Sight-seeing in the Landscape

Bert Schellekens NIKHEF

Sunday, 2 May 2010

Topics

- Landscape remarks
- RCFT orientifolds
- Summary of 2004 results*
- Preliminary results from the 2005 run**

*With L. Huiszoon and T. Dijkstra **With P. Anastasopoulos, T. Dijkstra, E Kiritsis, to appear

1984: Hope for deriving Standard Model from string theory

1984: Hope for deriving Standard Model from string theory

•

1984: Hope for deriving Standard Model from string theory

2005: Evidence for a huge "discretuum" or "landscape"

1984: Hope for deriving Standard Model from string theory

2005: Evidence for a huge "discretuum" or "landscape"

A unique theory with a very large number of ground states: The ideal setting for the anthropic principle

• A success for String Theory

- A success for String Theory
- Evidence for its correctness

- A success for String Theory
- Evidence for its correctness
- An answer to Einstein's question
 "Did the creator of our Universe have any choice?"

- A success for String Theory
- Evidence for its correctness
- An answer to Einstein's question
 "Did the creator of our Universe have any choice?"
- The big paradigm shift in physics

- A success for String Theory
- Evidence for its correctness
- An answer to Einstein's question
 "Did the creator of our Universe have any choice?"
- The big paradigm shift in physics
- Fits nicely with other controversial discoveries (Heliocentric model, Evolution,)

- A success for String Theory
- Evidence for its correctness
- An answer to Einstein's question
 "Did the creator of our Universe have any choice?"
- The big paradigm shift in physics
- Fits nicely with other controversial discoveries (Heliocentric model, Evolution,)

... if string theory is correct...

The Landscape "Drake" equation

The Landscape "Drake" equation

Not likely to yield 1!

Sunday, 2 May 2010

The Landscape "Drake" equation

Not likely to yield 1! Not likely to yield 0, either?

Sunday, 2 May 2010

Shifting goals

Shifting goals Find THE vacuum of string theory

Shifting goals Find THE SM vacuum of string theory

Shifting goals

Shifting goals

Shifting goals Find A SM vacuum of string theory

RCFT Orientifolds

Data:

- A rational CFT with N=2 and c = 9
- The exact spectrum
- The modular matrix S

For simple current MIPFs:

• The "fixed point resolution matrices" S^J

Closed strings:

CY compactification (Heterotic, type-II) With boundary and crosscap states: CY orientifold with wrapped D-branes

Formalism can be applied to:

- "Gepner Models" (minimal N=2 tensor products)
- Kazama-Suzuki models (requires exact spectrum computation)
- Permutation orbifolds

Strong points:

- Scan parts of the landscape that are otherwise unaccessible
- Conceptually very simple

Weak points:

- More data needed for couplings (not yet available)
- Fixed point in moduli space
- Moduli stabilization?

Especially useful as a scanning tool

Gepner Models

$$c = \frac{3k}{k+2}, \quad k = 1, \dots, \infty$$

168 ways of solving
Spectrum:

$$\sum_{i} c_{k_i} = 9$$

$$h_{l,m} = \frac{l(l+2) - m^2}{4(k+2)} + \frac{s^2}{8}$$

(l = 0, ..., k; q = -k, ..., k + 2; s = -1, 0, 1, 2)(plus field identification)

4(k+2) simple currents

Tensoring

• Preserve worldsheet Susy

Simple current extension with "alignment currents"

Impose space-time Susy

Simple current extension with gravitino vertex operator (can be relaxed to allow broken susy)

 Surviving simple currents used to build MIPFs and define orientifold projection

For symmetric MIPFs: Type IIB

 Use complete set of boundaries that respect all bulk symmetries Simple current MIPFs are specified by

- A group \mathcal{H} that consists of simple currents³ $\mathcal{H} = \prod_{\alpha} \mathbb{Z}_{N_{\alpha}}$. The generator of the $\mathbb{Z}_{N_{\alpha}}$ will be denoted as J_{α} ; Then $J = \prod_{\alpha} J_{\alpha}^{n_{\alpha}}$
- A symmetric matrix $X_{\alpha\beta}$ that obeys

Here $Q_J(a) = h(a) + h(J) - h(Ja)$, h is the conformal weight.

Then Z_{ij} is the number of currents $L \in \mathcal{H}$ such that

j = Li $Q_M(i) + X(M,L) = 0 \mod 1$ for all $M \in \mathcal{H}$. $(X(J,J') = \prod_{\alpha,\beta} n_\alpha m_\beta X_{\alpha\beta})$ ³Satisfying Order × Weight = Integer

Orientifold specification

• A *Klein bottle current K*. This can be any simple current that obeys

$$Q_I(K) = 0 \mod 1$$
 for all $I \in \mathcal{H}, I^2 = 0$.

