using standard components

e Building blocks are
— Function variables can be functions themselves
— Just plug in you like

— Universally supported by core code
(PDF classes don’'t need to implement special handling)

é 2k B.04 -

é‘ﬁ [;%35, |.[IIJZ&_: i =

E; o 0.0021 R o
5 wl T
-%-1 0.015~ 7 _. f ’f i! ! , l\ .
: 10005 i A -
- - Wl
25 TN T T T T T T AW . Lo lvaal | Loy % o ’gﬁ'gf"%@@ ;

1.5 2 25 !3 910 8 6 4 2 0 2 4 6 8 lﬂ 1 5 ”J‘*ﬁf;ff '}.ﬂ

RooPol yVar (“m,y, RooArgLi st (a0, al)) ;

RooGaussi an g(“g”, "gauss”, X, 11} S)
Wouter Verkerke, UCSB



Model building — Expression based components

— Interpreted real-valued function
— Based on ROOT TFor nul a class

— ldeal for modifying parameterization of existing compiled PDFs

g2
ez

RooBMixDecay(t,tau,w,...)

RooFormulavar w(“w”,”1-2*D”,D) ;

IIIII

=
]
=
N
T

0 vl b Lo oo W be o b bun 1y
-0 -8 6 -4 -2 0 2 4 6 & c?tl]

— Interpreted PDF
— Based on ROOT TFor mul a class

— User expression doesn’t !
need to be normalized

— Maximum flexibility

RooGeneri cPdf f("f","1+sin(0.5*x)+abs(exp(0.1*x)*cos(-1*x))", Xx)



Using models - Overview

= All RooFit models provide universal and complete
fitting and Toy Monte Carlo generating functionality

— Model complexity only limited by available memory and CPU power

e models with >16000 components, >1000 fixed parameters
and>80 floating parameters have been used (published physics result)

— Very easy to use — Most operations are one-liners

Fitting Generating

- dat a = gauss. generat e(x, 1000)

| N

RooAbs Pdf o M
gauss. fitTo(dat a) ]ﬁ* %
1By :
i ﬁ}f%ﬂ{{{ ;f iﬁ#&d
S E £ - Wi L
s }#*2 RooDat aSet
Wil “n

RooAbsDat a Wouter Verkerke, UCSB



Using models — Toy MC Generation

“Toy” Monte Carlo samples from

— Sampling method used by default, but PDF components can advertise
alternative (more efficient) generator methods

discrete-valued dimensions also supported

| T
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— Subset of variables can be taken from a

» E.g. to more accurately model the statistical fluctuations in a particular sample.

< Correlations with prototype observables correctly taken into %gﬁf‘err]t\/erkerke UcsB




ﬁ Using models — Plotting

e RooPl ot — View of 31 datasets/PDFs projected on the same dimension
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Wouter Verkerke, UCSB
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©  Advanced features — Task automation
b

e Support for routine task automation, e.g. goodness-of-fit study

Input model

/'l Instantiate MC study manager

Generate toy MC

RooMCSt udy ngr (i nput Model ) ;

/] Generate and fit
nmgr . gener at eAndFi t (100, 1000)

Repeat
N times

Fit

model

[eigma = T & A8
[ e = S99 ¢ 00

100 sanpl es of 1000 events

/1 Plot distribution of signma paraneter
mgr . pl ot Par an( si gma) - >Dr aw( )

Accumulate
fit statistics

T
!m: = 'i,_;
T AN
1 L %
& - f ’
- o -*J

Distribution of

- parameter values
- parameter errors
- parameter pulls

\V/outer Verkerke, UCSB
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Significance & probability

— CLT revisited — interpreting your error
beyond 2s as Gaussian

— Null Hypothesis testing — P-values

— Classical or ‘frequentist’ confidence intervals

— Issues that arise in interpretation of fit result

— Bayesian statistics and intervals

Wouter Verkerke, UCSB



& Significance and probability — introduction

Lo

e Suppose you have the final result
from your analysis, e.g.

.....
-“‘
oe®
.
R
.
.t

Ngg =25% 7 25 |- Q

e What does this mean?
— Is it sufficiently different from O to claim discovery of a”new particle?

