High Resolution Point Source Search

Aart Heijboer, Claudio Bogazzi, Joris Hartman Nikhef

- aafit production
- detector studies
- Iatest sensitivity curves
- tau-neutrinos

aafit status

- Soon after cern meeting: version which sets all hit-amplitudes to 1.0 pe
 - embarrassingly: angular resolution improves \rightarrow keep the change
- currently, v0r4... since v0r1:
 - no changes to algorithm!
 - added histogramming of hit-quantities, hitstudies
 - added some information (e.g. mc header) to output where missing
 - try to make script robust for known problems
- Thanks to early users (Garo, Manuela) for reporting problems (related to 32bit running and two different root installations...)
- March 2010 production available
 - 2007, 2008 data + corsika + mupage + neutrinos for 8 periods
 - start as much as possible from official files, but
 - run triggerefficiency (-C2 -A -R etc...) myself to get results soon
 - Use noise-templates from full period, rather than 1 proxy run (see my talk at Feb 26 AWG meeting for why...)

Production

period	#runs	live-days	#noscan	live-noscan	#align	live-align
Line5_3pe_3N Line5_10pe_3N Line10_3pe_3N Line12_3pe_3NT3 Line9_10pe_3NT3 Line10_10pe_3N Line9_3pe_3NT3 Line12_10pe_3NT3	631 308 376 605 19 72 367 364	119.3061 47.0327 45.3308 42.5275 1.7438 8.8621 45.9459 27.4093	630 308 315 603 19 72 279 334	119.2801 47.0327 38.6656 42.4502 1.7438 8.8621 36.6258 25.9956	614 307 304 592 19 70 264 326	117.3451 46.9283 37.2135 41.6799 1.7438 8.7031 34.6884 25.4031
sum	2742	338.1582	2560	320.6559	2496	313.7052

- starting from 'Ag' selection as defined by Juergen
- 18 days of runsetups with 'SCAN' → can't use them, but DQ group working to get them back
- 7 days of runs with no alignment (at all) \rightarrow can't use them
- root files (aa-ntuples, conversion to FullEvents available.)
- 80 GB of files for full dataset (hits are removed)
- ocumentend: http://www.nikhef.nl/~t61/wiki/doku.php?id=march_2010_aafit_production

Detector studies : the problem

When applying a quality cut, too few downgoing, inclined muons in the data.

Deficit depends on data-period.. Up to factor two!

Straight downgoing events are ~fine.
5 line periods are mostly fine too

Detector studies : the problem

looks like strings are misaligned or unsynchronized

Hitstudies

- randomly select a probe string
- fit a track using only hits on other strings
- use fitted track to compute residuals on probe string

can study unbiased residuals (as function of line number, photon distance etc etc)

- did this before on 5-line data
- result: few ns offsets between lines
 - comparable with OB-studies
- mc study showed: not large enough to explain effect in my worst data-period.

→ studied many things nhits, ncomp, likelihood, likelihood/ndof, time-residuals....

Hitstudies

- randomly select a probe string
- fit a track using only hits on other strings
- use fitted track to compute residuals on probe string
- did this before on 5-line data
- result: few ns offsets between lines
 - comparable with OB-studies
- mc study showed: not large enough to explain effect in my worst data-period.
- turns out, alignment is nonsence for almost entire 10 line 10 pe period! (for line >5. bss pos wrong by few meter)
- known to calibration people for >6 months, but not to me...
- → not use these runs (~1 week) for now
 revisit hit residual studies.

Hitstudies

Hitstudies – on 12 lines

Line	offset	OB-offset
1	2.22	-1.19
2	2.13	-1.03
3	3.43	1.61
4	0.27	X
5	-0.15	-1.46
6	2.38	-0.02
7	2.22	0.68
8	8.31	X
9	2.36	1.76
10	0.30	-0.65
11	6.23	X
12	3.67	X

- My hit-study offsets are always a combination of the probe string and the surrounding strings
 → can only hope the surrounding strings average out.
 - Numbers are the mean of a gaussian fit to the peak (see previous slide)
- Alternatively could use Optical Beacon measurements, but we do not have numbers for all lines... in particular 8 & 11 are missing. (hope they will come soon..)
- blue numbers from F. Salesa & C.Bigongiari talk at cern

 \rightarrow agrees with observation that downgoing tracks are bad in >5 line data

next: do two things

- 1: add offsets to MC
 - see if such offsets could explain the lambda-discrepancy
 - see what is the impact of offsets on neutrinos
- 2: correct the data and see if lambda improves.

Adding offsets to the MC : before

Adding offsets to the MC : after

Adding offsets to the MC - neutrinos

- as expected: tail of lambda affected
 - not extremely sensitive
 - ~20% percent effect for Λ >-5
- Angular resolution affected a lot
 - applied offsets result in factor 1.8 degradation of angular resolution.
 - (unless we can understand and measure these offsets perfectly), this will become a systematic.

Timing is crucial

Subtracting offsets from the data : before

==same as few slides ago

Subtracting offsets from the data : after

■ likelihood of data improves! → offsets are real!

offset-correction shown before now included

Some plots for the full dataset

offset-correction shown before included

Some plots for the full dataset

Time residuals (12 line, 3pe)

Muons from $\nu_{_\tau}$

- for any astronomical source $\Phi v_{\tau} = \Phi v_{\mu}$
- robust prediction, regardless of $\Phi v_e : \Phi v_\mu$ at the source
- extra muons expected from cosmic source
- Br($\tau \rightarrow \mu$) =17%... and some energy lost to neutrinos \rightarrow small contribution ... but for free!!

ratio of fluxes at Earth

Muons from $\nu_{_{\!\mathcal{T}}}$ in the detector

generator level study genhen $v_{_{\mathcal{T}}}$ mode

- \bullet relatively many $\nu_{_{\tau}}$ at high E
- some more energy loss
- \bullet Eµ very similar for ν_{μ} and ν_{τ} signals
- ~10% contribution to acceptance

Will include them. Full MC is running.

limits & discovery potetential (Claudio Bogazzi)

- respun full analysis on aafit production
- comparison with Calreal based results very favorable (40% better than before).
 - needs to be checked
- In general: be careful when comparing Λ_{called} != Λ_{adit}

full sky search

limits & discovery potetential

(Claudio Bogazzi)

Conclusions

- aafit:
 - stable. no changes foreseen to algorithm.
 - production of 2007, 2008 data available
- Detector studies
 - Converging evidence for timing offsets between lines
 - nb: could also be mis-positioning/mis-alignment
 - offsets are also seen by OB analysis, but
 - different numbers
 - most important lines are still missing
- uncorrected offsets lead to severe degradation of angular resolution
- correcting offsets in data
 - improves data/mc agreement for inclined tracks
 - plots shown for full dataset.
- Search analysis respun on aafit production
 - Imits, discovery potential, systematics
 - significant improvement seen over calreal (still working/checking to understand why)
- Tau neutrinos
 - O(10%) extra events for free
 - will be included in analysis

in general it seems lambda really tells you whether the detector description is ok → discrepancies are a tool to understand the detector.

ignoring the effect we saw in lambda for downgoind muon would have decreased resolution by factor 1.8.