• A set of phases $\beta_K(J)$ for all $J \in \mathcal{H}$ that satisfy

$$\beta_K(J)\beta_K(J') = \beta_K(JJ')e^{2\pi i X(J,J')} \quad , J, J' \in \mathcal{H}$$

with $\beta_K(L) = e^{i\pi(h_{KL}-h_K)}\eta(K,L)$, $\eta(K,L) = \pm 1$. if \mathcal{H} has N even factors, there are 2^N free signs in the solution of this equation. These are called the *crosscap signs*

- This includes all know RCFT orientifold choices.
- Not all choices are inequivalent.

Boundaries and crosscaps^{*}

• Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

• Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} \eta(K,L) P_{LK,m} \delta_{J,0}$$

 S^{J} is the fixed point resolution matrix S_{a} is the Stabilizer of a C_{a} is the Central Stabilizer ($C_{a} \subset S_{a} \subset \mathcal{H}$) ψ_{a} is a discrete group character of cC_{a} $P = \sqrt{T}ST^{2}S\sqrt{T}$

* Cardy; Sagnotti, Pradisi, Stanev,; Fuchs, Schweigert; Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000)

Partition functions

— Klein bottle:

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}_{\ m} U_{(m,J)} g^{\Omega,m}_{J,J'} U_{(m,J')}}{S_{0m}}$$

— Unoriented Annulus:

$$A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m}R_{[a,\psi_{a}](m,J)}g^{\Omega,m}_{J,J'}R_{[b,\psi_{b}](m,J')}}{S_{0m}}$$

— Moebius:

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

Here $g^{\Omega,m}$ is the Ishibashi metric

$$g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c} \quad .$$

Closed string partition function

$$\frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$$

Open string partition function

$$\frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

Subject to tadpole cancellation

$$\sum_{b} N_b R_{b(m,J)} = 4\eta_m U_{(m,J)} ,$$

Model Building

- Find set of labels a,b,c,d,... that match the required spectrum (done systematically)
- If needed, search for "hidden branes" to solve tadpoles (systematic search impossible)
 - In both steps, we allow NON-chiral "exotic" matter
- Exotic: anything except quarks, leptons, Higgs

Orientifold model building

Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996) Chiral spectra from Orbifold-Orientifolds

Blumenhagen, Wisskirchen (1998) Gepner Orientifolds

Aldazabal, Franco, Ibanez, Rabadan, Uranga (2000) Blumenhagen, Görlich, Körs, Lüst (2000) Ibanez, Marchesano, Rabadan (2001) Non-supersymmetric SM-Spectra with RR tadpole cancellation

Cvetic, Shiu, Uranga (2001) Cvetic, Papadimitriou (2003) Supersymmetric SM-Spectra with chiral exotics

Blumenhagen, Görlic, Ott (2002) Honecker (2003) Supersymmetric Pati-Salam Spectra with brane recombination

Brunner, Hori, Hosomichi, Walcher (2004) Chiral spectrum from Gepner Orientifolds

Chiral SU(3) x SU(2) x U(1) spectrum:

$$3(u,d)_L + 3u_L^c + 3d_L^c + 3(e^-,\nu)_L + 3e_L^+$$

Y massless

Туре	CP group	B-L
0	$U(3) \times Sp(2) \times U(1) \times U(1)$	massless
	U(3) \times U(2) \times U(1) \times U(1)	massless
2	$U(3) \times Sp(2) \times O(2) \times U(1)$	massless
3	U(3) \times U(2) \times O(2) \times U(1)	massless
4	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	massless
5	$U(3) \times U(2) \times Sp(2) \times U(1)$	massless
6	$U(3) \times Sp(2) \times U(1) \times U(1)$	massive
7	$U(3) \times U(2) \times U(1) \times U(1)$	massive

Results (2004)*

- Solutions to Tadpole conditions for 44/168 Gepner models, 333/5403 MIPFs
- Total number of 4 stacks with SM spectrum: 45×10^6 (out of ~ 10^{18})
- Total number of 4 stacks with tadpole solutions: 1.6 x 10⁶
- Total number of distinct SM spectra: I.8 x 10⁵ (counting non-chiral, but the not hidden sector)
- No solutions for C-invariant
- No solutions for orbifolds
- No solutions for quintic
- More solutions for more "rational" combinations

*T. Dijkstra, L. Huiszoon, A. Schellekens Nucl. Phys. B710:3-57,2005

Global Anomalies*

*B. Gato-Rivera and A.N. Schellekens, hep-th/0510074

Global anomalies in the CP group

Odd number of vectors in a symplectic factor (including doublets of SU(2)):

Occurs in 1015 out of 270058 spectra and in 2075 out of 845513 symplectic factors Local anomaly cancellation from tadpole cancellation:

$$\sum_{i,a} N_a[(\chi_i)_{0,L} - (\chi_i)_{0,R}](A^i_{ab} + 4M^i_b) = 0$$
 for any label b.

