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1. Getting started

This manual is for the terminal version of Kac. This program is started by typing the

command “kac” in a terminal window. Then a line

Kac, version 5.0, compiled on Wed Jul 19 2000, at 13:06:00 MET

should appear, followed by the prompt

>

indicating that input is expected. In the following user input is always display in typewriter

font, showing a prompt followed by the actual input. Details of the command syntax will be

given later. The basic syntax has the form

> Command Keyword ... Keyword [parameter]...(parameter)

Command and keywords (if any) must be typed as shown, but the parameters can take

various values, depending on the command. Commands and keywords are case insensitive,

and may be abbreviated as long as this does not lead to ambiguities. Parameters in square

brackets are obligatory, those in round brackets optional. Output will be shown as it appears

on the screen, without the prompt.

To find out which commands are available, type

> Commands

To find out what a command does, use Help. For example

> Help Commands

Command syntax: Commands

List all commands

Keywords:

All Detail

Enter Keyword >

The Help command always gives the correct syntax of a command, and in particular the

optional and mandatory parameters. In addition it will list the available keywords, in this

case All and Detail. To find out what Commands Detail does one may type Detail at the

Enter Keyword > prompt, or type directly at the command prompt

> Help Commands Detail

Command syntax: Commands Detail

List all commands,keywords and descriptions

The output of Command Detail is in fact a concise manual.

The first thing one always does after starting up the program is to create a conformal field

theory (CFT). The simplest non-trivial examples are provided by the untwisted affine Lie

algebras. They are created by means a command

> Algebra Type [rank r][level k]

where the keyword “type” must be equal to A,B,..., or G, the usual allowed types of simple

Lie algebras; r is the rank of the simple Lie algebra and k the level of the affine representations

to be considered.

After typing the Algebra command the spectrum is computed (i.e. the Virasoro eigenvalues

of the ground states of the representations), as well as various other properties. However,

since the number of representations can be huge, the spectrum is not automatically displayed.
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Only the number of primaries is shown, for example

> Algebra E 8 30

Number of primaries: 20956

To display the spectrum one uses the Display command, for example

> Algebra A 1 2

Number of primaries: 3

> Display

L. Grnd. Weights

0 (0,2) 0.0000000

1 (2,0) 0.5000000

2 (1,1) 0.1875000

The properties of the representations are presented in a number of columns. In this example

there are just three: an integer label assigned to each representation, the extended Dynkin

labels, and the conformal weight. There can be more columns. How to activate them and

what they represent will be discussed later.

The Display command has optional parameters. To see them type Help Display

> Help Display

Command syntax: Display (field min)(field max)

Display spectrum

(Only for field ‘‘min" or from ‘‘min" to ‘‘max")

Keywords:

Entry Massless

The line marked Command syntax shows that there are two optional parameters. These

parameters have the names “min” and “max” and are preceded by their type, in this case

“field”. Parameters of type “field” must be one of the non-negative integers appearing in the

column marked “L.” (for “Label”) of the spectrum table. The parameters of the Algebra

A ... G commands also have types, namely “rank” and “level”. Not all parameters of all

commands have definite types. One can see the obligatory and optional parameters and

their types using the Help command, as shown above. In the case of Display, if there is one

parameter only the representation with the corresponding label is displayed, and if there are

two parameters the corresponding range of representations is displayed.

MOVE TO LATER The help text also reveals the existence of two keywords, “Entry” and

“Massless”. This case is an exception to the rule that keywords can be abbreviated. In order

to prevent confusion with the parameters “min” and “max” (which should be expressions

that are converted to integers), any keywords that compete with parameters must be enterred

without abbreviation. If one types Display Mass, then Mass is assumed to be the name of

a variable

The main use of Kac is the computation of “modular properties” of CFT’s. A rather basic

quantity is the modular transformation matrix S. The command

> S

computes and displays the entire matrix Sij with i ≤ j (S is symmetric). With one parameter

i the command S displays the ith row of Sij , with two parameters i and j it gives just one

matrix element.
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The fusion rules of the CFT are shown using the command

> Fusion

Without parameters all fusion rules are displayed in a self-explanatory format, e.g.

(2) x (2) = (0) + (1)

With one parameter i all the fusion rules for field “i” are given, with two parameters i and

j the fusion rule (i) × (j) is shown, and finally with three parameters one obtains a single

fusion coefficient, for example

> Fusion 2 2 1

N 2 2^1=1

In general the fusion rules have the form

(i)× (j) =
∑

k

N k
ij (k)

The command

> Fusion i j k

yields the value of N k
ij , written as N i j^k.

1.1. Tensor mode

Tensor products of algebras can be constructed by going first to tensor mode:

> Tensor

and then typing the factors of the desired tensor product. For example

> G A 1 3

> G E 6 2

> G F 4 2

builds A1,3 ⊗ E6,2 ⊗ F4,2. The command G has the same keywords and parameters as the

Algebra command.

The notation comes from a common notation for coset CFT’s as G/H. Indeed, there is also

a command H, which has the effect of tensoring with the “complement” of an algebra. The

complement of an algebra A is defined as having complex conjugate matrices T and S. As

a result the formal tensor product

> Tensor

> G F 4 1

> H G 2 1

produces an algebraic structure that has the same matrices S, T and fusion rules as the coset

CFT F4,1/G2,1. The spectrum matches that of the actual coset CFT only up to integers.

The computation of the exact spectrum is not built in; in fact it does not even matter if “H”

can actually be embedded in “G”. In general the construction of coset CFT’s also requires

field identification, see below. Any number of factors G and H can be tensored.

To show the spectrum of a tensor product (or the spectrum modulo integers of a coset CFT)

type Display. The matrix S and the fusion rules can be computed in tensor mode exactly
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as in single algebra mode. However, before computing any modular quantity (such as S or
fusion rules) a command must be typed to indicate that the tensor product is completed.
This can be Display, or, if one does not want to display the spectrum,

> Compute .

To return to single algebra mode, one types
> Single

1.2. Simple currents

To see the simple currents of a CFT type
> Browse Simple currents

> Total simple current order: 4

> Basis decomposition of currents:

> Group: Z 2 *Z 2

> Nr. 0: Weight: 0/1 0 0

> Nr. 1: Weight: 1/1 1 0 (fixed points)

> Nr. 2: Weight: 1/1 0 1 (fixed points)

> Nr. 3: Weight: 1/1 1 1 (fixed points)

This shows the simple currents of D4,2, and the decomposition in terms of Z2 × Z2 uses
internally. The “Nr.” refers to the labelling as shown by Display. The last column indicates
that the current has at least one fixed point (This information is not shown in tensor mode).

1.3. Extended algebras

One may extend the chiral algebra of any CFT by simple currents using the command
> Current (fcur current 1)...(fcur current n)

where current i is the component of the current in the ith factor. Any number of mutually
local currents can be added (identical currents are not added to the list; dependent ones are
added, but if a new current is a product of previous ones it has no effect on the result). After
completing the addition of currents use Compute (or Display) to compute (and display) the
spectrum and enable the modular properties.

For example, one can tensor B3,1⊗B3,1 and extend the algebra to obtain D7,1 in the following
way

> Tensor

> G B 3 1

> G B 3 1

> Current 1 1

> Compute

> Number of primaries: 4

Field identification in coset CFT’s may be thought of as a formal extension by a spin-0
current. For example, the following construction yields the Ising model

> Tensor

> G A 1 1

> G A 1 1
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> H A 1 2

> Current 1 1 1

> Display

> Number of primaries: 3

Lbl Comb. Weights

0 {0,0,0} 0.0000000

1 {0,0,1} 0.5000000

2 {0,1,2} 0.0625000

In this case the spectrum happens to be correct, but in general it is only correct up to

integers. The second column shows a representative of the field identification orbit of the

coset primary.

1.4. Creating new algebras

The results of a tensor procedure with or without additional extensions can be made into

a new CFT that is accessible with the Algebra, G or H commands. To do this type after com-

pleting the input Create [CFT name]

where “CFT name” is any character string. To reload this algebra type

> Algebra Cft [CFT name]

> G Cft [CFT name]

> H Cft [CFT name]

in single algebra mode resp. tensor mode. These “CFT”’s can now be used on equal footing

with any other algebras.

This several advantages: tensoring can be speeded up by first tensoring subsets, the limits on

the number of factors and currents can be evaded, and furthermore there is more information

available in single algebra mode than in tensor mode.

2. Built in algebras

2.1. (Untwisted) Affine Algebras

Command:

> Algebra Type [rank r][level k]

where the keyword “type” must be equal to A,B,..., or G, the usual allowed types of simple

Lie algebras; r is the rank of the simple Lie algebra and k the level of the affine representations

to be considered. The level must be an integer ≥ 1; the rank is a positive integer ≥ 1 for

type A; ≥ 2 for types B and C; ≥ 4 for type D, and the usual values for the exceptional

algebras. For the classical algebras lower values of the rank correspond to different types,

e.g. D3 ∼ A3.

The labels in the “ground state” column are defined as follows: the first r labels are the

ground state Dynkin labels, according to the following labelling; the last entry is the extended

Dynkin label.
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2.2. Twisted Affine Algebras

Command:
> Algebra Type [rank r][level k]

where “Type” can be At, Bt, Ct, Ft, Gt or Bc. The latter algebra plays a rôle in the fixed
point resolution of certain algebras of type B and C, which is the main reason why the
twisted algebras were built in. They are not conformal field theories, and most features are
not available for these algebras. The notation is based on the book by J. Fuchs.

Further details are not documented.

2.3. U(1) Algebras

Command:
> Algebra U [radius R]

This yields the c = 1 circle theory with R primaries. R should be even, but odd R is
tolerated. Using odd values of R leads to inconsistencies in certain commands. The self-dual
theory is obtained for R = 2.
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2.4. c = 1 orbifolds

The command
Algebra Orbifold [pos int N]

gives the Z2 reflection orbifold of the R = 2N circle theories. The resulting orbifold CFT
has N + 7 primaries. For more details about these theories see [1](the errors in the formula
for S in this paper have been corrected in Kac).

Notation

The labelling is as follows:

Label Representation Weight

(0,0) identity 0

(0,2) “∂X” 1

(0,1) J N
4

(0,3) Jc N
4

(1,k) φk
k2

4N

(2,1) σ 1
16

(2,2) σ′ 1
16

(3,1) τ 9
16

(3,2) τ ′ 9
16

2.5. Minimal models

The command
> Algebra Minimal [N susy N][level k]

gives the minimal model with N supersymmetries and “level” k. The number N may take
the values 0, 1 or 2, and k must be a positive integer. For example, N = 0, k = 1 gives the
Ising model.

Notation

To be written.
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2.6. Displaying some CFT properties

The central charge can be displayed as follows
> Browse Central charge

> Browse CFT

Display several CFT properties.

2.7. Accessing primaries

Each primary (highest weight representation) is assigned an internal label, which is shown (if
enabled) in the first column of the display command. It is possible to access fields directly
by enterring their Dynkin labels using the command

> Dynkin (int i 1)...(int i n)

The number of arguments must equal the number of ground state labels (shown in the second
column of display, if enabled), except for untwisted affine algebras, where it must be one
less. This is because in that case the last label is superflous (given the level), and each affine
Lie algebra ground state is completely specified by a set of horizontal Lie algebra Dynkin
labels.

The Dynkin may be called as a function to allow direct specification of primaries in terms
of their labels. For example

> Display Dynkin(0,1)

shows the relevant data for a representation with labels (0,1), for example of the affine Lie
algebra A2.

The inverse of the Dynkin command is
> Expand [field lbl]

which expands the argument into Dynkin labels.

2.8. Examining stored algebras

All algebras in storage can be displayed using
> Browse Algebras

The columns in the output table give the name of the algebra, the amount of storage used (in
Bytes) and the number of primaries. The output format is controlled by the Table command
(discussed later in this manual), applied to the table named ”Algebras”.
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3. Lie algebra properties

The commands in this chapter are available for untwisted affine Lie algebras, the chiral
algebras of WZW-models; some of them also work in other cases.

The command
> Browse Lie

shows the name and adjoint dimension of horizontal Lie algebra (the number of generators)
and the dual Coxeter number. This command works for any algebra and tensor product,
except that in the latter case only the number of generators is shown.

> Dimension [field lbl]

Get dimension of ground state “lbl”.
> Browse Cartan

Show Cartan matrix and its inverse.

3.1. Weyl group properties

> Weyl Order

Display order of the Weyl group
> Weyl Group

Display decomposition of Weyl group elements in terms of simple roots. Notation in output:
1.2.3. denotes successive reflection w.r.t. root 3, 2 and 1.

> Weyl Multiply [non neg int i][non neg int j]

Multiply Weyl group elements “i” and “j”, with labels referring to the first column of the
output of the Weyl Group command.

> Weyl Reflection [field i](simple root j)

Compute the horizontal Weyl reflection of the horizontal algebra representation of field “i”
in the plane orthogonal to simple root “j”; Without second parameter: compute action of
all Weyl group elements. The output is in Dynkin labels.

> Weyl Orbit [field i]

Compute the complete Weyl orbit of field “i”. Same as “Weyl reflection i”, . except that
identical weights are shown only once.

> Weyl Parity Orbits (field i)

Compute the complete Weyl orbit modulo 2 of field “i” Without parameter:compute all
distinct parity orbits.
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3.2. Gauss sums

> Compute Gauss sum (field x)

Compute Gauss sum: ∑
w

e
2pii

k
(w−x/2)2

Here x is a weight, and the summation is over all weights w in the full Weyl chamber at
level k, with a boundary compensation factor. The latter is equal to 1

N if a weight is located
at the common boundary of N Weyl chambers. In other words, this factor is such that if
we were to tile the entire weight space with Weyl chambers, and sum over all tiles, then the
total contribution of any weight is the same. The sum may also be written as a sum over the
weight-lattice modulo k times the co-root lattice (were the translations by k time the coroots
are generated by affine Weyl transformations). The result depends only on the Weyl parity
orbit of the Dynkin labels of x modulo 2. If no parameter x is specified the computation is
done for all parity orbits. To display the orbits use the command “Weyl Parity Orbits”

The result of this computation is known to be equal to

√
|Lw/Lc|(

ik

2
)r/2

∑
u

(−1)
k
2
(Cu,Cu)+(x,Cu) (3.1)

where Lw and Lc are the weight and co-root lattices respectively. The u’s are all 2r vectors
of zeroes and ones, and C is the symmetrized Cartan matrix, formed by the dot-products of
the simple co-roots. The vector Cu is the a co-root written in Dynkin basis, a representative
of the co-root lattice modulo twice the co-root lattice.

In the output the factor before the sum in (3.1) is omitted.

> Compute Gauss sum Orbits (current i)

Compute the complete Weyl orbits modulo 2 in conjugacy class”i” Without parameter: use
conjugacy class 0.

3.3. Indices of representations

> Indices (field lbl)

Compute indices (for rep. “lbl”).
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4. Simple currents

> Browse Simple currents

Show simple current data.
> Get Charge [current J][field a]

Get the charge of “a” w.r.t. “J”.
> Simple fusion [current J](field j)

Compute simple current fusion rules.
> Get Order [current J][field a]

Get the order of the simple current “J” on “a”.
> Orbit [current J][field i]

Compute J-orbit of i.
> Check Classes

Check that conjugacy class definitions match simple current charges for WZW models.