— Or should you be more cautious?

e Need to state results in terms of absolute probabilities

— For example, probability result is due to bkg fluctuation is <0.001%

Wouter Verkerke, UCSB



Significance — Gaussian error assumption

= Naive interpretation of Ny, =25+ 7 :

25- 0

significance is =35 ]

i

A
15*

— So probability that signal is fake
corresponds to fraction of Gaussian
beyond 3.5s, which is < 0.1%

3.5s

— 1Is this correct?

*
!

e Assumption made: Your sampling distribution is Gaussian

— In other words, if you would repeat the experiment many times the
resulting distribution of results is perfectly Gaussian

— Not necessarily bad assumption: Central Limit Theorem predicts
converge to a Gaussian sampling distribution at high statistics, but
convergence beyond 2-3s range can take relatively large N

Wouter Verkerke, UCSB
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Ignificance — Gaussian sampling distribution

Sampling distribution = Distribution you obtain if you
repeat experiment many times
Assumed distribution with Actual sampling distribution

Gaussian error interpretation for hypothetical low N measurement

LA L [ L L L L B S B B AT T T T T T T T T [T T T T[T T T T T T T T T [ TT7T

(=)
T

=80
3 oo

280

o
N
|

200
180 fF
100

— 50

u: PERTEN TN T T SN N T T N T [ A N L1 1 1 1l
[1] a5 1 1.5 2 2.8 3

Gaussian integral fractions _ Relative  actyal integral fractions
Discrepancy

31.73% outside 1s «— 1.6%— 32.239% within 1s
4.57% outside 2s <«— 4.805— 4.35% within 2s
0.27% outside 3s <«— 339 — 0.18% within 3s

Tails of sampling distribution converge more slowly to Gaussian



" significance — Example N=25%7 continued

Lo

e So be careful assigning Gaussian probabilities when
looking at >2s deviations

— Monte Carlo study of sampling distribution may be necessary

e But wait — there is another issue!

— Just measured probability that true signal yield is zero, ~N
given a measurement of 25 = 7 events

— This is not the number you're most interested in

) : These
to claim a discovery... numbers
are
generally
e What you really want know not the same

— What is the probability that my background will
fluctuate upwards to 25 events and fake the signal -/
we observe

— Technical term: ‘P-value’ — Probability that the
null hypothesis (in this case O signal events) reproduces
the observed signal
Wouter Verkerke, UCSB



Calculating P-values — Pearson's c? test

sy

-
(=2

!
1l

e ldea: Calculate c? of data
with respect to null hypotheses

-
B

I|II
|

=
]

T IT
|

..........
v
R

(n _ f_null )2

Events / { 1.33333 )

e P-value given by

P(c? N) = ¥(‘)p(cz';N)dcz'

c

e Example: c2 = 29.8 for N=20 d.o.f 2 P(¢c?)=0.073 = P-value

— If statistics are low P(c?2) distribution will distort - Use Monte Carlo study to
calculate correct shape for your sample

— Monte Carlo adjusted result for above example P(c?) = 0.11



P

Calculating P-values — DIn(L) method

sy

e Significance from ML fit is similar to Pearson’s c? test

1) Perform regular Maximum Likelihood

fit to determine Ng
2) Repeat ML fit with N, parameter fixed

— From difference in log(L) values
in fits 1) and 2) calculate

D(-In L) = %S ? < P-value from Gaussians interpretation

Y -
+ -]
T
| fl

-
N
T T
|

Events / { 1.33333 )
T

-
=
TTT 1T

A\ d
Py
A4
o?
R ]
.
R
.
R
.

Regular fit - i~

. 1 ¢ D(-InL)
Fit with N_;;=0 F P




Significance, Normal Sampling & Confidence intervals

e (Calculating the significance of a result by means of a
P-value is straightforward for normal sampling distributions

If statistics become low, methods discussed are in inaccurate

But you can correct these method through Monte Carlo studies (e.g.
computing the distorted c? distribution for a low statistics sample

rather than relying on the standard c? distribution)

e You can avoid this altogether when you explicitly construct
a confidence interval for your result

e Example of Confidence interval

18 < N < 32 at 68% Confidence Level (C.L.)