Global anomaly cancellation for symplectic boundaries b

$$\sum_{i,a} N_a A_{ab}^i(\chi_i)_{0,L} = 0 \mod 2 ,$$

Requires re-generation of old models
Seems to lead to a huge number of restrictions

Example:

Tensor (1,6,46,46), MIPF 10

Tadpole conditions: 24 Independent: 10 Local anomalies mod 2: 2 All tadpole conditions mod 2: 10 From symplectic probe branes: 155 Combined: 157 conditions, 10 already satisfied

Result:

Previously: 19644 solutions Probe brane constraint violations: 59 (-8)

Conclusions on Global Anomalies

- Very important in principle
- Almost irrelevant in practice (only occur in 25 out of 333 MIPFs with solutions)
- Relation with K-theory charges to be understood
- Are probe branes sufficient?

RCFT orientifolds with Standard Model Spectrum

Tim Dijkstra, Lennaert Huiszoon and Bert Schellekens

On this page you can search through all our supersymmetric, tadpole-free D=4, N=1 orientifold vacua with a three family chiral fermion spectrum identical to that of the Standard Model. They were constructed in a semi-systematic way by considering orientifolds of all Gepner Models (see <u>Phys.Lett.B609:408-417</u> and <u>Nucl.Phys.B710:3-57</u> for more information). Since the publication of these papers all spectra have been re-analysed and checked for the presence of global (Witten) anomalies. A few cases (less than 1%) needed correction. All spectra in this database are now free from global anomalies, and the total number is 210,782, slightly more than reported in these papers.

As explained in referenced articles the standard model gauge group can be realized in different ways (which we call *types*). In addition to these factors, the gauge group usually has extra *hidden* gauge group factors. Chiral states with one leg in the standard model gauge group are not permitted.

All these models of course have the same *chiral* spectrum for the standard model gauge group, except for the higgssector of which we do not know how it is realized in nature.

These models then differ in multiplicities of the non-chiral particles, hidden gauge group, higgs sector coupling constants on the string scale, and others.

To search for your favorite realization you can use the form below to filter our set with an condition. Example:

type==0 && nrHidden<2

You can consult a list of valid field names. Also much more complicated expressions are possible, see the syntax description.

Filter form

Two output formats are provided. The first only gives the number of answers, the second lists all the spectra satisfying the search criteria. Be warned that output can be very large and take up to a minute to compile; at the moment we have Sunday, 2 May 2010

Filter form

Two output formats are provided. The first only gives the number of answers, the second lists all the spectra satisfying the search criteria. Be warned that output can be very large and take up to a minute to compile; at the moment we have 210,782 models in the database, which means you can generate hunderds of MBs of output!

Filter condition

udmir=0 && umir==0 && dmir==0 && emir==0 && mir==0 && aadj==0 && aadj==0 && aadj==0 && aa==0 && aaa==0 && aa==0 && aaa==0 && aa==0 && aa==0 && aa==0 && aa==

Output format

Summary for each model 💲

Filter

Tensor 44622, MIPF 8, Orientifold 0 Klein bottle current: 12 Crosscap signs: (-1,-1) Standard model boundaries: (89,44,45,2) Dilaton couplings to SM branes and O-plane: 0.0070459 0.0122039 0.0122039 0.0070459 0.1073896 alpha 3/alpha 2 = 0.8660246 $sin^2(theta w) =$ 0.3610368 Total number of branes: 9 CP multiplicities: 89:3 91:3 44:2 45:2 2:1 3:1 400:6 38:4 349:2 Standard model type: 4 Number of factors in hidden gauge group: 3 Gauge group: $U(3) \propto Sp(2) \propto Sp(2) \propto U(1) \propto Sp(6) \propto Sp(4) \propto Sp(2)$

Number of representations: 19

```
3 x (V,V,0,0,0,0,0,0) chirality 3
3 x (V,0,V,0,0,0,0) chirality -3
3 x (0 ,V ,0 ,V ,0 ,0 ,0 ) chirality 3
3 x (0 ,0 ,V ,V ,0 ,0 ,0 ) chirality -3
2 x (V,0,0,V,0,0,0)
2 x (0 , V , V , 0 , 0 , 0 , 0 )
2 x (V,0,0,0,V,0,0)
2 x (V,0,0,0,0,V,0)
2 x (V,0,0,0,0,0,V)
1 x (0, V, 0, 0, V, 0, 0)
1 x (0 ,0 ,V ,0 ,V ,0 ,0 )
2 x (0 ,0 ,0 ,V ,0 ,V ,0 )
1 x (0,0,0,0,V,0,V)
2 x (0 ,0 ,0 ,0 ,0 ,V ,V )
2 x (0 ,0 ,0 ,0 ,A ,0 ,0 )
1 x (0,0,0,0,S,0,0)
5 x (0 ,0 ,0 ,0 ,0 ,A ,0 )
5 x (0 ,0 ,0 ,0 ,0 ,S ,0 )
1 x (0,0,0,0,0,0,S)
```