5. Tensor Products and Extensions

Out of the built in (or user-created) CFT one may construct new ones by tensoring and/or
extending the chiral algebra with simple currents. It is also possible to build coset conformal
field theories, although the spectrum of such theories can only be computed up to integers.

To use these features one has to switch to Tensor mode by typing
> Tensor

In this mode the Algebra command is not available, but is replaced by two commands
> G

and
> H

which accept (almost) all the parameters of Algebra. The command G adds the algebra
enterred as argument to the tensor product, and the command H adds it to the “denominator”
of a coset CFT.

Note that Kac does not know about the embedding H ⊂ G, and will accept most combina-
tions as input. Instead, H is treated as a tensor factor with complex conjugate matrices S
and T . Therefore it is in principle legitimate to use factors H that cannot even be embedded
in G.

The chiral algebra of a tensor product or coset can be extended using the command
> Current (fcur current 1)...(fcur current n)

Here current i must be a simple current of factor i. The number of arguments of the Cur-

rent command must equal the number of factors G plus H in the tensor product or coset.
The the chiral algebra is automatically closed under fusion of these currents, and multiple
occurrences are ignored. One may also use simple currents to impose field identification in
coset CFT’s.

> Reset Currents
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Reset currents.

> Reset Tensor

Reset tensor mode.

Before any modular properties can be used, the spectrum must be computed. This is in
contrast to single algebra mode, where spectrum computation occurs automatically. To
compute the spectrum without displaying it, type

> Compute

To display the spectrum type
> Display

> Browse Chiral algebra

Display chiral algebra.

> Browse CFT

Display several CFT properties.

> Expand [field lbl]

> Browse Decomposition [field i](col 1)...(col n)

Display decomposition of representation “i”.
> Browse Groundstate [field i](col 1)...(col n)

Display decomposition of ground state of representation “i”.
> Identify (fprim lbl 1)...(fprim lbl n)

Find orbit in which primary combination occurs (if any).

5.1. Graded tensor products

By a graded tensor product we mean a tensor product with implicit extension of the chiral
algebra by certain currents of order 2 and without fixed points. The canonical example is a
tensor product of N = 2 superconformal field theories. To produce a new such theory one
may tensor them as ordinary CFT’s, and the extend the chiral algebra with all combinations
of the supercurrents in each factor. Although one may do this using the Current command,
it is much faster to use graded tensor products.

To use this one must first of all switch to the right mode using
> Set Graded (switch ON/OFF)

Furthermore one of the simple currents in each factor of interest must be selected as a “grade
current”. This is done by typing

> Grade [current J]

in single algebra mode. Here J must be a simple current of order 2 without fixed points.
For minimal N = 2 CFT’s the supercurrent is automatically designated as a grade current.
When Set Graded is ON, the tensor product is automatically extended by all integer spin
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combinations of all grade currents. This extension is on top of any other simple current that
is selected using the Current command. It is allowed to have ungraded factors in the tensor
product; they are simply tensored normally with the rest.

5.2. Creating CFT’s from tensor products

A (simple current extended) tensor product or coset CFT may be stored by means of the
command

> Create [CFT name]

This creates a new CFT, which may be loaded by means of the command
> Algebra Cft [CFT name]

It may also be used in tensor products using the G command, or even in coset-like construbc-
tions using the H command, although there are not many meaningful applications of the
latter option. In other words, CFT’s made using Create can be used on equal footing with
the built-in algebras.

After storing all the data, the program returns to single algebra mode, with the newly created
CFT selected.

Note that when a CFT is created all entries of its modular matrices S are computed and
stored, as well as all entries of the fixed point resolution matrices SJ for all simple currents
J that have fixed points. Therefore the create command should be used with care.

To view what is happening during creation of a CFT one may switch on the display of
additional information:

> Set Create Show info (switch ON/OFF)

One may directly access the fixed point resolution matrices using
> Algebra FCFT [CFT name][pos int current]

Here “CFT name” must be one of the character strings shown by the Browse Algebras com-
mand, and current must be a simple current that has fixed points. One may also select the
“fixed point CFT” when the CFT itself is selected in single algebra mode: type

> Get FCFT [pos int current]

The difference with the Algebra FCFT command is thus that the latter can be used at any
moment in single algebra mode.

Note that a fixed point CFT is in general not a CFT, except for certain simple currents of
certain WZW-models.
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6. Spectra

To display the spectrum of a CFT in single algebra or tensor mode, type
> Display (field min)(field max)

Without parameters, this display all primaries; with one parameter it displays only that
primary field, and with two parameters it displays a range of fields.

The properties of each primary fields are displayed in a table with several columns. To list
the available columns use the Table Info command, in one of the two forms

> Table Info Spectrum

> Table Info Tensorspectrum

This gives the available columns in single algebra and coset mode respectively. Not all
columns are available in all situations. If a column does not make sense it is usually omitted
automatically and without warning.

Columns may be enabled or disabled; this is shown in the last column of the Tables Info

command. Columns may be suppressed or restored using the generic Tables subcommands
(see the section “Tables” in the chapter on syntax) but in this case a shortcut is available in
the form of the command List or Unlist.

> List (column 1)...(column n)

Restore printing of all columns of spectrum tables with name that starts with “column i”
> Unlist (column 1)...(column n)

Suppress printing of all columns of spectrum tables with name that starts with “column i”.

The content of the various columns is as follows:

— Label: Integer used to refer to a primary, for example in fusion computations.

— Ground state: Indicates ground state representation; these are extended Dynkin labels
for affine algebras. For other algebras, see the section on built in algebras

— Tensor label: The label the representation had in tensor mode, before using the Create
command.

— Weights: Conformal weights in real form.

— Rational weights: Conformal weight in rational form.

— Dimensions: Ground state dimensions.

— Conjugate: Charge conjugate.

— Bulk invariant: Bulk Invariant. This gives, for a primary i, the list of primaries j with
Zij 6= 0.

— Contents: Ground state representation content in terms of the first horizontal Lie
algebra factor. Available only in superstring mode.

— Charges: Charges w.r.t basis simple currents, as shown by the Browse simple currents

command.

— Grade sector: Indicates if field is NS or R with respect to the grade current.

— Grade multiplet: Indicates grade multiplet partner, obtained by the action of the grade
current.



− 16 −

— Orbit base: First field on the simple curent orbit of a field.

— Orbit position: Current that generates the field from its orbit base.

— Orbit label: Label of the orbit to which the field belongs.

— Stabilizer: Set of generators (not necessarily minimal) of the stabilizer of a field.

— Q dims: Quantum dimensions.

— Casimirs: Ground state Casimir eigenvalues (available only for untwisted Kac-Moody
algebras).

— Modular anomaly: Value of h-c/24.

— Combination: Combination of G and H fields that forms the ground state of a tensor
or coset representation.

— FP label: Fixed point labels (elements of the stabilizer that distinguish fixed points).

— FP mult: Fixed point multiplicity due to untwisted stabilizer.

The latter three are only available in tensor mode, whereas many other items are only
available in single algebra mode.

In addition to these built-in columns, the user made add custom-made columns by means of
the command

> New Column [name][expression]

Here “name” is the name of the column, used also as a header. It should not clash with
existing column names. The output of “expression” is shown in the extra column. Normally
one should use an expression that returns a single line of output, and that depends on a
primary field label. The latter is indicated by a ‘#’. For example

> New Column triple fusion fusion(#,#,#)

adds a column named “triple fusion” containing the fusion coefficients N i
ii . Note that the

last argument is an expression, and not a command! Any occurence of ‘#’ is replaced by
the row number.

The display command has two keywords:
> Display Massless [name][expression]

displays only the conformal fields of weight 0 and 1, which yield the massless fields in a string
spectrum.

> Display Entry [col][field i]

displays only the indicated entry in the spectrum table.

These keywords cannot be abbreviated.
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7. Fixed point resolution

> Browse Stabilizer [field lbl]

Show information on the stabilizer of field “lbl”.

> Browse Twists

Show simple current twists.

> Get Twist [field ][current K][current J]

Get the twist F(a,K,J).

> Browse Eta

Show charge conjugation twist and its field dependence.

> Browse Etatwists

Compare current twists and eta twists.

> Get FCFT [pos int current]

Load fixed point cft for current “current”.

> Get FCFT shift [current J]

Get the shift parameter “m” that determines the phase between the fixed point resolution

matrix SĴ and the orbit Lie algebra matrix OJ : SJ = e−iπm/4OJ .

> Get Fp fusion [current J][field i][field g][field h]

Compute fixed point fusion rules This command computes
∑

n SinOJ
gnOJ

hn/S0n where g and

h are fixed points of J and the sum is over all fixed points. The matrix OJ is the matrix S

of the orbit lie algebra, which differs from the fixed point resolution matrix SJ by a phase.

> Set Trace resolution (switch ON/OFF)

Switch display of FCFT contributions to resolved S If this switch is ON, the contributions

to S ab are shown for each current J that fixes a and b.

8. Modular properties

> S (field lbl1)(field lbl2)

Compute matrix elements of S.

> Fusion (field i)(field j)(field k)

Compute fusion rules.

> Set Fusion Sumcheck (switch ON/OFF)

Switch dimension sum rule check in fusion.

> Compute S sum (field lbl1)...(field lbln)

Compute sum of indicated rows of S.

> Get Conjugate [field a]

Get the conjugate of field “a”.

> Get Weight [field a]

Get the weight of field “a” in rational form.

> Pfusion (field i)(field j)(field k)
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Compute P-fusion rules.
> Pmatrix (field lbl1)(field lbl2)

Compute matrix elements of P.
> Check P-gauss [field i][field j]

Check gauss-sum P-matrix formula for labels “i” and “j”.
> Get Schur (field a)

Compute Frobenius-Schur indicator of field “a”. Without arguments: all fields.
> Get G schur [field p][field q]

Compute generalized Frobenius-Schur indicator of fields “p” and “q”.
> Set High precision (switch ON/OFF)

Switch high or low precision in modular data display.
> Set S matrix Maxsize [non neg int value]

Set maximal size for S matrix storage.
> Set S store None

Direct computation of S.
> Set S store Orbit

Keep orbit/orbit matrix elements in memory.
> Set S store Save

Write orbit/orbit matrix elements to disk.
> Compute S analytic (factor)(lbl 1)...(lbl 2r)

Compute the Kac-Peterson formula as an analytic function on weight space. “factor” is a
real factor multiplying the exponents in the Weyl sum. (factor=1 gives the KP-formula).
“lbl i” are analytically continued Dynkin labels, 2r in total, where “r” is the rank; “labl i”
may be any expression that evaluates to a real number.

9. Modular invariant partition functions

One may select a modular invariant partition that defines a “bulk” CFT using the Select

command. This bulk CFT affects the computation of superstring spectra and the compu-
tation of boundary coefficients and crosscap coefficients. In the latter case (boundaries and
crosscaps) any invariant is implicitly conjugated. This implies that if no bulk invariant is
selected, the diagonal invariant will be used for “closed” string spectrum computations, and
the charge conjugation invariant for “open” string computations.

The following possibilities are available
> Select Simple current invariant (current J 1)(current J 2)...(current J n)

> Select Invariant [invariant]

> Select Conjugation invariant

> Select Diagonal invariant

The first selects one of the simple current invariants that belong to the subgroup generated
by the currents J, J2, . . . , Jn. This is the subgroup that is obtained by closing the set of
currents under fusion. The set of currents may be overcomplete; superfluous currents are
removed. The set of invariants grows rapidly with the number of discrete factors in this
group. The user is prompted after each invariant to select it or continue the search. If no
arguments are given all subgroups of the effective center are checked.
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The second version of the select command allows the selection of exceptional invariants (in
fact any modular invariant). Here the input must be a character string of one of the two
allowed forms. The first type of expression is a sum of terms, each of the form

(mult1) ∗ (orbit1) ∗ (orbit2) or (mult2) ∗ (orbit3)
2

where “mult” are integer multiplicites and the “orbits” have the form

(naa + nbb + . . . nkk)

where na . . . nk are integer multiplicies and a . . . k labels of primary fields. This gives the
partition function explicitly. The first character of an invariant should be ’(’, in other words
the multiplicity of the first orbits must be 1. The second allowed type of expression is

〈a, b〉〈c, d〉 . . .

where a, b, c, d . . . are primary field labels. This form represents an automorphism with
interchange of a with b, c with d etc. Also higher order cyclic permutations are allowed, e.g.
〈a, b, c〉.
The third version of the Select command selects the charge conjugation invariant, and the
fourth results in the trivial, diagonal invariant, which is the default if nothing is selected.

The selection process of simple current invariants can be made more efficient in one of the
following ways

> Set Selection Symmetric (switch ON/OFF)

restricts the selection process to symmetric invariants.
> Set Selection Automorphism (pair 1)(pair 2)...(pair n)

restricts the selection process to automorphism invariants. The optional arguments are of
the form i:j and require a pairing of primary field labels for the selected invariant. This
criterium is switched off by typing

> Set Selection Automorphism Off

Furthermore the pairings are switched off automatically whenever the CFT is changed, be-
cause then they will usually not be sensible anymore. The command

> Set Selection Extension

requires the invariant to have a non-trivial chiral algebra.
> Set Selection Left [current J 1](current J 2)...(current J n)

> Set Selection Right [current J 1](current J 2)...(current J n)

require the indicated currents to be present in the left (right) chiral algebra. The latter
two criteria can be turned off by typing the commands without arguments; they are au-
tomatically turned off if the CFT is changed. Some of the selection criteria are evidently



− 20 −

incompatible with each other.
If the order in which the invariants are generated is known, the nth invariant can be selected
by typing

> Set Autoselect [pos int choice]

(where n =“choice”). When this setting is chosen, the user is not prompted, but the nth

invariant is selected automatically. Here “choice”=1 corresponds to the first invariant. This
automatic selection feature can be switched off by typing

> Set Autoselect Off

Each invariant that is generated is displayed. Since this can produce a lot of output one can
limit the number of orbits that is shown by means of the command

> Set Selection Max display [non neg int value]

Then only the orbits of the first “Max display” fields are shown.

The complete set of selection criteria can be displayed using
> Show Selection Criteria

The Show Selection command has three other keywords to display the values of the
Max display, Symmetric and Extension parameters. To switch off all selection criteria
type

> Reset Selection

Two further commands are available to simply list the simple current invariants belonging
to a subgroup, or to check a candidate modular invariant, without selecting them as bulk
invariants

> Compute Simple current invariant (current J )(current J 2)...(current J n)

> Check Invariant [invariant]

The argument syntax is as explained above for the Select command. The selection criteria
described above apply also to the Compute command.

Examples
> Algebra D 4 1

Number of primaries: 4

> Compute Simple 1 2

(0)^2+(1)*(3)+(2)*(1)+(3)*(2)

(0)^2+(1)*(2)+(2)*(3)+(3)*(1)

Total number: 2

> Select Invariant <1,2,3>

> Select Invariant <1,3,2>

> Algebra D 4 2

Number of primaries: 11

> Compute Simple 1 2

(0+1+2+3)^2 + 4*(10)^2
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(0)^2+(1)^2+(2)^2+(3)^2+(4)^2+(5)^2+(6)^2+(7)^2

+(8)^2+(9)^2+(10)^2

Total number: 2

> Select Invariant (0+1+2+3)^2+4*(10)^2

9.1. Manipulating modular invariants

A selected bulk invariant can be stored by typing

> Store (name)

If a name is given, it is stored under that name; if no argument is present, a name is generated

automatically. This name is Invariant n, where n is an integer, starting with 0. Note that

an invariant will not be stored if an identical one is already present. In this way one may

collect distinct modular invariants.

