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Preamble: old software and new framework

@ currently: many different tools for data analysis, eg: red = in-house product
@ event generation : GENNEU, CORSIKA, MUPAGE
@ detector simulation : KM3, GEASIM
@ optical background, front-end en trigger simulation: TriggerEfficiency
@ muon reconstruction: Strategy A (CalReal/Aafit), Strategy B (BBFIT)

@ SeaTray: Unified software framework to replace current loose-chain of tools
@ Based on IceCube framework (IlceTray)
@ same philosophy
@ similar data format
@ Adopted as official framework by the Collaboration 1 yr ago.
@ Many tools have been transfered into the framework &
new developers encouraged to use it.
@ Current work aimed at getting ready for mass-reconstruction of data
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Introduction : data/mc agreement

@ Neutrino astronomy requires knowledge of angular resolution and acceptance

@ Handles on acceptance :
@ down-going atmospheric muons:
@ detector is not up-down symmetric
— down-going tracks sensitive to light hitting OM from behind
— and scattering of light.
@ many are bundles
@ flux and properties not very well known
@ up-going atmospheric neutrinos
@ great sample, but not very many O(1000)/year
@ energy is factor 100 lower than for cosmic neutrinos — need to extrapolate
@ flux uncertainty ~20%

@ result: neutrino astronomy needs to heavily rely on simulations to know
acceptance and angular resolution.

@ Verify, as much a possible, that the simulations are correct checking using
the signals that we do have.
-> the simulations should describe the signals that we can check.
@ major aspect of any analysis.
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Typical distributions

Strategy B
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main challenge:

@ distinguish upgoing muons from the huge amount of downgoing ones.
@ need to cut on track-fit quality — care a lot about its modeling.

@ test predictions of atmospheric muon and neutrino MCs.
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Track Reconstruction

Reconstruction relies on arrival times
of Cherenkov photons
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two algorithms:

@ Strategy A: tries to fully describe time residuals

@ Strategy B: tries to reject background and minimizes

residuals with a simple y? /—20 0 20 40 60 80 100 120 140
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Optical background due to decaying *’K
and bioluminescence.
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Track Reconstruction: two algorithms

Strategy A
@ developed on MC (top down)

@ likelihood based: use all timing information :
j> @ angular resolution: 0.3°

@sensitive to mismodeling
@ bad: need to work on MC
@ good: handle to improve the MC

@ inclusive hit selection, efficient but not pure
@ optical background modeled in likelihood

@ aggressively uses amplitude information

@ uses full alignment

Strategy B

@ developed on data (bottom up)

@ y2 based (no fancy timing model) s angular resolution: 1-3°

® pure pattern-bas.ed signal hit sel_ection depending on number of lines used in fit
@ background hits are mostly rejected, @ more robust against certain inaccuracies

but some signal hits to0 @ good: get robust results soon
@ hit-amplitudes used moderately good. g u u

@ uses average detector geometry
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The prOblem ( with the strategy A/ the MC))

all tracks up-going tracks
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@ A = ~ likelihood of fitted track
@ |ess than satisfactory agreement
@ reason to revisit 5-Line point source analysis (see next talk)
@ Rest of this talk is about effort MC in the context of strategy A.
@ strategy B is often robust, but
@ some changes in MC (bugs) also affect results from strategy B.

1
-k
LLLL I

Aart Heijboer ¢ ERC march 2010



Since fall last year...

@ Certain analyses use strategy B for fast results
@ |[n Parallel: effort to improve MC and strategy A in order to
use the ultimate detector performance offered by Antares.

bugs:
2 missing photons in detector simulation
2 wrong OM orientation in reconstruction of MC

refinements in the simulation:

2 angular acceptance function

2 amplitude of optical background hits

2 front-end read-out thresholds

2 data-driven simulation of detector conditions
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Bugs : OM orientations

@ Detector geometry in reconstruction
@ read from data-base for data
@ read from file for simulated events
@ Orientations of OMs not correctly read in from
detector file.
@ Affects reconstruction of MC events
@ Positions and timing not affected
— quite small effect (4% for v, 15% for )
@ Easy to fix
@ Now using same code for data and MC.
@ new detector description for MC with same
mappings as on-line.
@ more robust against future changes.
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Bugs : photon tables
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@ in KM3 program : non-scattered photons missing when hitting OM head-on!
@ related to numerical problem in photon tables generation

@ easy to fix, but large impact on all Neutrino MC's (+41% events)

@ down-going muons ~not affected (muon paper = ok)
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Angular acceptance function
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Acceptance of optical module as function of angle of incidence of the photon
@ important for down-going atmospheric muons

@ previous acceptance curves based on measurements
@ hard to measure exactly the desired quantity (plain wave)
@ now: acceptance from detailed ray-tracing simulations 2
@ ~30 effect on down-going muons i
@ remains large systematic for down-going u analyses
@ far less crucial for neutrinos. L
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Optical background modeling

@ noise hits are added to the physics simulation
with rates that are measured in data.
@ amplitude: assumed to be single photo-electron pulses

@ charge-distribution of background

= '::e:;?ii“g; f‘_;s:"t';':n?&f'"’" , 21/11/08 hits measured in zero-bias data
il & obtained during trigger-less data taking
= @ contribution of high-charge pulses
Al was not modeled by the MC
e @ Bad news for 'strategy A' which
o classified all high-amplitude hits
e as signal.
10% =
= actions:
- @ model background hits using measured
L A [ T 25 30 distribution
charge (pe) @ revise reconstruction algorithm for

reduced dependence on hit amplitudes.
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Optical background modeling

@ Effect evaluated for down-going muons.
@ Observe much improved description of the data when using strat A.
@ Minor effect on strat. B.

before changes realistic simulation & robuster reco.
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Simulation of data-taking conditions
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@ Crucial aspect of simulation: 1
@ Addition of noise hits | | | - 5
@ Masking of dead/problematic OMs SR NN WU PSS PN PN WL SN F RO P

@ Both are highly variable -0 9 8 7 6 5 4 3 -2 -1 0

@ based on count-rates measured in data fit quality (A) —
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read-out thresholds
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front-end electronics (ARS chip) decides to
read out a hit when a voltage threshold is reached. 10

@ translates to threshold in hit-charge, but
mapping is non-trivial 10°

@ use measured charge-threshold distribution
from data

@ small, but significant effect on distribution
of quality variable.

10

@ near future: also include more realistic simulation
of calibration constants and their uncertainties
@ improve simulation of amplitude measurement
and its dynamic range.

1
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Current Status

Strategy A

fit quality (A) —

Strategy B
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@ Both reconstruction strategies now show ~similar level of agreement with MC
@ MC & Strategy A are close to ready for next analysis steps
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Conclusions

@ Confidence in MC simulation is crucial for making believable statements
on acceptance and angular resolution.

@ Handles to check correctness of MC:
@ down-going muons
@ atmospheric muon-neutrinos

@ Two different reconstruction algorithms with different susceptibility to imperfections
in the MC simulation
@ Strategy B: robuster, but inferior angular resolution -> used for first analyses
@ Strategy A: ultimate angular resolution, but higher demands on detector simulation

@ Over past months efforts to do analysis with ultimate resolution yielded
@ several refinements of the MC
@ and a few errors/bugs, which have been fixed
@ robuster version of Strategy A, without sacrificing performance

@ Status:
@ Gap between the strategy A and B closing (if not closed)
@ Expect optimal-resolution analyses completed on time-scale of a few months.
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