— No Gaussian assumptions made in this statement

— Confidence intervals often used for results where interpretation of
uncertainties is non-trivial (i.e. non-Gaussian)

Wouter Verkerke, UCSB



Confidence intervals — the basics

e Definition of a classic or ‘frequentist’ confidence interval
at CL% confidence level

— If you repeat a measurement X many times
and calculate a confidence interval [X_,X,] for each of them,
CL% of the time the true value will be contained in the interval.
= Note that a frequentist confidence interval makes no statement about the true
value of x. For a given experiment and corresponding interval, the true value either
is or isn’'t in the interval, no statement is made about that. It just says that if you

repeat the experiment and interval calculation many times, CL% of the time the
true value is inside the interval

e Note: this definition is ambiguous

— Examples below are all 3 valid 68% C.L confidence intervals
of a Gaussian sampling distribution




Confidence intervals — the basics
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e Resolve ambiguity in definition by requiring either

3) Central Xt‘jD(x)dx :%(x)dx =

1) Symmetry: x-,X+ are equidistant from mean

2) Shortest interval: choose x-,x+ such that |x_-x,| is smallest

< Most sensible

For Gaussian sampling distributions all 3 requirements result in
same confidence interval

Wouter Verkerke, UCSB



Confidence intervals — How do you make one?

e Example: Given a measurement x_ . of a true value X

true

e Step 1: For a given value of X, . find interval [x,,x]
that contain 68%o of the values of x_,

— Monte Carlo approach common:

O(1000) data samples
with true value X

2) For each sample,
and find measured value x

In X that conta[fﬁs
68% of values of x

[NB: This interval is in X,

It is NOT the confidence interval,
which will be in X e ]

Interval in x for X=0

e Repeat procedure for a wide range of value for X

true



Frequentist confidence intervals — the Confidence Belt

e Result of step 1

Each point measurement x_ . from Intervals that contains 68%b
a MC dataset generated with X, . of values of x_ . for each X, .
10 10

true 85— xtruesf_ | § _E
=
=
2 - 2 = ;
e = .

: 2 = :

1 4 = :

: :

| N 7 | -
i e O A B VAR

301

Wouter Verkerke, UCSB



Frequentist confidence intervals — the Confidence Belt

e Step 2 — Given data measurement of x . read off
confidence interval in X

true

10:I T T T T T T T T 17T T T T T T | T ﬂ%l | T T I:

Confidence B:I_I llllllllllllllllllllllllllllllllllll ;EE _:

interval - ES ]

] 6 =F ~

N Xtrue (Messssssssssssssssssssssssnnsnnnns e 7

41 — —

NB: Width of confidence or = E

interval may vary with - — .

observed value of x, 2 = e

_4:_ = _:

But 68% coverage is constant: oF = .

regardless of the value of X, . - EE -

the probability that it is 8- = -

Contalned In the Confldence _10:I %I | | 111 | 1 11 | 1 11 | 1 11 | 1 11 | | Ill | 1 11 | 1 1 I:
interval is always 68% -10 8 6 -4 -2 0 2 4 6 8 10

XDATA

Important concept in frequentist intervals



Frequentist Confidence Interval — the Gaussian case

e Confidence intervals make no assumption of a Gaussian
sampling distribution

— but what do they look like if we have one?

— Gaussian sampling distribution: X, (X,) = expl_ %((Xobs - Xuwe) S )2]

e Result of step 1 with Gaussian sampling distribution

Width of confidence belt in X, = 2s

8 L=

6 . :::—:E -

a- 5 —I} Width of confidence belt in X, = 2s

2 — 7

= ] 1

2 E::E e

o = - 68% C.l.=[X -5, X +s]
:_EEE: E Gaussian case gives familiar result
'1913j'-5 | I6 | I-ltl | |2 | Ifll‘ | 2| | IJLI | Iél llll 10 Wouter Verkerke, UCSB



Frequentist Confidence Interval — Eternal sunshine?

e Frequentist confidence intervals are properly defined in
case of non-Gaussian sampling distributions

— Valid intervals are obtained for e.g. low statistics fits

— In case of a Gaussian sampling distribution the familiar Gaussian
errors are obtained

— But does it always tell you want you want to know?

e Two (arbitrary) examples at low statistics
— A) we measure Ngy = 20 +£10 - [0,+40] 68% C.L.
— B) we measure Ng,= -20 £ 10 <> [-40, O] 68% C.L.

e In case A) we are happy, no questions asked...