Stored invariants can be selected as bulk invariants by typing

> Select Invariant [name]

Here “name” must be identical to the name specified when the invariant was stored. If

the name was automatically generated as Invariant n, then Select Invariant n suffices.

Note that names should not start with the characters ’(’ or ’<’ or with digits, to avoid

ambiguities in the interpretation of the command.

Stored invariants can be multiplied using

> Multiply [name 1][name 2](name 3)

This multiplies the invariants specified by the first two arguments as matrices, storing the

result as ”name 3”, or as an automatically generated name if this argument is absent. The

first two arguments can be integers to indicate Invariant n, as above for the select command.

Any stored invariant can be conjugated by means of the

> Conjugate (name 1)(name 2)

command. The effect is that all fields in the anti-holomorphic orbits are replaced by their

conjugates. The result of a conjugation is always stored. If both arguments are absent, the

current bulk invariant is conjugated and stored as Invariant n, with an automatic value

for “n”; if the first argument is present, the named invariant is conjugated; as above, the

name may be an integer. If both arguments are present the conjugate of invariant “name 1”

is stored as “name 2”.

Finally one may transpose a modular matrix by typing

> Transpose (name 1)(name 2)

The syntax is as for the Conjugate command.

One may store all modular invariants automatically by means of

> Set Autostore (switch ON/OFF)

When this is switched on (the default setting) all invariants computed by the ”compute

simple current invariants” are automatically stored, as well as all invariants that are

selected using the Select command. The identity is stored as “Invariant 0”. Invariants

checked using the Check command, and all invariants generated during a selection with-
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out being actually selected are however not stored. Conjugates, transposes and results of
multiplications are in any case store automatically.

Note that the selection criteria specified using Set selection apply also to the selection
of invariants from storage. If, for example, automorphisms are required, then an extension
modular invariant cannot be loaded as the current bulk invariant. However, explicitly spec-
ified exceptional invariants as well as the conjugation invariant can still be selected even if
they violate the selection criteria, because this violation is obvious for the user. to simple
current invariants, not to storage of invariants. Note also that the “Autostore” feature can
easily overflow available memory in the case of CFT’s with many primaries and many simple
current invariants. The value of Autostore can be set in the Defaults file.

> Reset Invariants

Reset modular invariant storage.

9.2. Modular invariant loops

It is possible to run through all simple current invariants (or a selected subset) of a given
theory and perform operations on them. To do this use

> Set Loop command [commandline]

with any valid command line. This commandline is executed for any invariant that is found
using the Compute Simple current invariant command, given the chosen selection crite-
ria. If execution results in an error, the loop is terminated. Note that if a loop command
is set, each invariant that is found is selected as a bulk invariant, so that in this case the
bulk invariant is changed. Running Compute Simple current invariant without a loop
command simply displays all invariants without selecting them, so that the original bulk
invariant is maintained. The loop command can be switched off by typing

> Set Loop command Off

Note that the command is performed on all invariants. If Autostore is on, some invariants
may turn out to be the same as invariants already in storage. These may either have been
generated in previous runs, or in the present one. Since it cannot be decided if they did or
did not occur in the same run, this information is not used.

In principle all simple current invariants generated by Compute Simple current invariant

are distinct, but degeneracies may occur in certain cases with atypical simplicity. To apply a
command only to the distinct invariants, proceed as follows. First reset the invariant storage:

> Reset Invariants

Then generate all invariants of interest using Compute Simple current invariant, with
selection criteria and parameters as desired. In this case identical invariants are stored only
once. Finally, one can make an ordinary “for” loop trough all stored invariants by using
the function total(invariants):

> For i=0 i<tot(inv) i=i+1 [commandline]

where “commandline” begins with Select invariant i; , after which any other commands
may follow.
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9.3. Inspecting invariants

The names of all store invariants can be shown with the command
> Browse Invariants

Each invariants can be inspected separately by typing
> Browse Bulk invariant (name)

Here “name” is any stored invariant or and integer for automatically generated names. If the
argument is absent the current bulk invariant is shown.

The standard output gives the explicit form of the invariant and the number of Ishibashi
labels resulting from it (implicitly conjugated). Further information can be switched on by

> Set Invariant Show info (switch ON/OFF)

which shows in particular details about the way the modular invariant is generated from
simple currents. If this switch is ON, the same information is also shown during the gener-
ation of simple current invariants. The command

> Set Invariant Statistics (switch ON/OFF)

enables displaying, for each T-eigenspace, the number of diagonally coupled fields, the num-
ber coupled off-diagonally to their charge conjugate, as well as the number of self-conjugate
fields. These numbers appear in a table with columns marked ‘D’, ‘C’ and ‘S’ respectively.
This information can sometimes be useful to identify invariants that are related in straight-
forward ways, e.g. by permutation of factors.

> Reset Invariants

Reset modular invariant storage.

9.4. Galois symmetry

> Search Galois invariants

Search for galois invariants.
> Compute Galois orbits

Compute all galois orbits.
> Compute Scale orbits

Compute scale orbits.

9.5. Finding exceptional extensions

> Browse Integral spin

Display all integral spin fields.
> Check Algebra (int mult1)...(int mult2)

Check if a potential chiral algebra has non-negative projections on all fields. The parameters
are the multiplicities of the integer spin fields in the order given by “Browse integral spin”.

> Search Extension

Find potential chiral algebra extensions.
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10. Boundaries and Crosscaps

The boundary and crosscap coefficients depend on the choice of bulk modular invariant and
Klein bottle projection. If no selection is made, the simplest case is assumed: the so-called
“Cardy-case”, corresponding to the charge conjugation invariant in the bulk, combined with
a Frobenius-Schur Klein bottle. Note that in boundary coefficient computations all selected
bulk invariants are implicitly multiplied with the charge conjugation invariant.

An algorithm is built in for the computation of all boundary and crosscap coefficients for
all simple current modifications of the Cardy case. This algorithm requires the fixed point
resolution matrices of simple currents and hence it cannot work, in general, in tensor mode.
Use “create” to make a new CFT that can be used in single algebra mode.

There is no simple algorithm for exceptional invariants, but there is a search procedure
built in which can be tried if the invariant is a pure automorphism (this includes the charge
conjugation invariant, implicitly multiplied with another charge conjugation to yield the
diagonal invariant).

Once the MIPF has been selected, one may compute the Ishibashi labels by typing
Browse Ishibashi (Ishibashi k)

This works for all modular invariants. Without parameter is lists all Ishibashi labels, with
parameter just the kth one. The Ishibashi labels are denoted (m, i) where m refers to a bulk
field, and i is a resolution label. This just enumerates the degenerate Ishibashi labels in the
exceptional case, and corresponds to currents in the stabilizer of m in the simple current
case.

10.1. Selecting Klein bottles

The data needed to compute crosscaps and boundary coefficients are the bulk MIPF and
a set of Klein bottle coefficients. The bulk selection was explained in the previous section.
The selection of Klein bottles can be done in one of the following two ways

— If the bulk invariant is a simple current invariant: The canonical Klein bottle coef-
ficient is given by the Frobenius-Schur indicator. Modifications may be made as follows

Set Kleinbottle [current J]

This defines a Klein bottle modification related to the simple current: the Klein bottle
coefficient of field i is multiplied with e2πiQJ(i). A second class of modifications that
is always allowed consists of the crosscap sign choices. The simple current formula
for boundaries and crosscaps depends on a sign choice for each factor Zk, k even, in
the simple current group that is involved in the construction of the modular invariant.
These signs can be set using

Set Crosscap signs (sign s 1)...(sign s n)

This command has a parameter for every even factor in the simple current group. The
Klein bottle is reset to zero, and all crosscap signs are reset to 1 each time a new
modular invariant is selected.

— If the bulk invariant is an exceptional invariant: The canonical Klein bottle coefficient
is chosen to be Zii for fields i that appear diagonally and 0 for fields that do not. Here
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Zij is the modular invariant. Any other Klein bottle can be chosen as follows
Select Kleinbottle (entry 1)...(entry n)

Here entry i must be of the form label:value where “label” is a primary field label
and “value” is a valid Klein bottle coefficient (smaller in absolute value than Zii and of
equal parity). Only the labels that are given non-canonical values have to be enterred.
If no arguments are given, the Klein bottle coefficients are reset to their canonical
values. This can also be done using the command

Reset Kleinbottle

The latter command also resets the Kleinbottle current and the crosscap signs.

If a non-trivial Klein bottle current is chosen in combination with an exceptional invariant,
it is ignored. A non-standard Klein bottle cannot be selected in combination with a simple
current invariant (apart from the Klein bottle current and crosscap signs mentioned above).
However, it is possible to convert a simple current invariant to an exceptional one using

> Make Bulk Exceptional

After this is done the invariant is no longer treated as a simple current invariant; one may
select Klein bottles but not set Klein bottle currents or crosscap signs.

All choices affecting crosscaps and Klein bottles are reset to their canonical values when a
bulk invariant is selected, conjugated, or turned into an exceptional invariant.

10.2. Searching exceptional Klein bottles

One may perform a systematic loop search for valid Klein bottles satisfying the positivity
and integrality condition in the closed sector. The requirement they must satisfy is that the
corresponding crosscap coefficients are non-zero only on Ishibashi states.

In addition two other constraints can be imposed: the Klein bottle constraint (KiKjK` ≥ 0
if i, j and ` are coupled) and the requirement that

∑
`

Si`

S0`
K`

be non-negative integers. The latter follows from the so-called orientation sensitive trace
formula. It should be mentioned here that the Klein bottle constraint is violated in certain
cases, and that the trace formula has not been proved.

The following commands are available
> Search Klein bottle

Search for Klein bottle signs consistent with Ishibashi states.
> Search Klein bottle Kbc

Search for Klein bottle signs consistent with Ishibashi states and the Klein bottle constraint.
> Search Klein bottle Trace

Search for Klein bottle signs consistent with Ishibashi states and satisfying the trace formula.
> Search Klein bottle All

Search for Klein bottle signs consistent with Ishibashi states and satisfying the trace formula
and the Klein bottle constraint.
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10.3. Simple current bulk invariants

After the bulk invariant, Klein bottle current and crosscap signs are chosen the various
coefficients and the boundary or Ishibashi labels can be computed.

To see the boundary labels, type
Browse Boundary (bound a)

The boundary labels are denoted [m, i] where m refers to a bulk field (in fact a simple current
orbit representative), and i is a resolution label.

The commands to display boundaries and crosscap coefficients are
Get Reflection (Ishibashi i)(bound a)

Get Crosscap (Ishibashi i)

What is listed is the coefficient multiplied with a factor
√

S0i. This implies that in the Cardy
case the result that is displayed is Sia and P0i.

The signs set by Set Crosscap signs (see previous sub-section) are the ones that are al-
lowed in the generic case. In special cases (if certain potentially allowed fixed points do
in fact not occur) more sign freedom may exist. This may be explored by means of the
command

Flip Crosscap signs (current s 1)...(current s n)

This flips the signs belonging to a certain current, not a cyclic factor of the simple cur-
rent group. This will only have an effect if the current is involved in the construction
of the invariant. These signs are multiplied with the generic signs defined with the “Set
Crosscap signs” command. Using the “Flip Crosscap signs” option may result in in-
consistencies. On the other hand sign choices made with “Set Crosscap signs” are always
allowed.

Resetting

The command
> Reset Kleinbottle

may be used to reset all the signs affecting Klein bottles (and crosscaps). In particular
this undoes the commands Set Kleinbottle, Set Crosscap signs, Flip Crosscap signs,
and, in the case of exceptional invariants, Select Kleinbottle. The selection of any other
MIPF resets all these signs as well.

The choice of bulk invariant and Klein bottle can be reset to the canonical Cardy values by
typing

> Reset Bulk

(This has therefore the same effect as Select Diagonal).

Inspecting the settings

To see the current setting of these sign choices use
> Browse Signs

The output shows five columns, containing respectively the current label, its weight, the sign
used in the simple current formula for the crosscap, the corresponding phase shift used in
the formula for the boundary, and the phase shift needed to go from the “Orbit Lie algebra
matrix” to the “Fixed point resolution matrix”. In formulas:
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— Crosscap signs ρ(J): They enter in the formula for the crosscap as Γi ∝
∑

J ρ(J)PJi.

— Boundary phase shifts ρ(J): They enter in the formula for the boundaries as Bi,a ∝∑
J α(J)SJ

ia. The phases α(J) are in general eight roots of unity, and are written as

e−iπx/4. The value of x appears in column 4.

— FCFT shifts: They are defined as SJ = e−iπm/4OJ , where SJ is the fixed point
resolution matrix and O(J) the orbit Lie algebra matrix. The value of m is listed in
column 5. In those cases where OJ is not defined (CFT’s that are not WZW-models)
it can be defined in terms of SJ , up to a phase ambiguity. Internally this ambiguity
is fixed by making an arbitrary choice among the valid possibilities. The other valid
possibilities are obtained by choosing different crosscap signs, which affects α(J).

Generating all valid choices

It is possible to combine Klein bottle and crosscap sign choices, provided that some rules
are satisfied. Some Klein bottle choice are inconsistent with certain modular invariants, and
some others are redundant. All valid distinct choices can be generated using the command

> Loop Crosscap (commandline)

If a commandline is given it is executed for each of the valid choices.

10.4. Exceptional bulk invariants

A search procedure is built in to look for boundaries and/or crosscaps of exceptional auto-
morphism invariants. After choosing an algebra in single algebra or tensor mode, one selects
the in invariant using “select invariant” or “select conjugate”, as explained earlier.
The conjugation invariant is always treated as an exceptional invariant.

?
The conjugate of

any invariant (obtained using the conjugate command) is also treated as an exceptional in-
variant (even if the conjugate command is typed in twice). If you wish to treat the diagonal
or simple current invariants as exceptional ones (for example to test this algorithm), type

> Make Bulk Exceptional

In some cases this conversion is made automatically, and a warning message is given. The
conversion to an exceptional invariant (automatic or manual) is irreversible, but of course
one may select a new invariant.

There are two problems that can now be addressed: the first is to look for boundaries and
crosscaps, and the second to look only for boundaries. The former is default. To search only
for boundaries, type

> Set Orientifold off

In the former case the required input data are the modular invariant and a Klein bottle. The

latter is by default taken to be 1
†

on fields appearing diagonally and 0 on fields appearing
off-diagonally (in the modular invariant times implicit charge conjugation). Using the “Flip
Klein bottle” command the entries “1” can be flipped to “−1”.

? Reminder: all invariants are implicitly conjugated when constructing boundaries. Therefore if the
conjugation invariant is selected, the boundaries that one obtains belong to the diagonal combination
of characters.

† Note that the default in the exceptional case is not the Frobenius-Schur indicator.
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The search algorithm is explained in chapter 12. The boundary search is started with the
command

> Search Boundaries (pos int Maxloop) (non neg int Method)

The parameter “Maxloop” specifies the maximal size of each annulus coefficient Ai. The
parameter “Method” selects the search method: either a full set of loops 0 ≤ Ai ≤ Maxloop
(Method=0) or a search restricted to the annuli satisfying SimAi = 0, if m is not an Ishibashi
label. To select the latter option, choose the value 1 for the “Method” parameter. The
default values are Maxloop=2, Method=1. With this command all steps in the algorithm
are executed successively.