Summary:

Higgs: (2,1/2)+(2*,1/2)			2	2			
Non-chiral SM matter (Q,U,D,L,E,N):	0	0	0	0	0	0	
Adjoints:		0	0	0	0		
Symmetric Tensors:		0	0	0	0		
Anti-Symmetric Tensors:		0	0	0	0		
Lepto-quarks: (3,-1/3),(3,2/3)			1	0			
Non-SM (a,b,c,d)		12	6	6	4		
Hidden (Total dimension)	162	(C	hir	ali	ty	0)	

Closed sector

h11-=2 h11+=31 h21=9 Vector multiplets: 2 Chiral multiplets: 40 Number of representations: 19

3 x (V ,0 ,V ,0 ,0 ,0 ,0 ,0) chirality 3 x (V ,0 ,V ,0 ,0 ,0 ,0) chirality 3 x (0 ,V ,0 ,V ,0 ,0 ,0) chirality 3 x (0 ,0 ,V ,V ,0 ,0 ,0) chirality	-3 3 -3
3 x (V ,0 ,V ,0 ,0 ,0 ,0) chirality 3 x (0 ,V ,0 ,V ,0 ,0 ,0) chirality 3 x (0 ,0 ,V ,V ,0 ,0 ,0) chirality	-3 3 -3
3 x (0 ,V ,0 ,V ,0 ,0 ,0) chirality 3 x (0 ,0 ,V ,V ,0 ,0 ,0) chirality	3 -3
3 x (0 ,0 ,V ,V ,0 ,0 ,0) chirality	-3
2 x (V , 0 , 0 , V , 0 , 0 , 0)	
2 x (0 ,V ,V ,0 ,0 ,0 ,0)	
2 x (V , 0 , 0 , 0 , V , 0 , 0)	
2 x (V , 0 , 0 , 0 , 0 , V , 0)	
2 x (V , 0 , 0 , 0 , 0 , V)	
1 x (0 ,V ,0 ,0 ,V ,0 ,0)	
1 x (0 ,0 ,V ,0 ,V ,0 ,0)	
2 x (0 ,0 ,0 ,V ,0 ,V ,0)	
1 x (0 ,0 ,0 ,0 ,V ,0 ,V)	
2 x (0 ,0 ,0 ,0 ,0 ,V ,V)	
2 x (0 ,0 ,0 ,0 ,A ,0 ,0)	
1 x (0 ,0 ,0 ,0 ,S ,0 ,0)	
5 x (0 ,0 ,0 ,0 ,0 ,A ,0)	
5 x (0 ,0 ,0 ,0 ,0 ,S ,0)	
1 x (0 ,0 ,0 ,0 ,0 ,S)	

т (

τ 、

T ()

Summary:

Higgs: (2,1/2)+(2*,1/2)			2	2		
Non-chiral SM matter (Q,U,D,L,E,N):	0	0	0	0	0	0
Adjoints:		0	0	0	0	
Symmetric Tensors:		0	0	0	0	
Anti-Symmetric Tensors:		0	0	0	0	
Lepto-quarks: (3,-1/3),(3,2/3)			1	0		
Non-SM (a,b,c,d)	-	12	6	6	4	
Hidden (Total dimension)	162	(C	hir	ali	ty	0)
$\sin^2(\theta_w) = .3610368$	$rac{lpha_3}{lpha_2}$	<u>-</u> =	8	866	02	46

Standard model type: 6 Number of factors in hidden gauge group: 0 Gauge group: U(3) x Sp(2) x U(1) x U(1)

Number of representations: 19

```
3 x (V,V,0,0) chirality 3

3 x (V,0,V,0) chirality -3

3 x (V,0,V*,0) chirality -3

9 x (0,V,0,V) chirality 3

5 x (0,0,V,V) chirality -3

3 x (0,0,V,V) chirality -3

3 x (0,0,V,V*) chirality

2 x (V,0,0,V)

10 x (0,V,V,0)

2 x (Ad,0,0,0)

2 x (A,0,0,0)
```

•••••

Standard model type: 6 Number of factors in hidden gauge group: 0 Gauge group: U(3) x Sp(2) x U(1) x U(1)