= In case B) we are not: We ‘know’ that N, must be =0!

— Nevertheless the interval is well defined! If you repeat the

experiment many times 68% of the reported confidence intervals

will contain the true value
Wouter Verkerke, UCSB



" Experimental summary versus Interpretation

=

e Key problem: Interval is statistically well defined,
but physical interpretation makes no sense

f?
Ngig My Is number of Higgs

_ <N. < g L. '
40 < Ngjg <0 at68% C.L decays so it must be 3 0.

e Solution depends on what you want!
1) Summary of experimental result, or
2) Incorporate physical interpretation/constraints in your result

— These are two different things,
and cannot really be accomplished simultaneously

e Frequentist Confidence Interval accomplishes 1), how do
you do 2)?

Wouter Verkerke, UCSB
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Bayesian statistics — Decision making

Bayesian statistics interprets probabilities very differently

from Frequentist statistics
— It provides a natural framework to include prior beliefs (such as Ng;q

>0)

Notation of conditional probabilities:

e Essential Bayesian formulas:
p(A|B) is probability of A given B

Bayes Theorem:

Say ‘A’
‘B’

‘theory’
‘exp. result’

p(B|A)
A|B) = A
pP(A|B) o(B) P(A)

Law of Total Probability

p(res) =Q P(res|the)P(the)

o(the [res) = - Presithe) p(the)
a p(res|the) p(the,)

Wouter Verkerke, UCSB




" Bayesian statistics — Decision making

L S

e How to read this formula

P(res|the) = Your measurement
the probability of an experimental
under a given theoretical hypothesis

P(the) = Prior Belief
(e.g9 Ngig=0)

p(the | res) = p(r&s Ithe) p(the)

\ ) @ p(res|the,) p(the,)

\_ J
Y

Normalization term

P(the|res) = Your new belief in
the theory, given the just obtained
experimental result ‘interpretation’

Wouter Verkerke, UCSB



Bayesian statistics — Medical example

sy

e Medical example: P(disease) = 0.001
— Prior belief (your input theory)

— E.g. based on population average

e Consider test for disease, result is either + or —

— P(+]+) =0.98 — Prob that test will correctly ID disease

— P(-]+) =0.02 — Prob that test will give false negative

— P(+]-) = 0.03 — Prob that test will give false positive

— P(-]-) =0.97 — Prob that test will correctly ID absence of disease

e Suppose you test positive — should you be worried?

P(+ | +) P(disease) _ 0.90°0.001 _
P(+|+)P(+) + P(+|-)P(-) 0.98>0.001+0.03x0.999

P(+|+) = 032

— Posterior belief is 0.032, larger than initial belief but still not
very large!

Wouter Verkerke, UCSB



Bayesian statistics — Medical example

sy

P(+ | +)P(disease) _ 0.90>0.001 _
P(+|+)P(+) + P(+|-)P(-) 0.98>0.001+0.03)0.999

P(+]4) =

e Medical example deals with simple hypothesis (true or
false)

e In physics we often deal with composite hypothesis
— l.e. our hypothesis has parameters

— We will use Probability Density Functions as function of vector of
parameters a rather than with total probabilities, i.e.

p(the) ® p(the a)
p(res|the) ® p(res|the; a)

Wouter Verkerke, UCSB



f Physics Example — Measurement of parameter Q=Q, *+ s (Q)

p(the; Q) > p(res | the; Q)
a p(resthe;;Q) p(the;; Q)

= p(the |res;Q)

Initial belief on Q ‘prior’ : Measurement of Q=Q,*+s(Q):  Posterior belief on Q
we know nothing Gaussian PDF with mean Is product of prior belief
of Q, and width of s (Q) and measurement