Another way to start the search is to enter annuli manually, using
> Try Boundary [limits]

Here limits is a string indicating a new annulus, or exact limits between which should be
searched for annuli. For example

> Try Boundary 1,1,1,1,0:3,1,1

specifies that all annuli Ai = 1, 0 ≤ A4 ≤ 3 will be tried. If there are N primaries the string
“limits” must have as many entries, separated by comma’s. This method stops after step
6 of the algorithm, since typically one may want to supply several candidate annuli before
combining them into sets. To start step 7 and the subsequent ones type

> Assemble

The amount of information provided during the process can be controlled using
> Set Boundary search Info level [non neg int level]

The default for “level” is 0. For larger values more information is shown. The information
that is provided is roughly the following.

0. Overall success or failure information.

1. Klein bottle; basic statistics on boundary combination analysis.

2. Crosscap coefficients; list of boundary combinations (step 9); complete boundary sets;

3. Unsigned boundaries (found during steps 6 and 11); All annuli and moebius amplitudes
for complete boundary sets; Maximal (not complete) sets for each combination.

4. All annuli and moebius amplitudes for maximal incomplete boundary sets.

5. Completion statistics per boundary set (step 11).

6. Orthogonal basis vectors, completion equations, basis decomposition of new boundary
vectors (step 11).

7. Construction of boundary sets (step 10): signed boundary vectors and the set numbers
to which they are added.

8. Construction of boundary sets: reasons for rejection of boundary vectors.
> Reset Boundary search

Reset exceptional boundary coefficients to start new search.

> Get Class alg [Ishibashi i][Ishibashi j][Ishibashi k]

Compute classifying algebra coefficients.



− 29 −

11. Permutations and outer automorphisms

The modular properties of conformal field theories are invariant under a group of outer
automorphisms. This includes charge conjugation, Dynkin diagram automorphisms of WZW
models and permutations of identical factors in a tensor product. Modular invariants that
are different, but that are related by such an automorphism may yield equivalent results.
Whether the results are really equivalent depends on the problem under consideration. For
example, two identical CFT’s in a tensor product may play a totally different rôle in a
problem, in which case the interchange of these factors would not lead to equivalent results.
The outer automorphisms will be referred to as ”permutations” in the following, since that
is the most common case.

If, however, there is a true equivalence one may wish to eliminate superfluous solutions and
restrict the computations to one representative of the equivalence class. This can be done
for simple current invariants with the command

> Set Reject Permutations (switch ON/OFF)

When this is ON, the following outer automorphism are take into account

— In single algebra mode, the Dynkin diagram automorphisms of WZW models, except
charge conjugation. These automorphisms are therefore spinor conjugation for D2n

and triality for D4.

— In coset mode, the group generated by all permutations of identical factors plus all outer
automorphisms of the factors themselves, that leave the chiral algebra – as specified
with the Current command – invariant.

When a new CFT is created using the create command this group is stored as the outer
automorphism group of that CFT, and will be taken into account if the CFT is used in
further tensor products.

Note that outer automorphisms of a CFT are taken into account only if Reject Permuta-

tions is ON at the moment that the CFT was created; they cannot be computed afterwards.
This holds also for WZW models, which are created by the Algebra (or G or H command).

The automorphisms act on all primaries of the CFT, but what matters is only the restriction
of this action to the set of simple currents. This can be displayed using

> Browse Permutations

These permutations affect the following choices

— The selection of a simple current subgroup of the center.

— The matrix X(J, K) defined on that subgroup, that determines the modular invariant
partition function.

— The crosscap sign choices.

— The Klein bottle choice.

When Reject Permutations is ON, this affects the commands Compute Compute Sim-

ple current invariant and Select Simple current invariant (both commands with-
out parameters). First of all only one subgroup out of each equivalence class is chosen. The
subgroup of the permutations that respect the simple current subgroup is determined; this
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permutation subgroup is then applied to the various choices of X(J, K), which are also re-
stricted to class representatives. Finally the permutation subgroup that respects X(J, K) is
determined.

The latter can then be used to restrict the scope of the command Loop Crosscap. The
remaining permutations are applied to the crosscap sign choices and the Klein bottle current,
and again only one representative of each equivalence class is chosen.

To view the restriction process one may type
> Set Reject Info (switch ON/OFF)

This displays all matrices X, crosscap signs and Klein bottle currents, and the reason they
are rejected (no information is given regarding the simple current subgroup selection).

To control which permutations are used and which are not use the create command with
Reject Permutations ON or OFF. For example, one may create two copies of the algebra
D4, one with permutation info and one without, each with a different name. Note that that
the setting should be ON at the moment the algebra is computed for the first time (with
the Algebra, G or H command), since otherwise it is stored without outer automorphism
information. To use only a subset of the permutations of N identical factors, first tensor
part of the factors, create a new CFT, and tensor tensor it with the rest in a second step.

12. String Theory

12.1. Closed superstrings

Any unitary CFT with an integer central charge c smaller than 26 can be viewed as bosonic
string compactification in 26−c dimensions. No special commands are provided (or required)
to deal with this case.

Certain special CFT’s can be mapped to heterotic or type-II strings. This requires one or
both chiral sectors respectively to be mapped to an N=1 superconformal field theory. These
sectors should satisfy the following requirements for superstrings in D space-time dimensions

1. The chiral algebra must contain the affine algebra SO(D+6), level 1.

2. The chiral algebra must contain the affine algebra E8, level 1.

3. The total central charge of the CFT must be 26−D.

4. The fermionic sector must have N=1 world-sheet supersymmetry.

5. The bosonic CFT must be modular invariant.

The program checks points 1,3 and 5. If the central charge is 18−D an implicit E8 factor
is assumed. Replacing the E8 factor by another c = 8 CFT, or violating superconformal
invariance leads to nonsensical results, but the user is allowed to experiment with this. The
correct structure of a chiral CFT that can be mapped to a fermionic string is thus as follows

SO(D+6)1 × E8,1 × [N=1 CFT]

The N = 1 CFT is most easily built by tensoring N = 1 (or N = 2) CFT’s, using a graded
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tensor product (see the chapter on tensor mode) to maintain worldsheet supersymmetry.

The tensor product with SO(D+6)1 must also be graded. The grade currents must be

the vector of SO(D+6)1 and the supercurrents of the superconformal CFT’s. Instead of

SO(D+6) one may use other algebras that contain SO(D+6), level 1. They can be SO(N),

N > D + 6 or, depending on D, the exceptional algebras F4, E6, E7 and E8, all at level 1.

Superstring mode

In order for superstring spectrum analysis to take place, one must switch to superstring

mode:

> Set Super (switch ON/OFF)

Without parameter this command has the same effect as with parameter “ON”.

This setting affects spectrum computations in the following way. If the first factor in the

tensor product is either SO(M), F4, E6, E7 or E8 (level 1), then the ground states of all

representations are decomposed in terms of representations of these algebras. This decom-

position is computed simultaneously with the computation of ground state dimensions. It

can only be done if the latter are computable: there should therefore be no factors “H” in

the tensor product.

Computations of dimensions and decompositions are only done when needed. This is the case

if the columns “Dimensions” and/or “Contents” in the tensor spectrum table are enabled.

They can be enabled by typing

> List dimensions

> List contents

This results in extra columns seen with the “Display” command. These columns are shown

only if they can be computed; if not, they can be omitted without warning.

Extended algebras

If the tensor product is extended by simple currents of spin 1, it may happen that the

first tensor factor gets enlarged, resulting in a larger horizonal Lie algebra. The possible

embeddings are chains built from
?

SO(M) ⊂ SO(M + 1)

SO(9) ⊂ F4

SO(10) ⊂ E6

SO(12) ⊂ E7

SO(16) ⊂ E8

These extensions are automatically taken into account, and the ground states of all represen-

tations are decomposed w.r.t. these extended algebras. Extensions to exceptional algebras

imply space-time supersymmetry.

? The second case cannot be obtained using simple currents.
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String spectra

To see the massless spectrum that is obtained if the CFT is interpreted as a heterotic string

type

> Browse heterotic

The space-time dimension is the one inferred from the first tensor factor, with the maximal

value for D that is allowed. The simple current extensions discussed above are not taken

into account in computing the dimension.

If a different dimension is preferred, the automatic choice can be overruled by

> Set Dimension [dim value]

where “value” must be at least 3 and at most 10.

This command “browse heterotic” only works if superstring mode is on. The decompositions

of all representations are computed, if this was not done previously. Only the representations

with conformal weight 1 contribute to the massless spectrum.

The selected bulk invariant is taken into account in the spectrum computation. If no invariant

was selected, the diagonal invariant is used. Chiral algebra extensions in this bulk invariant

are (at present) not taken into account in the sense that if the bulk invariant extends H to

G, all results are presented in terms of representation of H.

> Browse Heterotic Decomposition

Same as “browse heterotic” but in addition to the totals, the decomposition of the spectrum

in terms of terms in the partition function is shown.

> Browse Heterotic Flipped

Same as “browse heterotic” but interprets the partition function with left and right chiral

sector flipped. Normally the left sector is used as the gauge sector. The left sector is the

one appearing as the left factor in asymmetric terms in the modular invariant, as shown by

the command Browse Bulk invariant. An additional keyword Decomposition is allowed

after Flipped.

> Browse Type-II

Display type-II string spectrum (using the bosonic string map)

> Browse Type-II Decomposition

Same as “browse type-II” but in addition to the totals, the decomposition of the spectrum

in terms of terms in the partition function is shown.

> Browse Type-II Flipped

Same as “browse heterotic” but with a relative space-time chirality flip between left and chiral

sectors (maps type-IIA to type IIB). An additional keyword Decomposition is allowed after

Flipped.

Creating superstrings

If the command

> Create [CFT name]
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is used with superstring mode on, then the decompositions of all representations are kept in

storage with the newly created algebra. They are shown in the “Contents” column of the

spectrum table, if this column is enabled. After creation of an algebra, it is not possible

anymore to compute the decomposition of representations, because the relevant information

is lost. Hence Set super has no effect in this case.

Using created superstrings

Superstring CFT’s created by this procedure can be re-used as factors of a tensor product

or be extended by additional currents. This will happen if they are the first factor of the

tensor product, and if superstring mode is on.

Examples

The following example gives the CFT underlying the “quintic” Calabi-Yau manifold with

h21 = 101 and h11 = 1.

> Algebra Minimal 2 3

This creates the basic building block, the k = 3, N = 2 minimal super-CFT.

> Algebra D 5 1

> Grade 2

This creates a copy of SO(10) level 1 with the vector as grade current.

> Set Graded

> Tensor

Graded tensor product are to be used.

> G d 5 1

> G min 2 3

> G min 2 3

> G min 2 3

> G min 2 3

> G min 2 3

> Current 1 1 1 1 1 1

This is the chiral part gravitino vertex operator. Its presence ensures space-time supersym-

metry.

> Set Super

Switch to superstring mode.

> Create quintic

This creates a CFT named “quintic”. It has 4000 primaries, and its heterotically interpreted

massless spectrum can be shown by typing

> Browse heterotic

The result is

--------------- Spectrum for diagonal invariant ---------------

Space-time dimension 4

Gauge group E6 x E8 x [Unknown (Dim=4)]

There are 4 additional spin-1 currents,

which form an unidentified gauge group factor.

Massless spectrum (Representations of first factor)
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N=1 chiral multiplets: 330 x [1] + 101 x [27] + [27*]

This shows that the gauge group is E6×E8, and that there are four additional vector bosons
belonging to an unidentified gauge group (which does not extend E6 × E8). There are 101
chiral families, 1 anti-chiral family, and 330 singlets; the latter three are part of N = 1 chiral
multiplets. Having created this CFT we can go back to tensor mode:

> Tensor

and load the quintic CFT, and type “Compute” to indicate that there are no further factors
an currents.

> G Cft quintic

> Compute

Now we may select a bulk invariant, for example
> Select Simple 5

> Browse heterotic

...

N=1 chiral multiplets: 210 x [1] + 21 x [27] + [27*]

Of course this could have been done just as well in single algebra mode. However, since
simple current 5 has integer spin, we may also use it to extend the chiral algebra:

> Current 5

The previously selected bulk invariant is removed. The new CFT has 160 primaries
> Compute

Number of primaries: 160

and its heterotic spectrum is of course exactly the one we found above, when this invariant
was used as a bulk invariant. The extended theory has 5 simple currents of fractional spin,
that can be used to build a simple current automorphism invariant.

> Select Simple 1

> Browse heterotic

...

N=1 chiral multiplets: 210 x [1] + [27] + 21 x [27*]

This corresponds to the mirror manifold.

12.2. Supermultiplets

> Browse Susy (dim D)(L susy)(R susy)(m1)(m2)(int sym)

Show spin content of susy representation.
> Browse Lorentz [dim D]

Explain notation for Lorentz representations appearing in D-dimensional super multiplets.
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12.3. Open Strings

Open string partition functions are specified by Klein bottle, Annulus and Moebius coeffi-
cients. These can be computed if the boundaries and crosscaps for the underlying CFT’s are
known. If this is the case, the partition functions can be displayed by means of the following
commands

> Annulus (field i)(bound a)(bound b)

> Moebius (field i)(bound a)

> Klein (field i)

Here i is a character (primary field) label and a, b any valid boundary label. All parameters
are optional. If they are absent all values are shown.

Physical open string partition functions are obtained by multiplying these quantities with
Chan-Paton multiplicities, which are obtained by solving the tadpole conditions. Solving
these conditions is the subject of the next chapter.

13. Tadpole cancellation

Given a CFT with a space-time interpretation and a bulk invariant for which the reflec-
tion and crosscap coefficients are known one may try to cancel the massless tadpoles. The
equations are ∑

a

NaBia = ε(−1)hi2D/2Γi

where hi is the conformal weight of the representation. Only representations that yield mass-
less states contribute. This means that either hi = 0 (the vacuum) or hi = 1. Furthermore,
in the case of superstrings, we restrict i to representations that contain physical states (char-
acters that contain among their massless states a vector representation or a definite spinor
representation of the covariant lattice group). The space-time dimension, D, must be inte-
ger. If it is not integer, the actual non-integer value is used for bosonic strings, and one may
try to solve the equations anyway. For superstrings non-integer dimensions make even less
sense, and superstring mode is automatically turned off if an inconsistency is encountered.

It is assumed that there is one special Ishibashi label, 0, which has the property that all B0a

are real and non-negative. The parameter ε is an overall crosscap sign, that is chosen in such
a way that the right hand side is positive for i = 0. Positivity of generic annuli requires all
Na to have the same sign, and hence they are non-negative with these conventions. If Γ0 = 0
all Chan-Paton multiplicities are zero. The tadpole equations may be displayed by typing

> Browse Tadpole Equations (non neg int nr.)

Each equation is shown as a vector, the last entry being the negative of the right hand side.
For example if an equation is displayed as

1.000 1.000 -512.000

Then there are two CP-labels that satisfy N1 + N2 = 512. First all non-trivial equations are
shown in their original form, and then all independent equations are shown. If a parameter
is present only the chosen equation is shown.
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The special tadpole equation mentioned above is in fact the dilaton tadpole. The tadpole
equations can only be solved automatically if this condition is imposed, since otherwise the
CP-labels are in general not bounded.