Number of representations: 19

```
3 x (V,V,0,0) chirality 3

3 x (V,0,V,0) chirality -3

3 x (V,0,V*,0) chirality -3

9 x (0,V,0,V) chirality 3

5 x (0,0,V,V) chirality -3

3 x (0,0,V,V) chirality -3

3 x (0,0,V,V*) chirality

2 x (V,0,0,V)

10 x (0,V,V,0)

2 x (Ad,0,0,0)

2 x (A,0,0,0)
```

•••••

Higgs: (2,1/2)+ 2*,1/2)	5	
Non-chiral SM matter (Q,U,D,L,E,N):	0 0 0 3	1 0
Adjoints:	2 0 9 3	
Symmetric Tensors:	1 10 7 3	
Anti-Symmetric Tensors:	1 14 3 2	
Lepto-quarks: 3,-1/3), 3,2/3)	1 0	
Non-SM a,b,c,d)	0 0 0 0	
Hidden Total dimension)	0 (chira)	lity 0)

Standard model type: 6 Number of factors in hidden gauge group: 0 Gauge group: U(3) x Sp(2) x U(1) x U(1)

Number of representations: 19

.....

Higgs:(2,1/2)+2*,1/2)5Non-chiral SM matter(Q,U,D,L,E,N):00310Adjoints:20932293Symmetric Tensors:1107311073Anti-Symmetric Tensors:11432210Non-SMa,b,c,d)000000HiddenTotal dimension)0(chirality 0)

$$\sin^2(\theta_w) = .5271853$$

 $\frac{\alpha_3}{\alpha_2} = 3.2320501$

Unbiased search*

Require only:

- U(3) from a single brane
- U(2) from a single brane
- Quarks and leptons,Y from at most four branes
- $G_{CP} \supset SU(3) \times SU(2) \times U(1)$
- Chiral G_{CP} fermions reduce to quarks, leptons (plus non-chiral particles) but
- No fractionally charged mirror pairs
- Massless Y

E. Kiritsis, P.Anastasopoulos, A.N.S, in (slow) progress

This allows in particular:

- (Anti)-quarks from anti-symmetric tensors
- leptons from anti-symmetric tensors
- family symmetries
- non-standard Y-charge assignments
- Unification (Pati-Salam, SU(5))*
- Baryon and/or lepton number violation

$$G_{CP} = U(3)_a \times \left\{ \frac{U(2)_b}{Sp(2)_b} \right\} \times G_c \quad (\times G_d)$$

$$Y = \alpha Q_a + \beta Q_b + T_c + T_d$$

*a,b,c,d may be identical

. . . .

Results

- Searched all MIPFs with < 1750 boundaries
- 19845 chirally different SM embeddings found
- Tadpole conditions solved in 1894 cases

(18 "old" ones)

0	1512	9785532	647	U3S2S6U1 VVVV	~	!	
1	838	8459664	674	U3S2S2U1 VVVV	 ✓ 	1	(Type 4
2	722	5769030	820	U4S2S6 VVV	~	1	
3	559	4801518	867	U4S2S2 VVV	~	1	
4	1514	4751603	554	U3S2O6U1 VVVV	~	1	
5	546	4584392	751	U4S2O6 VVV	~		
6	837	4509752	513	U3S2O2U1 VVVV	 ✓ 	1	(Type 2
7	564	3744864	690	U4S2O2 VVV	~	!	
8	1513	3603236	466	U3S2S6U3 VVVV	~		
9	2755	3308076	340	U3S2U3U1 VVVV	~		
10	2756	3308076	340	U3S2U3U1 VVVV	~		
11	1206	3091021	622	U6S2S6 VVV	~		
12	1164	2713960	460	U3S2S2U3 VVVV	~	1	
13	1424	2384626	560	U6S2O6 VVV	~		
14	560	2250118	668	U6S2S2 VVV	v	1	
15	835	1803909	519	U6S2O2 VVV	v	1	
16	718	1787210	486	U4S2U3 VVV	~		
17	719	1787210	486	U4S2U3 VVV	~		
18	1421	1674989	516	U8S2S6 VVV	v		
19	1707	1674416	384	U3S2O6U3 VVVV	v		
20	1577	1641845	359	U3S2S6U5 VVVV	~		
21	1163	1486664	346	U3S2O2U3 VVVV	v	1	
22	1425	1323363	476	U8S2O6 VVV	~		
23	1515	1135044	349	U3S2S2U5 VVVV	~	1	
24	2757	1106616	209	U3S2U3U3 VVVV	~		
25	2758	1106616	209	U3S2U3U3 VVVV	~		
26	834	1049176	531	U8S2S2 VVV	~		
27	836	956980	421	U8S2O2 VVV	~		