AN o
X = | —

LE o

g § Eugedy
S

is 2 TRIET

RS

LB

al I I I
4 4 I -1 8 1 2 a

5
L 4 i A L] 1 1 1 i
¥

Bayesian 68% interval = Area that integrates 68%
of posterior Bayesian distribution

(Resolve ambiguity in definition in the
same way as for a frequentist confidence interval)

NB: In this Gaussian example Bayesian interval is same as Frequentist interval



0 Bayesian Physics Example — Incorporating any measurements

p(the;Q)> p(res | the; Q)

: = p(the| res; Q)
i
Initial belief ‘orior’ : Posterior belief on Q
" I\?\/e Er:ce)worr:o(ghi%gor Measurement of Q is product of prior belief
from ML fit and measurement
L -

4 i A L] 1 1 1 i
¥

Very practical aspect of Bayesian analysis:
Measurement of Q = Likelihood distribution from fit!

Wouter Verkerke, UCSB
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© % Including prior knowledge — Using a non-trivial prior

p(the; Q) > p(res | the; Q)
a p(resthe;;Q) p(the;; Q)

= p(the |res;Q)

New initial belief on Q
it must be =0

Posterior belief on Q
Is product of prior belief
and measurement

Measurement of Q

5 T | [ [ s A
" ] i 'u.a:— yo) ]
1B X — _ ()

Loy — wl O ]
i [ D

001 : kO ]
- o E X i

S—— ' ] uf W ]
w JELRE 2% : ' e T S R S ;n : ]
Values beIOW T 0 2z & 8 8 0 iz i
- —

O now a priorli
forbidden Bayesian interval

changed to take
initial belief into account

Baysian interval with this prior will be different from Frequent interval



Bayesian statistics — a word of caution

e Bayesian framework provides easy mechanism to
Incorporate ‘prior’ knowledge via p(the;a)

— Difficulties arise when we want to express ‘no prior knowledge’, i.e.

e |s a flat prior really equivalent to complete ignorance?

— Apparent problem: if we declare all values of Q to be equally
probable, then all values of Q2 are not equally probable!

— Example: Complete ignorance in Q translates into prior preference for
low values of Q2

— Posterior Bayes distribution, interval will depend on choice of
parameterization...

e Be careful with concept of ‘prior ignorance’

— If you go for prior ignorance, try a few choices of parameterization

— If it matters, be warned!
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One-sided versus two-sided intervals
e By default confidence intervals are two-sided intervals e.g.

18 < X < 30 (68% C.L.)

e In preceding Bayesian example we have explicitly
excluded the range below zero through a prior

0 <X <5.3(68% C.L.)

which is then usually quoted as a one-sided confidence
Interval

X < 5.3 (68% C.L.)

— One sided intervals are customarily quoted when you see no signal.
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Special issue — Frequentist confidence intervals with constraints

e There exist recent methods to construct proper frequentist
confidence intervals in the presence of boundaries

— Example: ‘A Unified Approach to the Classical Statistical Analysis of Small
Signals’, Gary J Feldman and Robert D Cousins [ PRD 57, 3873 (1998) ]

— Treatment of Feldman & Cousins beyond scope of this lecture

e Main feature of Feldman & Cousins: it decides for you

when to quote a 1-sided interval [X<N] at X% C.L and
when to quote a 2-sided interval [ X<N<Y] at X% C.L.

— Preserves main characteristic of frequentist interval: coverage is independent of
true value of N

— If you would decide by yourself this would be the case probably.

e Does this help you? Sometimes
— Intrinsic problem with 1-sided intervals remains: they are difficult to average a
posteriori. E.g. given two results A,B
e N,=15+13, Ng=10+7 = N,z;=13%6

e N,<2 N.<17 - NAB=???
A<28, Ng Wouter Verkerke, UCSB



Freqguent vs Bayesian — Summary of options

e NB: This is often a hotly debated topic among physicists!

e Freqgquentist confidence intervals
— Provide ‘summary of information content’ of measurement

— No interpretation of result is made - Intervals may include values
deemed unphysical (though Feldman & Cousins can help here)

e Bayesian intervals
— Support physical interpretation of result.