Once ε is fixed, the Chan-Paton gauge groups are also fixed. They are given by the value of
the Moebius amplitude M0

a times ε. This can have the values +1 (gauge group SO(Na)),
−1 (gauge group Sp(Na), valid only if Na is even) or 0. In the latter case the gauge group
is U(Na), and there are two boundaries contributing to it. To see the relation between
boundaries and CP-gauge groups type

> Browse CP

In the tadpole equations one simplication is made automatically: CP-labels at mutually
complex boundaries are set equal to each other. This reduces the loop search significantly.
The equations shown by > Browse Tadpole Equations already include these reductions,
and hence the variables are not directly equal to the CP labels.

The command to start solving the tadpole equations is
> Solve Tadpole

The procedure consists of three steps:

— Finding kernel vectors

— Reducing bounds

— Loop search

Obviously one can find all solutions by means of a finite loop search, since all Na are bounded
from above by the first equation. In practice, this is however impossible. In many cases the
equations have a non-trivial kernel containing integer vectors. Suppose such a vector is
(−1, 1, 0, . . . , 0). If there is a solution with N0 > 0 we can always reduce it to a solution with
N0 = 0 by adding this vector, and thereby increasing N1. Hence we may restrict the loop
search to N0 = 0 without missing any solutions. While there are obvious bounds on the CP
multiplicities from the first equation, there are less obvious bounds from (linear combinations
of) the others. Hence we may improve the bounds by combining equations. If all goes well,
these two methods are sufficient to make a loop search possible.

These three methods can be invoked manually by means of the following commands
> Solve Tadpole Kernel (pos int max loop)

> Solve Tadpole Bound (pos int interrupt)

> Solve Tadpole Loops (pos int interrupt)

The arguments, if present, limit the scope or duration of the computations. The value of
“max loop” is the maximal number of candidate kernel vectors that is tested for each CP
label. The default value is 10000. The value of “interrupt” is the number of seconds after
which the user is asked if the computation should be continued. The default value is 60.
The Solve Tadpole command performs these three operations successively with default
paramater values.

The result of boundary reductions can be examined using
> Browse Tadpole Bounds

The set of kernel vectors obtained so far is shown by
> Browse Tadpole Kernel
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A candidate solution can be be checked using the command
> Check Tadpole Solution (entry 1)...(entry n)

Here “entry i” denotes the value of a variable, which must be enterred as label:value. Here
“label” is a valid variable label, corresponding to a column in the list of equations displayed
by the command Browse Tadpole Equations. As remarked above, “value” is not directly
a CP label: there is an implicit factor of 2 for symplectic groups, and an automatic pairing
for unitary groups,

It is also possible to specify directly CP multiplicities for boundaries (as displayed by the
Browse Boundary command). The command that does this is

> Check CP (entry 1)...(entry n)

and has the same syntax as > Check Tadpole Solution. For example Check CP 0:1 17:2

sets N0 to 1, N17 to 2, and all others to zero, and then checks the tadpole equations for this
set of labels.

> Check Tadpole Parameters (entry 1)...(entry n)

Check solution to the tadpole conditions that is obtained by setting the parameters to
selected values Entry i is of the form label:value. Here “label” refers to the parameter
“N label”, and “value” is the integer value assigned to it.

> Reset Tadpole

Description: Reset tadpole conditions.
> Set Tadpole Info level

Description: Set amount of information printed while solving tadpole conditions.
> Set Tadpole Show spectrum

Description: Switch automatic spectrum computation for basic solutions to tadpole cancel-
lation.

14. Algorithms

14.1. Boundaries and crosscaps for exceptional automorphims

The formulas that are used are

Ki =

∑
m Si

mUmUm

S0m

M i
a =

∑
m P i

mUmRma

S0m

Ai
ab =

∑
m Si

mRmaRmb

S0m

(14.1)

The coefficients Um will be referred to as the crosscap coefficients, and Rma as the reflection
coefficients. For fixed a the vector Rma will be called a “boundary vector”. The label m
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refers to Ishibashi states, and is in one-to-one correspondence with the primaries that appear
combined with their charge conjugate in the modular invariant. We impose the following
requirements

1. Ai
ab ≥ 0

2. |Ki| ≤ Zii

3. |M i
a| ≤ Ai

aa

4. M i
a = Ai

aa mod 2

5. Um = 0; Rma = 0 if m is not and Ishibashi label

6.
∑
m

RmaR
∗
mb = δab

7. A0
ab = CB

ab

where CB
ab is the boundary conjugation matrix, which must be an involution. The objective is

to find a maximal set of boundary vectors satisfying these conditions. The maximal number
one can get is equal to the number of Ishibashi states. Sets with the maximal number are
called “complete”.

Any solution to this problem is subject to the ambiguities

Um → εmUm

Rma → εmRma
(14.2)

and

Rma → −Rma (14.3)

These are fixed by choosing an ordering in the label a of the reflection coefficients, and a
function P (z) on the complex plane, satisfying P (z) = ±1 such that P (z)P (−z) = −1,
P (0) = 0. This function generalizes the notion of “positivity” to the complex plane. For
any m, the first occurrence of a non-zero entry in the ordered set Um, Rm1, . . . , Rm` is then
chosen “positive”. Furthermore the first non-zero coefficient Rma 6= 0, with Um 6= 0, of the
first boundary is chosen positive. Because of 6, |Rma|2 ≤ 1. On the other hand

R2
ma = S0m

∑
SimAi

aa .

Since Si0 > 0 for all i in an RCFT, we have

Ai
aa < [S0mSi0]

−1 (14.4)

The basic steps in the search procedure are as follows (if only boundaries are searched,
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all steps involving crosscaps, Klein bottles or Moebius amplitudes are skipped; the sign
ambiguity (14.3) is then already contained in (14.2)).

1. Compute the crosscap coefficients from the Klein bottle, using the first equation in
(14.1).

2. Reject the result if requirement 5 is violated; Then there is no solution to the problem.

3. Search for diagonal annuli. This is done by generating non-negative integer vectors
with as many components as there are primaries. These components are restricted
by (14.4) and by A0

aa ≤ 1, so that this is in principle a finite search. In practice a
complete search is impossible.

4. Solve for R2
ma, and impose requirement 5.

5. Impose 6, i.e.
∑

m |R2
ma| = 1.

6. Consider all relevant sign choices for
√

R2
ma and and compute the Moebius amplitude;

then impose 3 and 4. Relevant sign choices are the signs for all m with Um 6= 0, Rma 6=
0 except the first m with that property (this fixes the Rma → −Rma ambiguity).
Reflection coefficients surviving until this point are stored. In the following we will
call these stored coefficients unsigned boundary vectors. This name is most appropriate
if the crosscap requirements are not imposed, because then all stored Rma are positive.

7. Consider all pairs of unsigned boundary vectors. Check if for any choice of the un-
restricted signs (i.e. those for which Um = 0) these coefficients can appear in one
set, i.e. check requirements 1 and 6 for a 6= b. (Condition 7. then appears to hold
automatically).

8. Construct all combinations of reflection coefficients that are pairwise consistent for
some sign choice.

9. Consider all maximal combinations (i.e. those that are not contained in another com-
bination). Consider for each boundary in that combination all remaining sign choices
(i.e. all sign choices of Rma 6= 0 if crosscaps are not considered, all sign choices on
labels m with Um = 0, Rma 6= 0, plus the overall sign if crosscaps are considered. The
signed boundary vectors in the combination are put in some definite order.

10. Form consistent sets by adding the boundary vectors one by one. A new vector is
added to a set if it satisfies the positivity constraints fixing the sign ambiguities (14.2)
and (14.3), and if it is orthogonal and yields non-negative off-diagonal annuli. Each
allowed vector is added to all existing sets, and as the first member of a new set. When
a boundary vector is complex, both the vector and its conjugate are added.

11. A set is complete if it has as many boundaries as there are Ishibashi states. Incomplete
sets may be completed by choosing a complete set of vectors vi orthogonal to the
boundaries in the set. A “missing” boundary must be a linear combination of those
vectors: Bm,new =

∑
αivi. By computing the Moebius amplitudes M i

new and the
off-diagonal annuli Ai

a,new, where a is an already present boundary, one gets many
constraints on the coefficients, of the form

∑
αiλi = Nλ, where λi is a known vector

and Nλ an unknown integer. Since |~α| = 1, the integers are bounded: 0 ≤ Nλ ≤ |~λ| for

annuli, and |Nλ| ≤ |~λ| for Moebius amplitudes. This can be solved by standard linear
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equation solving methods, if there exists a complete set of independent equations. To
do so, all allowed Nλ must be checked. To optimize this, we choose an independent
set of λ’s of minimal integer range. For any solution to these equations the diagonal
annuli Ai

new,new are computed, and if they are non-negative and satisfy conditions 3.
and 4. the solution is accepted, and stored as an unsigned boundary vector.

12. After step 11 is completed for all boundary sets of all combinations, and if this resulted
in new unsigned boundary vectors, the process is repeated starting at step 7.

14.2. Solving the tadpole conditions

Remarks:

A shortcut is possible in steps 3 and 4. Requirement 5. implies that the diagonal annulus
coefficients must satisfy

SmiA
i
aa = 0

if m is not and Ishibashi state. These can be used as equations to solve for some Ai
aa in

terms of the other annuli. This reduces the loop search in step 3. This is usually faster, but
due to additional overhead it may be slower in special cases.

To prevent runaway computations, several accumulations are limited: There is a maximal
number of boundary combinations (step 8), and of boundary sets per boundary combination
(step 10). By default both limits are set to 200. Finally the maximal number of equations
considered in step 11 is ten times the number of undetermined variables. Exceeding any of
these limits has no catastrophic effect, but results in an incomplete analysis of the possible
boundaries. If the boundary combination limit is reached, no new boundary combinations
will be considered, but the existing ones are extended by any allowed boundary vector; if the
number of boundary sets reaches its limit, this is handled in the same way. All three limits
can be simultaneously multiplied by n by means of the command

> Set Boundary search Capacity [pos int n]

The default is n = 1.

Completion of boundary sets (step 11) is only possible if for any Ishibashi label there is at
least one boundary (or crosscap) that is non-vanishing for that label.

Step 11 may be done for all sets ot just for the sets of maximal size within a given combina-
tion. This option is chosen by the command

> Set Boundary search Use all sets (switch ON/OFF)

The default value is OFF.
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14.3. Solving the tadpole conditions

In general, the full set of tadpole conditions reduces to a set of equations of the form

NaBia = ε(−1)hi2D/2Γi

where Bai are the boundary coefficients and Γi the crosscap coefficients, and D the space-

time dimension. The equations must be solved for the Chan-Paton multiplicies Na. The

precise choice of labels i depends on the kind of string theory (super or bosonic), and is dealt

with automatically. For a given string theory, the tadpole equations for all physical massless

particles are taken into account. These are either descendants of the vacuum (hi = 0, i.e.

the dilaton) or ground states with hi = 1. Although it is possible to compute spectra for CP-

multiplicities that do not satisfy all equations, one cannot find such solutions automatically.

The CP-multiplicies Na must all have the same sign; if not, there will inevitably be annuli

NaNbA
i
ab that are negative. The dilaton tadpole coefficients B0a are always positive, at

least in all known cases. If Γ0 is non-zero and real we can fix ε in such a way that all Na are

non-negative. [In all known cases Γi is real; if Γ0 vanishes, all CP-multiplicities are zero.]

The i = 0 equation bounds all CP-multiplicities from above (since B0a > 0 for all a), and

hence a systematic nested loop search for all solutions is possible in principle. In practice,

this is usually not feasible.

A reduction of the loop length can be achieved in the following ways

— Identify kernel vectors. We look for a set of solutions to the homogeneous equations

with one entry equal to −1 (the “tag”) and all other entries non-negative. Tags of

different vectors should be distinct, and no tag should overlap with a non-zero entry

of another kernel vector.

Suppose we have a solution that is non-zero on one of the tags. We can make that entry

vanish by adding an integer multiple of the corresponding kernel vector. This may increase

some of the other CP-multiplicities, but in any case we obtain another valid solution. Since

tags do not overlap with non-zero entries of other vectors, we can repeat this for all other

kernel vectors. In this way we can make all tagged entries vanish. It is therefore not

necessary to look for solutions that are non-zero on the tagged entries: such solutions can

be reconstructed at the end. Hence the loop search on the tagged entries reduces to zero.

To implement this four kinds of searches for such vectors are performed: A search for vectors

with one, two and three entries equal to 1, and the others (apart from the tag) equal to -1,

plus an attempt to solve the homogeneous equations directly with a value −1 for one of the

entries that is not tagged yet. The latter method has no constraint on the other entries,

except that they should be non-negative and vanish on previously obtained tags.

— Reduction of bounds. So far only the dilaton tadpole equation was used to limit the

range of the variables. Using the other equations or linear combinations of equations
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may lead to further constraints. Any such equation has the form

αN + βiNi + γjNj = δ

where we have organized the equation in such a way that α > 0, βi > 0 and γi < 0, and
N is the CP-multiplicity singled out for analysis. The second term is minimized if Ni

is at its minimum, the third term if Nj is at its maximum. This minimum determines
a maximal value for N , which becomes the new maximum if it is smaller than the
previous one. Similarly a new minimum is determined. The reduced range for N may
in its turn lead to a reduced range for the other variables. This method is applied
to suitably chosen linear combinations of the original equations, until a time limit is
reached, or until no changes occur after a certain number of steps.

— Double tag vectors. These are kernel vectors with two entries equal to -1. These tags
should not coincide with the single tags discussed above, nor with positive values of
other kernel vectors. Furthermore one of the two tags of vector A should not coincide
with the two tags of any vector B. If we know about the existence of such a vector
with tags i and j we may demand that either i or j vanishes. This does not reduce
the maxima and minima of the variables, but it can be used to reduce the loop search
dynamically: the value of j is not increased if i is non-zero or vice versa. Obviously
this can be generalized to multiple tags, but this has little practicle advantages.

— Using the equations of motion. If there are Ne independent equations, as many vari-
ables can be determined by solving an equation. The corresponding variables can be
removed from the search. For each equation, the variable with the largest range is the
one that is selected, in order to get the maximal reduction.

— Secondary kernel vectors If after all these reductions the loop search still has multiple
solutions, these solutions evidently differ by kernel vectors that were not detected yet.
These vectors are collected. If all goes well, one obtains an independent set of integer
vectors such that any solution found in the loop search can be obtained from the first
solution by adding integer linear combinations of these vectors. If this is the case we
speak of a unique solution.

Obviously the solution would always be unique if we work over the rational numbers, but
not necessarily over the integers. Solutions that cannot be obtained by integer linear com-
binations are stored as separate solutions.

Finally we must determine which of the primary kernel vectors can actually be used. The
constraint here is the requirement of positivity of the CP labels. Given a solution of the loop
search, any single or double tag kernel vector can only be subtracted from it.
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15. Checks

This chapter contains a variety of commands to check the internal consistency of the program,
or to check certain conjectures.

> Check Branching [pos int G type][pos int G rank][pos int H type][pos int H rank]

Check the internal branching tables. These tables specify the decomposition of the adjoint
and the fundamental representations for the Lie-algebra embedding G ⊃ H, where G and H

are of types B, D or E. These tables are used in superstring spectrum computations
> Check Closed (pos int max err)

Check positivity and integrality of Torus + Klein bottle. (”max err” is the maximum number
of error messages; Defaults to no limit).