28	1422	949189	448	U10S2S6 VVV	 ✓ 		
29	720	935034	351	U6S2U3 VVV	 ✓ 		
30	721	935034	351	U6S2U3 VVV	 ✓ 		
31	774	910132	51	U3U2S2O1 AAVV	~		
32	1578	884695	292	U3S2S6U7 VVVV	~		
33	2751	869428	246	U3S2U1U1 VVVV	 ✓ 	1	(Type 0)
34	554	853080	36	U3S2S2U3 VVVV	~		
35	1708	762244	297	U3S2O6U5 VVVV	~		
36	1426	760721	409	U10S2O6 VVV	~		
37	1579	667189	262	U3S2O2U5 VVVV	~	!	
38	775	641312	43	U3U2S4O1 AAVV			
39	7166	572804	301	U8S2U3 VVV	~		
40	7167	572804	301	U8S2U3 VVV	~		
41	6323	567930	276	U3S2S2U7 VVVV	~		
42	555	558996	31	U3S2S2U5 VVVV	~	1	
43	1423	555346	398	U12S2S6 VVV	 ✓ 		
44	511	553200	237	U50201 AVV	 ✓ 		
45	532	552009	163	U5S2O1 AVV	 ✓ 		
46	1420	550774	445	U10S2S2 VVV	~		
47	7170	536512	158	U3S2U3U5 VVVV	~		
48	7171	536512	158	U3S2U3U5 VVVV	~		
49	2740	526202	354	U10S2O2 VVV	~		
50	770	491928	83	U3U2O2O1 AAVV	~		
51	388	491026	451	U6U2O6 VVV	~		
52	1188	485396	366	U4S2U1 VVV	~	1	

Pati-Salam

3	559	4801518	867 U4S2S2 VVV	 ✓
---	-----	---------	----------------	-----------------------

Type:			U	S	S			
Dimensi	on		4	2	2			
5	х	(V	,0	, V)	chirality	-3
3	х	(V	, V	,0)	chirality	3
2	х	(Ac	1,0	,0)	chirality	0
2	х	(0	, A	,0)	chirality	0
7	х	(0	,0	, A)	chirality	0
4	х	(А	,0	,0)	chirality	0
2	х	(0	,S	,0)	chirality	0
5	х	(0	,0	,S)	chirality	0
7	х	(0	,V	,V)	chirality	0

Pati-Salam (2)

160 101 115466 335 U4U2U2 VVV

V

Type:			U	U	U	U	U	S	U	0	U	0			
Dimensi	on		4	2	2	6	2	2	2	2	2	2			
4	х	(V	,V	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	2
1	х	(V	,V*	•,0	,0	,0	,0	,0	,0	,0	,0)	chirality	1
1	х	(V	,0	,V*	,0	,0	,0	,0	,0	,0	,0)	chirality	-1
2	х	(V	,0	, V	,0	,0	,0	,0	,0	,0	,0)	chirality	-2
2	х	(0	, V	, V*	,0	,0	,0	,0	,0	,0	,0)	chirality	-2
2	х	(V	,0	,0	,0	,V*	•,0	,0	,0	,0	,0)	chirality	0
4	х	(V	,0	,0	,0	,0	,V	,0	,0	,0	,0)	chirality	0
2	х	(0	,s	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2	х	(А	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
1	х	(Ac	1,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2	х	(V	,0	,0	,0	, V	,0	,0	,0	,0	,0)	chirality	0
2	х	(0	,0	,s	,0	,0	,0	,0	,0	,0	,0)	chirality	0
4	х	(0	,V	,0	,0	,0	,0	, V*	, 0	,0	,0)	chirality	0
2	х	(0	,V	,0	,0	,0	,0	,V	,0	,0	,0)	chirality	0
2	х	(0	,0	,V	,0	,0	,0	,V*	•,0	,0	,0)	chirality	0
1	х	(0	, Ac	1,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2	х	(V	,0	,0	,0	,0	,0	,V*	, 0	,0	,0)	chirality	0
2	х	(V	,0	,0	,0	,0	,0	,V	,0	,0	,0)	chirality	0
1	х	(0	,0	, Ad	1,0	,0	,0	,0	,0	,0	,0)	chirality	0
2	х	(0	,V	,0	,0	,0	,0	,0	,0	,V,	*,0)	chirality	0
2	х	(0	,0	,V	,0	,0	,0	,0	,0	,v	,0)	chirality	0
2	х	(V	,0	,0	,0	,0	,0	,0	,V	,0	,0)	chirality	0
3	х	(0	,0	,0	,0	,0	,0	,0	, V	, V	,0)	chirality	3

....

709 7 16845 296 U501_AV

Note: gauge group is just SU(5)!