— Provides easy framework for incorporating physical constraints etc
(these are all ‘prior’ beliefs)

— But you can run into difficulties incorporating prior ignorance

e For normal (Gaussian) sampling distributions Bayesian
interval with uniform prior and Frequentist intervals are
Identical

— In that case both are also identical to interval defined by D(-InL)=0.5



Systematic errors

— Sources of systematic errors

— Sanity checks versus systematic error studies
— Common issues in systematic evaluations

— Correlations between systematic uncertainties
— Combining statistical and systematic error
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7 Systematic errors vs statistical errors

Lo

e Definitions

Statistical error = any error in measurement due to
statistical fluctuations in data

Systematic errors = all other errors

Systematic uncertainty © Systematic error

e But Systematic error ! Systematic mistake!

— Suppose we know our measurement needs to be
corrected by a factor of 1.05 £+ 0.03

— Not correcting the data by factor 1.05 introduces
a systematic mistake

— Right thing to do: correct data by factor 1.05
and take uncertainty on factor (0.03) as a systematic error
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Source of systematic errors — ‘Good’ and ‘Bad’ errors

errors arise from clear causes and can be evaluated
— Clear cause of error
— Clear procedure to identify and quantify error

— Example: Calibration constants,
efficiency corrections from simulation

errors arise from clear causes, but can not be evaluated
— Still clear cause
— But no unambiguous procedure to quantify uncertainty

— Example: theory error:

 Given 2 or more choices of theory model you get 2 or more different answers.

e What is the error?
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' Sources of systematic errors — ‘Ugly’ errors

Lo

< ‘Ugly’ errors arise from sources that have been overlooked

Cause unknown - error unquantifiable

e ‘Ugly’ errors are usually found through failed sanity checks

Example: measurement of CP violation on a sample of events that is
known to have no CP-violation: You find A;p=0.10 + 0.01

Clearly something is wrong — What to do?

1) Check your analysis

2) Check your analysis again
3) Phone a friend

4) Ask the audience

99) Incorporate as systematic error
as last and desperate resort!
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What about successful sanity checks?

sy

— Infinite number of successful sanity checks would otherwise lead
to infinitely large systematic uncertainty. Clearly not right!

e Define beforehand if a procedure is a sanity check
or an evaluation of an uncertainty

— If outcome of procedure can legitimately be different from zero, it
IS a systematic uncertainty evaluation

— If outcome of procedure can only significantly different from zero
due to mistake or unknown cause, it is a sanity check
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Common scenarios in evaluating systematic errors

— What is a good estimate for your systematic uncertainty?

e |) If A and B are extreme scenarios, and the truth must
always be between A and B

— Example: fully transverse and fully longitudinal polarization

— Error is root of variance with uniform distribution with width A-B

A' B = 2- 2 :ﬂ_g- X2 :l-ézi
S :% - V(x) =(x) <X> &2 ?de 4 3 12

— Popular method because sqgrt(12) is quite small, but only justified if A,B are
truly extremes!

« |l If Aand B are typical scenarios
— Example: JETSET versus HERWIG (different Physics simulation packages) N

— Error is difference divided by sqrt(2) o Esztgtrurﬁse g

S :|A' le\ézlA' Bl estimate of s

J2

parent



Common scenarios in evaluating systematic errors

e Two variations of the analysis procedure on the same data

— Example: fit with two different binnings giving A+ s, and B % sg

A- B| .
— Clearly, results A,B are correlated so % IS not a good measure
of smallness of error SatSe

e Generally difficult to calculate, but can estimate
uppper,lower bound on systematic uncertainty

\Sa-SZ-4Si-SCES, o ESi-SE+4si-5S,

— Where s,>sg and s is the Minimum Variance Bound. S (&) =<(é- <é>)2>
— If the better technique (B) saturates the MVB the range reduces to

2

A-B

s® =si-s’

— If MVB is not saturated (e.g. you have low statistics) you will need to
use a toy Monte Carlo technique to evaluate s ,_g Wouter Verkerke, UCSB



Common scenarios in evaluating systematic errors

Perhaps most common scenario in HEP analysis:
you need to assign systematic uncertainty to
(in)accuracy of full Monte Carlo simulation

Popular technique: ‘Cut variation’

Procedure: vary each of your cuts by a little bit. For each change,

1) Measure new yield on data

2) Correct with new MC efficiency.