> Check Conjugates

Check S2 = C.
> Check Eta

Check Y (f, 0, i)/Y (f, 0, 0) = eiπhJ ηJ .
> Check Fp conj

Check (SJ)2 = ηJC.
> Check Full open (pos int max err)

Check all open string consistency conditions (”max err” is the maximum number of error
messages; Defaults to no limit).

> Check Homomorphism (field lbl1)...(field lbln)

Check homomorphism generated by lbl1...lbln.
> Check Hopf

Check rational Hopf algebra relations.
> Check Klein (pos int max err)

Check positivity of NijkKiKjKk (”max err” is the maximum number of error messages;
Defaults to no limit).

> Check Modular

Check unitarity and (ST )3 = S2.
> Check Open (pos int max err)

Check positivity and integrality of Annulus + Moebius strip (”max err” is the maximum
number of error messages; Defaults to no limit).

> Check Orbits

Check that the algebraic simple current action agrees with the fusion rules.
> Check Simple [field a]

Check if “a” is a simple current.
> Check Symmetry

Check symmetry of S.
> Check Trace formula

Check the boundary trace formula for the annulus
> Check Twist prod

Check product rule in second argument of F(a,K,J).
> Check Twists
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Compare current twists and eta twists (only shows errors).
> Check Unitarity (field a)(field b)

Check unitarity.

16. Functions

The following functions are provided to get easier access to internal parameters, especially
for programming purposes.

> Total Boundaries

Return total number of boundary labels
> Total Invariants

Return total number of modular invariants stored as “Invariant n”
> Total Ishibashi

Return total number of Ishibashi labels
> Total Primaries

Return total number of primaries
> Total Simple currents

Return total number of simple currents

17. Syntax

17.1. General command line structure

Execution starts after each completed command line. A “command line” may be built out
of several “input lines”, which are either lines in a file, or lines enterred on a terminal.

A command line is ‘completed’ if does not end with a continuation character ‘\’ or has
unbalanced curly brackets “{ }”. If a line is not complete a next line is read and added to
the previous one. In interactive mode the prompt for a continuation line is “... ” instead of
the standard prompt “> ”. The continuation character ‘\’ is only treated as such if is the
last character of an input line.

Blanks at the beginning of each input line, including continuation lines, are ignored. However,
when a line is continued because curly brackets are not closed, a blank is inserted at the end
of the incomplete line.

Examples:
> Command\n → Command

> Comm\\n

... and\n → Command

> Comm \\n

... and\n → Comm and

> This {is a\n

... continuation} → This is a continuation

Here ‘\n’ denotes the end-of-line character (“return” on a terminal).
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17.2. Command Blocks

A command line consists in general of several command blocks, separated by “;”. The end
of each command line has an implied “;”.

Each command block in its turn may consist of more than one commands. The separate
commands in a block are not indicated by the user, but are determined by the interpreter.

Example:
> Command1 Command2; Command3 Command4 Command5;

is a command line consisting of two command blocks, which in their turn consist respectively
of two and three commands. The closing ’;’ is optional.

17.3. Command Interpretation

Each command has the following structure: “Command (Keywords) (Parameters)”

Any string bounded by blanks (a “word”) is a command, keyword or a parameter depending
on its position. Any string bounded by opening and closing curly brackets is read as a single
word. Within the curly brackets, blanks, all other brackets, “;” and “\” are ignored (i.e “\”
and “;” are treated as ordinary characters).

Keywords are character strings that can be recognized by the command interpreter, whereas
parameters are unrestricted at the interpreter level (e.g. file names). A command may
be executable with or without keywords, and the number of parameters may be fixed or
variable. This information can be obtained using “help”. Round brackets indicate optional
parameters, square brackets indicate mandatory ones.

Examples:
> File (filename)

> File on (filename)

> File off

The command “File” can have keywords “on” or “off” but is also executable without any
keywords. In the first two cases a parameter “filename” may be supplied, but is not obliga-
tory.

> If [cond][comm1][comm2]

means that the command “If” must have three parameters.
> Command [par1][par2](par3)(par4)

means that “Command” has at least two and at most four parameters.
> System [command...]

means that “system” must have at least one, but may have any larger number of parameters.
The syntax could also have been shown as

> System [command]...

> System [command 1](command 2)...

> System [command 1](command 2)...(command n)

which all mean exactly the same. Finally,
> Command (parameters...)

would indicate that any number of parameters is allowed.
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Commands and keywords are case insensitive and may be abbreviated in any unambiguous
way unless a keyword could be mistaken for a parameter.

Example: “File of” opens an output file named “of” and is not equivalent to “file off”.

Keywords must be enterred in the correct order, as specified in the ”help” command.

17.4. Command Block Interpretation

The command interpreter will always try to use the maximal number of words of the com-
mand block. The first word is the command itself. If first level keywords exists, they are
compared with the second word. If this matches, and the “command keyword” combination
may have a second level keyword, the third word is checked against the second level keyword
list, etc.

If the number of remaining words exceeds the maximum number “p” of parameters for
the “command keyword 1 ... keyword k” combination, then “p” of the remaining words
are passed on to the command for execution. Depending on the command, some of the
parameters may be rejected (for instance if a number is expected, but a string is supplied).
If the command can be executed with fewer parameters, it is. Each command returns either
an error code or the number of parameters it has been able to use. In the former case
execution for the entire command line is stopped. In the latter case execution continues
with the first word that has not been used (even if it was passed on to a command, but was
rejected).

Example: Suppose Command (par1) as well as Command Key1 (par1) are valid. Suppose
> Command Key1 AAA;

is enterred. This will then be interpreted as Command Key1 with parameter par1=AAA. The
command

> Command AAA

will be interpreted as “Command” with parameter par1=AAA, since AAA cannot be recog-
nized as a keyword. Note that in this example it would not be possible to pass “Key1” as a
parameter to “Command”. (This can be evaded using macro substitutions, see below).

The next word in the command line is first tried as a keyword of the previous command at
the last level (i.e. keyword k) If it doesn’t match, the next lower level is checked until the
command level is reached.

Example:
> Status Errors Memory

performs first Status Errors and then Status Memory (even if both keywords are followed
by parameters, which in this example is not possible).

> Command1 Command2

performs first Command1 and then Command2, although in this case
> Command1; Command2;

is preferable.

The main purpose of allowing more than one command in a command block is to allow
> Command keyword1 keyword2 keyword3
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as a shortcut for Command keyword1; command keyword2; command keyword3;

Other uses of this feature are not recommended, since the possibility of ambiguities is obvi-
ous. In particular commands with an indefinite number of parameters require termination
by “;”.

Exceptions: The Help command can have any valid command and keyword combination as
parameters, but anything remaining in the command block is ignored

17.5. Comments

Any text following a “%” is ignored. This can be used for comments. The “%” is treated as
a “newline”. This is even true within brackets.

17.6. Macro definitions

The command
> Define X Y

sets X equal to Y. This means that if the string X appears in any command block, it is
replaced by Y. No substitutions are made within curly brackets.

Replacements are done recursively, applying all macro defintions until no changes take place.
The string Y is not restricted in any way, except that it is not allowed to contain X as a
substring, thus producing an infinite recursion. It is not difficult to produce infinite recursion
by means of two or more Define commands. Avoiding this is the responsability of the user.

The command
> Undefine {X}

removes the macro definition for X. Note that the brackets are essential for this to work
properly, since otherwise “X” would be replaced by its alias before undefine is executed.

Preferably macros should be clearly distinghuished from ordinary strings, for example by
choosing as the first character a ’$’. For example

> Define p l

would make the execution of the “help” command impossible, except by enclosing it in curly
brackets. Avoiding such problems is also the responsability of the user.

> Free Macros (macro)

17.7. Variables

In addition to macros one can also assign strings to variables. This can be done with the
“command”:

> X=Y

Just like Define this assigns the string Y to the variable X (which is created if it doesn’t
exist). However, the replacement of X by Y only takes place if X appears as a parameter of
a command, or if X appears in an ”expression” (see below). Replacement is non-recursive,
unlike Define. Curly bracket are irrelevant, since replacement takes place only after curly
brackets have been resolved.
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One may use the same variable names for assignments and macros, but this is not useful,
since macro substitutions are done before variable substitutions.

Example
> X=1

> Evaluate X

1

The “Evaluate” command evaluates an algebraic expression (see below). Here it evaluates
the expression “1”, obtained after substituting the variable X.

Variables are only replaced in parameters of a command, not in keywords. Choosing a
variable name that coincides with a keyword is allowed, but may lead to conflicts.

Variable names are always stripped of all blanks. Hence the statement
> { A B = 100 }

assigns the value 100 to the variable “AB”. Variable names may not begin with digits. See
also “Expression syntax” below.

17.8. Variable substitution

If a parameter matches a variable name, the value of that variable is automatically substi-
tuted. For example

> fn=file|1

> file fn

directs output to “file1” (the symbol | concatenates two strings, see below). This may be
used to direct output to distinct files depending on the result of a computation.

If automatic substitution is not desired it can be switched of for a given command by typing
> Set Disable sub [command](key 1)...(key n)

and switched on again by
> Set Enable sub [command](key 1)...(key n)

Note that each keyword is a separate parameter. Hence the correct syntax is as above, and
not to use curly brackets as in

> Set Enable sub {command key 1}
Most commands have substitution disabled by default (e.g. “help” and “evaluate”). This is
in particular true for all commands that have parameters of definite type (see below under
“parameter types”), since in that case the substitution is anyway done during the type
evaluation. If automatic substitution is enabled this is shown in the “help” text. Otherwise
it is disabled.
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17.9. Algebraic instructions

Three types of special command words are recognized: expressions, assignments and condi-
tions.

— Expressions: An “expression” consists of “objects”, round brackets “(” and “)”, which
must be closed, and operators, which act on two objects and replace them by a another.
The simplest way an expression can occur is as the parameter of the “evaluate”
command.

Example:
> Evaluate 1+1;

2

For more information, see the section on expression syntax below.

— Assignments: They have the form X=expression, where X is a variable.

The assignment statement is the only exception to the rule that every command must be
of the form ”Command keywords parameters”. It must be a single word, or be enclosed in
curly brackets.

— Conditions: Conditions are special kinds of expressions that return either TRUE or
FALSE. Basic conditions have the form “Expression1 * Expression2”,where “*” is one
of the following:

== Equal to
! = Not equal to
<= Smaller than or equal to
>= Larger than or equal to
< Smaller than
> Larger than
= Equal (for strings)
> Larger than (for strings)
< Smaller than (for strings)

In the first six conditionals expressions 1 and 2 must evaluate to integers or rationals The
string comparisons are defined as for the C-function ’strcmp’. Conditions may be combined
using “and” (&&) and “or” (||).
Conditions may be tested using the evaluate command.

17.10. Expression syntax

An expression may contain blanks, but in that case it must be enclosed by curly brackets,
so that it is read as a single word.

Example:
> evaluate {10 * (4 + 5)};
90

Valid operators are:
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Nr. Symbol Operation Left Arg. Right Arg. Return

0 / Division i,l,r i,l,r i,l,r
1 ∗ Multiplication i,l,r i,l,r i,l,r
2 − Subtraction i,l,r i,l,r i,l,r
3 + Addition i,l,r i,l,r i,l,r
4 == Equality i,l,r i,l,r c
5 ! = Inequality i,l,r i,l,r c
6 > Greater than i,l,r i,l,r c
7 < Less than i,l,r i,l,r c
8 >= Greater than or equal i,l,r i,l,r c
9 <= Less than or equal i,l,r i,l,r c
10 <∼ Less than (using strcmp) s, (c,i,l,r) s, (c,i,l,r) c
11 =∼ Equal (using strcmp) s, (c,i,l,r) s, (c,i,l,r) c
12 >∼ Greater than (using strcmp) s, (c,i,l,r) s, (c,i,l,r) c
13 && Logical AND c c c
14 || Logical OR c c c
15 | String concatenation s, (c,i,l,r) s, (c,i,l,r) c
16 = Assignment s s,c,i,l,r s,c,i,l,r
17 ∼ String assignment s s,(c,i,l,r) s

Here “strcmp” refers to the return value of the C-function “strcmp”. This list also defines

the priority of these operations. Types between parenthesis are converted to the first type,

’s’, since all types can be converted to strings. The left arguments of operators 16 and 17

are strings that are used as variable names to which the right-hand sides are assigned. Any

valid variable name is allowed.

Blanks Trailing and leading blanks are removed from all operator arguments before eval-

uation, with the exception of the string operations 10, 11, 12, 15 and 17 (second argument

only). For example

> Evaluate {7== 7}
TRUE

> Evaluate {A=∼ A}
FALSE

Since the second operation compares the strings “A” and “ A”.

Variable substitution

All operator arguments except the left arguments of operators 16 and 17 ar replaced by their

value if they are variable names.

All arguments are strings, but they can be converted to various types, depending on the

operation. The types are
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s: String
i: Integer ( < 10000)
l: Large Integer (Unlimited)
r: Rational (Ratio of two Large Integers)
c: Boolean (TRUE or FALSE)
e: Error

Columns 4 and 5 of the table of operators indicate which types are acceptable for the left
and right argument of each operator.

Operator 17 is identical to 16 except that the latter removes double, leading and trailing
blanks from the string on the right hand side. Operators 10,11,12 and 15 act on all types,
after converting them to strings.

If an operation results in an error (e.g. 1/0) the operation return type ’e’. Any subsequent
operation involving type ’e’ yields again type ’e’. The distinct types are only used internally,
and are not seen by the user.

An expression may contain variables, which must be enclosed by blanks, brackets, or oper-
ators. They are non-recursively replaced. In integer operations, the final replacement must
yield an integer, or an error will occur.

Replacement takes place at the latest possible moment, namely just before one of the oper-
ations is about to be performed. In (sub)-expressions of the form “A x B”, where “x” is an
operator from the table, variable substitution always takes place for “B”, but not for “A”
is the operation is “=” or “∼”. Therefore sub-expressions like (Y=2) will work correctly
even if Y already has a value. Also Y=Y+1 works as one might expect: the value of Y+1 is
assigned to Y.

If no operation is performed, strings are simply returned as strings. For example
> Evaluate (3)(4)

3)(4

returns the string between the outer parentheses, without any attempt at evaluation.

Floating point numbers

In all arithmetic operations floating point numbers in non-exponential form (e.g. 3.1459) are
acceptable as input. They are converted to rational numbers with the full precision of the
input number, and are processed as rational numbers, i.e. without loss of precision.

The answer can be converted back to floating point format by means of the “float” com-
mand. This command is exactly the same as “evaluate” except that the output is assumed
to be an integer or a rational number, which is printed as a floating point number. For
example

> Float 3.1459*3.1459

9.896686810000000
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17.11. The Evaluate command

By default, no automatic variable substitution is done fore the “evaluate” command. How-
ever, if an expression contains no operators a substitution is attempted. There is no substi-
tution in the result of an expression evaluation.

Example:
> AB=9

> Evaluate AB

9

because “AB” is an expression without operators;
> Evaluate A|B

AB

> Evaluate N=A|B

9

In the last case conversion is enforced by the “=” operation. Note however
> Evaluate (A|B)

9

Here the parentheses are evaluated first, yielding “AB”. At the next lower parenthesis level,
this yields the single-term expression “AB”. Its evaluation yields 9. Finally consider the
following example of non-recursive variable substitution

> A=B

> B=C

> C=5

> Evaluate A

B

> Evaluate (A)

C

> Evaluate ((A))

5

Here each brackets enforces another expression evaluation.