Sunday, 2 May 2010

broken SU(5)

~

169			39	64	12	-	107	U3	3U2	01	AAV	
Type:	3	х	(₿	, Û	,0	,0	, ŷ	,0)	chirality	3
Dimens	lc	ň	(y	, Q	,⊻	, ℚ	, ₽	, ⊉)	chirality	-3
3	3	х	(0	,A	,0	,0	,0	,0)	chirality	3
ŗ	5	х	(v	,v	,0	,0	,0	,0)	chirality	3
ŗ	5	x	(0	,v	,v	,0	,0	,0)	chirality	-3
4	4	x	(Ac	1,0	,0	,0	,0	,0)	chirality	0
1	1	x	(0	, Ac	1,0	,0	,0	,0)	chirality	0
-	1	х	(0	,0	, A	,0	,0	,0)	chirality	0
3	8	х	(S	,0	,0	,0	,0	,0)	chirality	0
8	8	х	(V	,0	,0	,V	,0	,0)	chirality	0
8	8	х	(V	,0	,0	,0	,V	,0)	chirality	0
8	8	х	(0	,0	,V	,0	,V	,0)	chirality	0
6	5	х	(V	,0	,0	,0	, V'	۰,0)	chirality	0
	3	х	(0	,0	,s	,0	,0	,0)	chirality	0
	3	х	(0	,0	,V	,V	,0	,0)	chirality	0
3	8	х	(V	,0	,0	,0	,0	,V)	chirality	0
8	8	х	(0	,V	,0	,0	,0	,V)	chirality	0
	3	х	(0	,0	,V	,0	,0	,V)	chirality	0
8	8	х	(0	,0	,0	,V	,V	,0)	chirality	-6
	3	х	(0	,0	,0	,0	, A	,0)	chirality	3
r N	5	х	(0	,0	,0	,0	,s	,0)	chirality	3
1	1	х	(0	,0	,0	, A	,0	,0)	chirality	0
-	1	х	(0	,0	,0	,0	,Ac	1,0)	chirality	0
2	4	х	(0	,0	,0	,0	,0	, A)	chirality	0
8	3	Х	(0	,0	,0	,0	,V	,V)	chirality	0
	3	Х	(0	,0	,0	,V	,0	,V)	chirality	0
[5	х	(0	,0	,0	,0	,0	,S)	chirality	0

394

Type: U U
Dimension 5 1
11 x (0,S) chirality 3
3 x (A,0) chirality 3
5 x (V,V) chirality -3
8 x (S,0) chirality 0
9 x (Ad,0) chirality 0
5 x (0,Ad) chirality 0
4 x (0,A) chirality 0
12 x (V,V*) chirality 0

$$Y = -\frac{2}{3}Q_a + \frac{1}{2}Q_b$$

Gauge coupling unificationX No up-quark Higgs couplings

Flipped SU(5)

	237	1 2	17 2	062	34	U5U1	AS
--	-----	-----	------	-----	----	------	----

$$Y = \frac{1}{6}Q_a + \frac{1}{2}Q_c$$

No gauge coupling unification
 Up-quark Higgs couplings

Trinification

1303	552	U	J <mark>6⊈32</mark> 0	0	<u>ខ</u> ា ឃ3០	3W3 QVV	7	V
		3	3 3 4	2	6 12 12	12 4		
	3 x	(V,	7,0,0	,0	,0 ,0 ,0	,0,0)	chirality	3
	3 x	(V,),V,O	,0	,0 ,0 ,0	,0,0)	chirality	-3
	3 x	(0,	7 ,V*,O	,0	,0 ,0 ,0	,0,0)	chirality	-3
	1 x	(0,),0,V	, 0	,V ,0 ,0	,0,0)	chirality	-1
	1 x	(0,),0,0	,0	,S ,0 ,0	,0,0)	chirality	1
	5 x	(0,),0,0	,0	,0 ,0 ,V	,V ,O)	chirality	1
	3 x	(0,),0,0	,0	,0 ,0 ,0	,S ,0)	chirality	1
	1 x	(0,),0,0	,0	,A ,O ,O	,0,0)	chirality	-1
	2 x	(0,),0,0	,0	,0 ,0 ,0	,A ,O)	chirality	-2
	1 x	(0,),0,V	, 0	,0 ,0 ,0	,V ,O)	chirality	1
	1 x	(0,),0,0	, V	,0 ,0 ,0	,V ,O)	chirality	1
	1 x	(0,),0,0	,0	,V ,0 ,V	,0,0)	chirality	1
	1 x	(0,),0,0	,0	,V ,O ,O	,V ,O)	chirality	-1
	1 x	(0,),0,0	,0	,0 ,V ,V	,0,0)	chirality	1
	1 x	(0,),0,0	,0	,0 ,V ,0	,V ,O)	chirality	-1
	1 x	(0,),0,0	,0	,V ,O ,O	,0 ,V)	chirality	-1
	1 x	(0,),0,V	, v	,0 ,0 ,0	,0,0)	chirality	0
	1 x	(0,),0,0	,s	,0 ,0 ,0	,0,0)	chirality	0
	1 x	(0,),0,0	,0	,Ad,0 ,0	,0,0)	chirality	0
	1 x	(0,),0,0	,0	,0 ,Ad,0	,0,0)	chirality	0
	3 x	(0,),0,0	,0	,0 ,0 ,S	,0,0)	chirality	0
	3 x	(0,),0,0	,0	,0 ,0 ,0	,Ad,O)	chirality	0
	1 x	(0,),0,0	,0	,0 ,0 ,0	,0 ,S)	chirality	0
	2 x	(0,),0,0	, V	,V ,O ,O	,0,0)	chirality	0
	1 x	(0,),0,0	, V	,0 ,0 ,V	,0,0)	chirality	0
	2 x	(0,),0,0	,0	,V ,0 ,0	,V*,0)	chirality	0
	2 x	(0,),0,0	,0	,0 ,V ,0	,V*,0)	chirality	0
	1 x	(0,),0,0	, V	,0 ,0 ,0	,0 ,V)	chirality	0
	1 x	(0,),0,0	,0	,0,0,V	,0,V)	chirality	0