3) Difference between efficiency corrected results is systematic
uncertainty.

Example, for a nominal cut in x at ‘p’ you find N(data)=105, with
a MC efficiency ey;=0.835 so that N(corrected)=125.8

N(data) | @ MC) | N(corrected)
p+Dp 110 0.865 127.2
p-Dp 100 0.803 124.5

J

s 2 =(127.2- 124.5)/2=14

2

x=125.8+14



Common scenarios in evaluating systematic errors

e Warning |: Cut variation does not give an precise
measure of the systematic uncertainty due data/MC
disagreement!

— Your systematic error is dominated by a potentially large statistical

error from the small number of events in data between your two
cut alternatives

* This holds independent of your MC statistics

to a statistical fluctuation
- error underestimated

]
=

— You could see a large gm;_ NN B
statistical fluctuation = 5ol
-> error overestimated PO + + H_ +
— You could see no change due 30p ﬂ, %H’ H’ + ﬂ}

o
:II,_L*_I_F

aﬁ
=Y
[ Y]
w
af
o
-]
~
-]
w
=

% f
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Common scenarios in evaluating systematic errors

e Warning Il: Cut variation doesn’t catch all types of
data/MC discrepancies that may affect your analysis

— Example of discrepancy missed by cut variation:

Nominal cut

Data and Simulation
give same efficiency
for nominal and
alternate cut, sp

1.95
09
Data

Simulation

.85

0.8

175 Zero systematic

Is evaluated
(in limit N>8 )

0.7

.65

N_I_I EA AN NN ER NS AN NN RN RN NN

0.60 1

[-)
[-]

= SREREARERI RRERI RN ENNEL FRRNA ARERERE NN

. L
m.—l._..l.._l._..l.._l._lLl n

Even though data and
MC are clearly different

Alternate cut

Cut variation is a good sanity check,
but not necessarily a good estimator for systematic uncertainty



Systematic errors and correlations

e Pay attention to correlation between systematic errors

oeelf c'f 2 oalf & . aedf Galf 0
S2 =g—= Is,S,
Y ng gdyg Y edXé E

e |If error uncorrelated, r =0
— Add in quadrature

e |If error 100% correlated, then r =1.

— E.g. tracking efficiency uncertainty per track for 6 tracks,

S3trk — Strk_l_strk_i_strk — 3>Strk (nOt Q?, >Strk)

e |If errors 100% anti-correlated, then r=-1
— This can really happen!

— Example BF(D™ = D%"°) =67% and BF(D"°->D°j) =33%
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Combining statistical and systematic uncertainty

sy

e Systematic error and statistical error are independent
— They can be added in quadrature to obtain combined error
— Nevertheless always quote (also) separately!

— Also valid procedure if systematic error is not Gaussian:
Variances can be added regardless of their shape

— Combined error usually approximately Gaussian anyway (C.L.T)

e Combining errors a posteriori not only option

— You can include any systematic error directly in your c? or ML fit:

In c2 fit In ML fit
2 , 5+
_ 0 g ) 5 L,J
CZZCfom*?%Z , -InL=-89n Lnom+%§?§.ﬁ?zg
21 2 8 Se o]

— Or, for multiple uncertainties with correlations

Cn =P'V'P , - InL, =-3(p'V'p)



The End

e This course will be available at

http://www.slac.stanford.edu/~verkerke/bnd2004/data_analysis.pdf

e Some material for further reading

— R. Barlow, Statistics: A Guide to the Use of Statistical Methods in
the Physical Sciences, Wiley, 1989

— L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge
University Press,

— G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
(See also his 10 hour post-graduate web course:
http://www.pp.rhul.ac.uk/~cowan/stat _course)
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