In expressions with identical operators and no brackets evaluation takes place from left to
right

> Evaluate 1/2/3

1/6

and also
> AB=8

> ABCD=9

> Evaluate A|B|C|D

8CD

Retrieving the last evaluation result

The result of each evaluation is stored in the internal variable “$last”, which can be used as
input in expressions. This is not only true for the result of “evaluate”, but also for “float”
and “execute” (which is the same as “evaluate”, but does not print standard output).
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(Two other related commands are “print” and “return”, see below; they do not store their
results in “$last”.)

When “evaluate” (or “float” and “execute”) are called as functions the return value is
not stored in “$last”.

Quotes and escapes

Quotes (”) and/or the escape character \ may be used to employ special characters in strings.
Any character preceded by \ is treated as an ordinary character with no special significance.
This includes \” and \\. For example

> Evaluate "7*8="|7*8

7*8=56

The same result is obtained by means of
> Evaluate 7\*8\=|7*8

All unescaped quotes are removed just before printing or returning output, in the commands
‘evaluate”, “execute”, “print” and “return”. After removing quotes, all unescaped es-
cape characters are removed. For example

> Evaluate "\*"

*

> Evaluate \"string\"

"string"

> Evaluate \\a

\a

Note that quotes escape and escapes are not removed after expression evaluations unless
these evaluations are done by invoking one of the four commands mentioned above. For
example

> m="a"

assigns the value “"a"” (including quotes) to “m”. If the variable “m” is used subsequently
in the evaluate command, the quotes are removed in the output.

A second point where quotes and escapes are removed is in variable names. Hence
> "b"=1

assigns 1 to b (unquoted).

17.12. Control flow

The following commands are available
> Repeat [integer][CommandLine]

This repeats “CommandLine” “integer” times
> If [Condition][True CommandLine][False CommandLine]

If “Condition” returns TRUE, perform “True CommandLine”, else perform
“False CommandLine”.

> For [Assigment1][Condition][Assignment2][CommandLine]

Perform “Assignment1”. Then, as long as “Condition” returns TRUE, perform “Comman-
dLine”, followed by “Assignment2”.
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> While [Condition][CommandLine]

“CommandLine” is executed as long as “Condition” is TRUE.

> Break (integer)

Jump out of “integer” nested loops. Without parameter: return to terminal or file input

level. “integer” is lowered by 1 each time a “for”, “while” or “repeat” loop is broken off

(unless this is due to errors).

Example:

> For X=1 X<10 X=X+1 {Evaluate X*X}

17.13. Procedures

The command

> Procedure [name][commandline]

defines a procedure “name” which executes the commandline each time it is called.

The syntax of “name” is “procname(a1,...,an|b1,...,bn)”, where “a1,...,an” are obligatory

parameters and “b1,...,bn” are optional.
?

A procedure is called exactly like a command, namely as

> procname v1 v2 ... vn w1 ... wn

where “vi” are the values of “ai” and “wi’ those of “bi”. The parameter values “wi” may

be omitted, either completely or for i>j, for some j. Just as command names, procedure

names may be abbreviated. The names are case insensitive, so that for example defining a

procedure “Sqrt” as well as a procedure “sqrt” is not possible.

A procedure appears as a command in the command list, and basic help info is available:

> Proc procname(a1,a2,a3|b1,b2) commandline

> Help procname

> Command syntax: Procname [a1][a2][a3](b1)(b2)

Example:

> Proc squares {For X=1 X<10 X=X+1 {Evaluate X*X } }
defines a procedure that prints the first nine squares each time it is called.

> Proc squares(N) {For X=1 X<N+1 X=X+1 {Evaluate X*X} }
does the same as the previous one, but N rather than 9 times. This procedure is called in

the following way:

> squares 3

1

4

9

Arguments of procedures are treated as dummy variables. Example:

> N=3

> proc test(N) {eval N}

? At present optional parameters have no practical use, since there is no method available to detect them.
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> test 5

5

After these commands the value of N is 3, and not 5.

Dummy variables are internally represented by names starting with ’%’. Since this is also

used for comments, it is impossible for the user to use such internal variables.

Procedures can be removed using the command

> Free Procedures (procedure)

If no argument is given, all user-defined procedures are removed.

17.14. Functions

Any command or user-defined procedure may also be called as a function. Functions are

called in expressions. There are two differences between a function call and a procedure call

— The arguments of a function are evaluated as expressions; this is in general not true

for command parameters.

— The output is returned to the expression in which the function is called.

The main purpose of functions is to make the return value available for further computations.

Examples

> procedure fac(n) {
> m=1;

> for l=1 l<=n l=l+1 m=m*l;

> evaluate m;

> }
This procedure computes n!. When used as a command one types

> fac 10

3628800

But one may also type

> evaluate fac(10)

3628800

In the latter case, the argument may itself be an expression

> evaluate fac(2*5+7)

355687428096000

In this case the command line call

> fac 2*5+7

would have the same effect, but for a different reason: the string “2*5+7” is substituted

for “n” in “l¡=n” and evaluated as soon as that expression is evaluated. Erroneous use of

expressions in command parameters may lead to bizarre results, such as

> Procedure square(N) {evaluate N*N}
> Square 10+8

98

(note that 98=10+8*10+8). This can be avoided by using brackets either in the procedure

definition or around the parameter. If a parameter has a definite type (as defined below)
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the type conversion may involve evaluation of expressions. In that case “10+8” would be
replaced by 18 before passing it on to the command. However, at present user-defined
procedures cannot have type definitions, so that the foregoing remark only refers to built-in
commands.

The return value of a function may be used in expressions
> evaluate fac(4)+6*fac(11)

239500824

Functions may be called recursively to arbitary depth
> eval fac(fac(fac(3)))

260121894......0000000000000000

(with many digits of 720! omitted)

Any command may be used as a function, but of course not all commands have useful return
values.

Procedure names may contain blanks, and hence keywords can be used in function
names. In fact keywords may also be specified as function arguments, and proce-
dure parameters may appear already before the brackets. The function call must
be terminated by a closing bracket. For example, the following calls are equivalent

> file on filename

> execute file(on,filename)

> execute {file on(filename)}
> execute {file on filename()}

Note the need for curly brackets in the last two statements. If a keyword is given as a
function argument it too is subject to evaluation, as in

> eval status(mem|ory)

Return values

Not all output is returned by a function as a “return value”. There are two exceptions: error
messages and output tables (see below).

In addition to the “evaluate” command there are three other commands that differ only in
the way output is directed. The four commands are:

— Evaluate: Prints and returns output.

— Execute: No output (printed nor returned).

— Return: Only returns output, does not print it.

— Print: Only prints output, does not return it.

Extracting data

Numbers in the return value of a function can be extracted from the output string using
> Extract [pos int n][string]

This extracts the nth number from “string” (counting starts with 1). In command line use
of “extract” the string is used literally, except if it is a variable name (automatic variable
substitution is enabled by default for “extract”). For example

> Extract 3 {The 3^ th number in this string is not 1, but 5}
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5

If “extract” is called as a function, “string” is evaluated as an expression, for example
> eval extract(1,time())

0.16

Note that the empty brackets following “time” are necessary to indicate that it is a function.
This example also shows that floating point numbers are correctly extracted. However,
exponential forms like 0.1E − 20 are not recognized as a single number.

The “extract” command treats any uninterrupted string of digits (including a preceding −
sign and at most one dot) as a number, regardless of the characters immediately in front or
behind that string.

17.15. Global and local variables

All variables that are not explicitly declared are local to a function or to the command level.
For example in the factorial function defined above, the values of l and m do not overwrite
the values any parameters l or m that might exist at the command level, or in functions
from which “fac” is called. Conversely, variables defined at command level are not known to
a function unless they are passed on as parameters.

Global parameters can be defined by means of the “global” command.
> Global X=500

the value of X is now know to all functions.

If a function defines its own variable X that has the same name as a global variable, the local
definition takes precedence. In parameter substitutions local variables also take precedence.

Parameters are passed to functions by value; the variables of the calling procedure are not
changed. Functions only have access to global variables, not to local ones except its own.

Variables can be freed (removed, in order to save memory) using one of the commands
> Free Glubal (variable)

> Free Local (variable)

> Free Variable (variable)

Without parameter, these commands free respectively all global variables, all local variables
at command level, and both of the above. Local variables at deeper levels (i.e. those used
in functions) cannot be freed manually; they are automatically freed when the function is
completed.

17.16. Parameter types

Parameters of commands can have datatypes that are shown in the “help” output. For
example for the “repeat” command we find

Repeat [pos int count][commandline]

The type of “count” is “pos int”. This means that the character string “count” is converted
to a positive integer, if possible. If “count” is an expression, it is evaluated, and if it is a
variable, it is substituted. If the result is not a positive integer the command will return an
error. For other datatypes there will be other conversion methods, or no conversion at all.
In general conversion to integers involves the evaluation of expressions.
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The parameter types can be inspected with the command
> Browse Datatypes

Type Description

id String

switch ON or OFF

sign Sign (+1 or -1)

non neg int Non-negative integer

pos int Positive integer

int Integer

Here only the types are shown that are built into the interpreter; the actual set of types
depends on the program. The last for types convert to integer values. The type “switch”
accepts the strings “ON” or “OFF”, where each character may be upper or lower case.

Between the typing of a command line and the execution of the command the following
expression evaluations and variable substitutions may take place, and in the following order

1. Automatic expression evaluation for function arguments.

2. Local variable substitution in command parameters.

3. Global variable substitution in command parameters.

4. Argument evaluation due to type conversion of command parameters.

Furthermore parameter substitution also takes place during expression evaluation, and for
operatorless expressions. To avoid undesirable multiple evaluations, parameter substitution
(local and global) is by default switched off for any command with one or more parameters
of definite type (it can be switched on if desired). Furthermore expression evaluation in type
conversions is switched off when a command is called as a function. This ensures that in all
situations only a single evaluation takes place. If mutiple evaluations are needed, this can
be achievedby multiple nested calls of “Evaluate”, or by using brackets.
Consider the following example, involving the “repeat” command, whose first argument is a
positive integer (type “tt pos int”). > A=B

> B=C

> C=2

> Evaluate repeat(A,time)

Non-numerical parameter: B

RETURN CODE 1

> Evaluate repeat((A),time)

Non-numerical parameter: C

RETURN CODE 1

> Evaluate repeat(((A)),time)

CPU time used 0.02 seconds

CPU time used 0.02 seconds

> repeat A time

Non-numerical parameter: B
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17.17. Math mode

In math mode all lines that are enterred are treated as parameters of the “Evaluate” com-
mand. Hence typing ”1+1” leads directly to the answer ”2”. Math mode is turned on by
the comand

> Set Math (switch ON/OFF)

The default is ON.

To turn math mode off it should be remembered that only expressions are accepted as input.
Hence one should type > Set Math(OFF)

to leave math mode.

17.18. Finding commands

Several commands are available to find commands.
> Find [string]

finds all commands with “string” as a substring of the command name or one of the keywords.
> Apropos [string]

finds all commands with “string” as a substring of the command name or one of the keywords,
or of the primary help text.

> Commands

lists all commands
> Commands All

lists all commands and keywords, and
> Commands Detail

lists all commands keywords and primary help texts. Finally
> Help (command)(key 1)...(key n)

gives the command syntax and the help text for the command.

The help text may consist of two parts. The second part may be shared by several commands,
The first part is what is referred to as “primary help text” above.

17.19. Input and output

> File (fn)

> File Off

> Terminal

> Terminal Off

> Terminal On

> Load (filename)

> Prompt

read further input from terminal
> Set Echo (switch ON/OFF)

Switch command echoing
> Set Interactive (switch ON/OFF)

Switch terminal input
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17.20. Printing

> Print [string]

17.21. System commands

> System [cmd...]

> Time

17.22. Tables

> Table Header [table]

> Table Info [table]

> Table Left adjust [table][column]

> Table List

> Table Noheader [table]

> Table Restore [table][column]

> Table Right adjust [table][column]

> Table Set space [table][column][pos int s]

> Table Suppress [table][column]

17.23. Memory management

> Free All

> Status Memory

17.24. Status commands

There are several commands to check the status of various parameters of the program. The
command

> Status Definitions

displays all current macro definitions, global and local variables, and user-defined procedures.
> Status Errors

Displays all error messages that have occurred (this may include messages that were not
displayed. Calls to the error routine can also occur during normal operation, and hence
if messages are displayed this does not necessarily mean that there is a problem). The
command

> Status Memory

shows the total amount of dynamically allocated memory, in bytes. There are two keywords
> Status Memory Detail

> Status Memory More detail

which are self-explanatory. The value of internal parameters can be displayed using
> Status Parameters

Some of these parameter values (indicated by “(*)”) can be saved in a default file for future
runs. To browse the current defaults type

> Status Preferences

The values that are shown by the latter command may not correctly reflect changes in the
values. This is discussed in the next subsection.
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17.25. Quiting

> Quit

Exit program.

17.26. Defaults and preferences

There are in general several parameters that affect the program. This includes the ones listed
by the “Status Parameters” command, the ones listed by the “Status Preferences” com-
mands, and others. All these parameters have default values, and some of these defaults can
be changed permanently to the values preferred by the user. The defaults are stored in a
file. The name of that file can be shown using

> Show Default file

Each line in this file has two entries, and is of the form
“Parameter” “Value”
Some of the lines in the defaults file may refer to output tables. These are lines of the form
“Table:Name:Parameter” “Value”

There is no generic command for changing default values. Parameters that appear with
“Status Parameters” can be changed with the “tt Set” command. The values of the these
parameters can be inspected individually by means of the “Show” command, with the same
keywords as “Set”. Table defaults can be changed with the “Table” command. For other
parameters special commands may be available. The changes are saved in the defaults file
by typing

> Save Preferences

The defaults file can be edited with a standard text editor. Mistakes in the parameter names
are ignored (i.e. the “value” is not assigned to any parameter). On the other hand, mistakes
in the values may have important consequences. It is better not to change the table defaults
by hand, but by means of the “Table” command. Mistyping a table name leads to an error
message (which, however, has no consequences other than ignoring the line in question).

The command > Status Preferences

shows the preferences as they were read in, but may not show some changes made after start-
ing the program. This is because some default parameters may be mapped internally to other
variables, and only the latter are updated. The internal variables are mapped back to the pa-
rameters in the defaults file when the command “Save Preferences” is enterred. Hereafter
the updated values are shown correctly by the “ Status Preferences” command.
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17.27. Error messages

> Explain

> Status Errors

> Reset Errors

> Set Error log (switch ON/OFF)

Switch error log file use

> Set Error trace (switch ON/OFF)

Switch error trace

17.28. Debugging

> Set Debug Level [pos int level]

> Set Debug Alloc trace

> Set Debug Off

> Set Log (switch ON/OFF)

Switch log file use

17.29. Built-in commands

The following commands (and keywords) are known to the interpreter itself. Each program

it is used for may add its own commands.
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Apropos Find string in help texts
Break Jump out of loop
Browse Datatypes Display data types
Commands List all commands

All List all commands and keywords
Detail List all commands,keywords and help info.