Trinification

.303	552	U	U	643	320	0	87	7 U	30	303	Ø	V	7	 ✓
		3	3	3	_ 4	2	6	12	12	12	4			
	3 x	(V	,V	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	3
	3 x	(V	,0	,V	,0	,0	,0	,0	,0	,0	,0)	chirality	-3
	3 x	(0	,V	,V*	,0	,0	,0	,0	,0	,0	,0)	chirality	-3
	1 x	(0	,0	,0	,v	,0	,V	,0	,0	,0	,0)	chirality	-1
	1 x	(0	,0	,0	, 0	,0	,s	,0	,0	,0	,0)	chirality	1
	5 x	(0	,0	,0	,0	,0	,0	,0	,V	,V	,0)	chirality	1
	3 x	(0	,0	,0	,0	,0	,0	,0	,0	,s	,0)	chirality	1
	1 x	(0	,0	,0	,0	,0	, A	,0	,0	,0	,0)	chirality	-1
	2 x	(0	,0	,0	,0	,0	,0	,0	,0	, A	,0)	chirality	-2
	1 x	(0	,0	,0	, V	,0	,0	,0	,0	,V	,0)	chirality	1
	1 x	(0	,0	,0	,0	,V	,0	,0	,0	,V	,0)	chirality	1
	1 x	(0	,0	,0	,0	,0	,V	,0	,V	,0	,0)	chirality	1
	1 x	(0	,0	,0	,0	,0	,V	,0	,0	,V	,0)	chirality	-1
	1 x	(0	,0	,0	,0	,0	,0	, V	,V	,0	,0)	chirality	1
	1 x	(0	,0	,0	,0	,0	,0	,v	,0	,V	,0)	chirality	-1
	1 x	(0	,0	,0	,0	,0	,V	,0	,0	,0	,V)	chirality	-1
	1 x	(0	,0	,0	, V	,V	,0	,0	,0	,0	,0)	chirality	0
	1 x	(0	,0	,0	,0	,s	,0	,0	,0	,0	,0)	chirality	0
	1 x	(0	,0	,0	,0	,0	, Ac	1,0	,0	,0	,0)	chirality	0
	1 x	(0	,0	,0	,0	,0	,0	, Ao	d,0	,0	,0)	chirality	0
	3 x	(0	,0	,0	,0	,0	,0	,0	,s	,0	,0)	chirality	0
	3 x	(0	,0	,0	,0	,0	,0	,0	,0	, Ac	1,0)	chirality	0
	1 x	(0	,0	,0	,0	,0	,0	,0	,0	,0	,s)	chirality	0
	2 x	(0	,0	,0	,0	,V	,V	,0	,0	,0	,0)	chirality	0
	1 x	(0	,0	,0	,0	,v	,0	,0	,V	,0	,0)	chirality	0
	2 x	(0	,0	,0	,0	,0	,v	,0	,0	, V*	,0)	chirality	0
	2 x	(0	,0	,0	,0	,0	,0	, V	,0	, V*	,0)	chirality	0
	1 x	(0	,0	,0	,0	,v	,0	,0	,0	,0	,V)	chirality	0
	1 x	(0	,0	,0	,0	,0	,0	,0	,v	,0	v,)	chirality	0

What we don't get:

Antoniadis & Dimopoulos, hep-th/0411032, ("type C")

The same model with Sp(2) instead of U(2) does occur, but without tadpole solution

8459 18825 108 1 U3S2U1_VVT

Final question

Which percentage of the landscape have we visited so far?

Our results: Kreuzer's list: 873 Hodge number pairs 30000 Hodge number pairs