Continue Do nothing
Define Macro definition
Evaluate Evaluate expression and print/return result
Explain Explain errors
Extract Extract integer from string
Execute Evaluate expression but do not print/return result
File Switch file output on/off
Find Find a command
Free All Remove macros,procedures and variables

Local Remove local variables
Macros Remove macro definitions
Global Remove global variables
Procedures Remove procedure definitions
Variables Remaove local and global variables

For Start loop
Global Define a global variable
Help Command information
If Conditional switch
Info syntax Print this list
Load Read command or procedure file
Math Switch math mode on or off
Procedure Define procedures
Print Print strings directly (not returned in functions)
Quit Terminate execution
Repeat Repeat instruction
Reset Errors Set error messages to “do not ignore”
Return Evaluate expression and return result
Set Debug(*) Debug settings

Echo Display input lines
Error trace Display origin of errors
Enable substitution Enable automatic parameter substitution
Disable substitution Disable automatic parameter substitution

Status Aliases Show all macros, variables and procedures
Errors Show all error messages that have occurred
Memory Show allocated workspace

System Perform system call
Table Table commands
Terminal Output to terminal on/off
Time Display CPU time used
Undefine Macro un-definition
Verify Evaluate with error output only
While Conditional loop
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Built-in commands and application-dependent commands are indistinguishable for the user.
Commands listed with a (*) are only known internally, and are hidden by the Commands

command. Not all keywords are listed here; see the corresponding sections for Set debug

and Table.

17.30. Special characters

(blank) Separates a command block into “words”
; Command block separator
% Comment; internal variable
\ Continuation character, escape character
{ Opening bracket for command words
} Closing bracket for command words
( Opening bracket in expressions or procedure definitions
) Closing bracket in expressions or procedure definitions
+ Integer addition
− Integer subtraction
* Integer multiplication
= Assignment statement; also used in conditions
! Used as “not” in conditions
> Used as “larger than” in conditions
< Used as “smaller than” in conditions
& Used in logical AND
| Used in logical OR, as separator in proc. defs. and in string concat.
∼ Used in string conditions and assignment
, Used as separator in procedure definitions
@ Used internally as quotes
# Used as dummy variable in tables
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18. Kac defaults and parameters

18.1. Parameters

Name In defaults file
Autostore YES
Invariant statistics NO
Boundary search info level NO
Boundary search use all sets NO
Boundary search capacity NO
Orientifold NO
Selection extension NO
Selection symmetric NO
Selection automorphism NO
Create show info NO
Invariant show info NO
Tadpole show spectrum NO
Fusion sumcheck NO
Selection max display YES
S matrix maxsize YES
Trace resolution NO
Super NO
Graded NO
Dimension NO
High precision YES
Maxrank YES
Tadpole info level YES
interactive NO
error log YES
log YES
error trace NO
math NO
echo NO

18.2. The defaults file

18.3. Datatypes

The parameters of commands can have one of the following types
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Name description Auto conj. Auto range
Ishibashi Ishibashi label NO YES
bound Boundary label NO YES
dim Space-time dimension in superstring mode NO NO
rank Rank of horizontal algebra NO NO
radius Circle radius (defined as number of primaries) NO NO
level Level (central charge) NO NO
N susy Number of supersymmetries NO NO
field Primary field label YES YES
fprim CFT primary in tensor factor NO NO
fcur Simple current in tensor factor NO NO
current Simple current YES YES
id String NO NO
switch ON or OFF NO NO
sign Sign (+1 or -1) NO NO
non neg int Non-negative integer NO NO
pos int Positive integer NO NO
int Integer NO NO

Type “id” is the default, if no type is shown in the Help output. If a parameter has the “Auto-
conjugation” property, as indicated in column 3, then it can be conjugated by preceding it by
a − sign. For example Fusion 1 -2 computes the fusion between field 1 and the (charge)-
conjugate of 2. If the “Auto-range” property is available, one can perform a command for a
range of parameter values by typing either “min:max” or “*” instead of the parameter value.
For example Display 3:8 displays all fields from 3 up to and including 8; Get Conjugate

* displays all conjugates.

18.4. Limitations

19. Glossary

This is a complete list of all commands in alfabetic order. It is a slightly edited version of
the entire internal “help” system of the program.

> Account Heterotic

INTERNAL
> Algebra A [rank r][level k]

> Algebra At [rank r][level k]

> Algebra B [rank r][level k]

> Algebra Bc [rank r][level k]

> Algebra Bt [rank r][level k]

> Algebra C [rank r][level k]

> Algebra Cft [CFT name]

Load cft “CFT name”.
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> Algebra Ct [rank r][level k]

> Algebra D [rank r][level k]

> Algebra E [rank r][level k]

> Algebra F [rank r][level k]

> Algebra Fcft [CFT name][pos int current]

Load fixed point cft of cft “CFT name” and current “current”.
> Algebra Ft [rank r][level k]

> Algebra G [rank r][level k]

> Algebra Gt [rank r][level k]

> Algebra Minimal [N susy N][level k]

minimal model “N” supersymmetries and level “k”.
> Algebra Orbifold [pos int N]

Z 2 orbifold of U 2N (CFT with 2”N” primaries).
> Algebra Test [pos int k]

minimal N=2 level “k”.
> Algebra U [radius R]

> Annulus (field i)(bound a)(bound b)

Compute Annulus coefficient Ai
ab = A(i, a, b).

> Apropos [string]

List all commands or keywords containing “string” as a substring or having “string” in the
command description.

> Assemble

Try to assemble a complete set of boundaries using previous results of “try boundary”.
> Benchmark Fusion

Display time and memory allocation for full fusion computation.
> Break (pos int count)

Stop execution of current command line and go up “count” steps in the command line hier-
archy. Without parameters: return to terminal/file level.

> Browse Algebras

Show names of algebras in storage.
> Browse Boundary (bound a)

Show boundary labels. Without arguments: All boundaries are shown. With argument “a”:
Boundary “a” is shown.

> Browse Bulk invariant (name)

Show current bulk invariant, or bulk invariant “name”.
> Browse Cartan

Show Cartan matrix and its inverse.
> Browse Central charge

Show central charge.
> Browse Cft

Display several CFT properties.
> Browse Chiral algebra

Display chiral algebra.
> Browse Conjugation Boundary [bound a]
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Show boundary conjugate of a.

> Browse Cp

Show Chan-Paton labels and gauge groups

> Browse Datatypes

Display data types.

> Browse Decomposition [field i](col 1)...(col n)

Display decomposition of representation “i”.

> Browse Eta

Show charge conjugation twist and its field dependence.

> Browse Etatwists

Compare current twists and eta twists.

> Browse Generic [int nr]

Display spectrum of generic standard model braneconfiguration “nr” from “Models.list”

> Browse Groundstate [field i](col 1)...(col n)

Display decomposition of ground state of representation “i”.

> Browse Heterotic

Display heterotic string spectrum (using the bosonic string map). Works only in “super”

mode and if the conditions for a superstring interpretation are satisfied (see “help set super”

for more details).

> Browse Heterotic Decomposition

Same as “browse heterotic” but in addition to the totals, the decomposition of the spectrum

in terms of terms in the partition function is shown.

> Browse Heterotic Flipped

Same as “browse heterotic” but with left and right sector reversed.

> Browse Heterotic Flipped Decomposition

Combines keywords “flipped” and “decomposition”.

> Browse Integral spin

Display all integral spin fields.

> Browse Invariants

List names of all stored invariants.

> Browse Ishibashi (Ishibashi a)

Show Ishibashi labels. Without arguments: All Ishibashi labels are shown. With argument

“a”: Ishibashi label “a” is shown.

> Browse Lie

Display horizontal Lie algebra properties.

> Browse Lorentz [dim D]

Explain notation for Lorentz representations appearing in D-dimensional super multiplets.

> Browse Metric (Ishibashi i)

Show the diagonal Ishibahsi metric “i”.

> Browse Orbit Boundary [bound a]

Show boundary orbit.

> Browse Orbit Ishibashi [Ishibashi m]

Show Ishibashi orbit.

> Browse Orientifold
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Show current orientifold properties.
> Browse Permutations

Display permutation/outer automorphism symmetries among simple currents
> Browse Signs

Show phase shifts used in reflection coefficients and signs used in crosscap computation.
Phase shifts x: Refl. coeffs are exp[−iπx/4]SJ Crosscap signs e: Crosscaps are

∑
J e(J)PJm

Here SJ is the fixed point resolution matrix: SJ = exp[−iπm/4]OJ , the orbit Lie algebra
matrix. the phase “m” is listed under “FCFT shift.” A “*” indicates that there are no fixed
points.

> Browse Simple currents

Show simple current data.
> Browse Stabilizer [field lbl]

Show information on the stabilizer of field “lbl”.
> Browse Susy (dim D)(L susy)(R susy)(m1)(m2)(int sym)

Show spin content of susy representation.
> Browse Tadpole Bounds

Display tadpole upper and lower boundaries.
> Browse Tadpole Equations (non neg int nr.)

Display tadpole cancellation conditions for massless fields With parameter: display eqn “nr.”.
> Browse Tadpole Kernel

Display tadpole kernel vectors.
> Browse Twists

Show simple current twists.
> Browse Type-i

Display type-I closed string spectrum (using the bosonic string map) Works only in “super”
mode and if the conditions for a superstring interpretation are satisfied (see “help set super”
for more details).

> Browse Type-ii

Display type-II string spectrum (using the bosonic string map) Works only in “super” mode
and if the conditions for a superstring interpretation are satisfied (see “help set super” for
more details).

> Browse Type-ii Decomposition

Same as “browse type-II” but in addition to the totals, the decomposition of the spectrum
in terms of terms in the partition function is shown.

> Browse Type-ii Flipped

Same as “browse type-II” but with relative chirality reversed.
> Browse Type-ii Flipped Decomposition

Combines keywords “flipped” and “decomposition”.
> Build Cy [int code]

Build minimal model tensor product identified by “code” For example 441010 yields the
supersymmetrized tensor product of two k=4 and two k=10 minimal models.

> Check Algebra (int mult1)...(int mult2)

Check if a potential chiral algebra has non-negative projections on all fields. The parameters
are the multiplicities of the integer spin fields in the order given by “Browse integral spin”.
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> Check Annulus [field i][bound a][bound b]

Check that the direct computation of the annulus gives the same answer as the orbit method.
> Check Branching [pos int G type][pos int G rank][pos int H type][pos int H rank]

Check the internal branching tables.
> Check Classes

Check that conjugacy class definitions match simple current charges for WZW models.
> Check Closed (pos int max err)

Check positivity and integrality of Torus + Klein bottle. (”max err” is the maximum num-
ber of error messages; Defaults to no limit).

> Check Compare algebras [name1][name2]

Compare algebras “name1” and “name2”.
> Check Completeness

Check that number of Ishibashi labels equals number of boundaries.
> Check Conjugates

Check S2̂=C.
> Check Cp (entry 1)...(entry n)

Check if CP labels satisfy the tadpole conditions. Entry i is of the form label:value. Here
“label” refers to the Chan-Paton label “n label”, and “value” is the integer value assigned to
it. The labelling starts with n 0, and unassigned labels are set to zero. For example “check
tadpole 0:1 17:2” sets n 0 to 1, n 17 to 2, and all others to zero.

> Check Eta

Check Y(f,0,i)/Y(f,0,0)=exp(i pi h J) eta(J).
> Check Fp conj

Check (SĴ)2̂=etaĴ C.
> Check Full open (pos int max err)

Check all open string consistency conditions (”max err” is the maximum number of error
messages; Defaults to no limit).

> Check Fusion [field i][field j][field k]

Check integrality of the naive stabilizer-based fusion coefficients
> Check Homomorphism (field lbl1)...(field lbln)

Check homomorphism generated by lbl1...lbln.
> Check Hopf

Check rational Hopf algebra relations.
> Check Invariant [invariant]

Check the modular invariant “invariant” Syntax of “invariant” (example): n*(a+b+c)*(d+m*e+f)+(g+h)2̂+k*(i)2̂
where n,m,k are integers and a-i valid labels.

> Check Klein (pos int max err)

Check positivity of NijkKiKjKk (”max err” is the maximum number of error messages; De-
faults to no limit).

> Check Modular

Check unitarity and ST3̂=S2̂.
> Check Nimrep [field i][field j][bound a][bound b]

Check NIMrep condition:
∑

c Ac
iaA

b
jc =

∑
k Nk

ijA
b
ka

> Check Open (pos int max err)
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Check positivity and integrality of Annulus + Moebius strip (”max err” is the maximum

number of error messages; Defaults to no limit).

> Check Orbits

Check that the algebraic simple current action agrees with the fusion rules.

> Check Oriented annulus

Check positivity and integrality of oriented annulus.

> Check P-gauss [field i][field j]

Check gauss-sum P-matrix formula for labels “i” and “j”.

> Check Pmat

Check pmatrix efficiency

> Check Reflection

Check that the direct computation of the reflection coefficients gives the same answer as the

orbit method.

> Check Simple [field a]

Check if “a” is a simple current.

> Check Smlist

UNDOCUMENTED

> Check Symmetry

Check symmetry of S.

> Check Tadpole Parameters (entry 1)...(entry n)

Check solution to the tadpole conditions that is obtained by setting the parameters to

selected values Entry i is of the form label:value. Here “label” refers to the parameter

“N label”, and “value” is the integer value assigned to it.

> Check Tadpole Solution (entry 1)...(entry n)

Check solution to the tadpole conditions. Syntax as for “check CP”, but the labels refer

to “raw” variables in the tadpole equations (as shown by the command “browse tadpole

equations”). *** These labels are NOT equal to the CP-labels.***

> Check Trace formula

Check the boundary trace formula for the annulus

> Check Twist prod

Check product rule in second argument of F(a,K,J).

> Check Twists

Compare current twists and eta twists (only shows errors).

> Check Unimrep Klein [field i][field j]

Check U-NIMrep condition for moebius/klein:
∑

b M b
i Mjb =

∑
k Y k

ijKk

> Check Unimrep Moebius [field i][field j][bound a]

Check U-NIMrep condition for moebius/annulus:
∑

b Ab
iaMib =

∑
k Y k

ijMka

> Check Unitarity (field a)(field b)

Check unitarity.

> Collect Heterotic

collect heterotic string spectra and number of boundaries Works only in “super” mode and

if the conditions for a superstring interpretation are satisfied (see “help set super” for more

details).

> Collect Orientifolds
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load all distinct FHSSW orientifolds

> Collect Simple current invariants

Load all simple current invariants that respect the selection criteria currently in effect.

> Commands

List all commands.

> Commands All

List all commands and keywords.

> Commands Detail

List all commands, keywords and descriptions.

> Commands Tex

List all commands, keywords and descriptions in TeX format.

> Compute

Compute spectrum

> Compute Galois orbits

Compute all galois orbits.

> Compute Gauss sum (field x)

[This command is only available for WZW models.] Compute Gauss sum: Sum w [exp 2pi i

(w-x/2)2̂/h]. Here x is a weight, and the summation is over all weights w in the weight-lattice

modulo h times the co-root lattice, or in other words, over all primaries at level=h plus their

horizontal Weyl images. The result depends only on the Weyl orbit of the Dynkin labels of

x modulo 2. If no parameter x is specified the computation is done for all orbits. To display

the orbits use the command “Compute Gauss sum Orbits”

NORMALIZATION: a factor (ih/2)r̂ank/2 times the square root of the volume of weight

over coroot lattice is omitted.

NOTE: h=k+g, where g is the dual Coxeter number. However, the computation is done for

h equal to the “level”.

> Compute Gauss sum Orbits (current i)

Compute the complete Weyl orbits modulo 2 in conjugacy class”i” Without parameter: use

conjugacy class 0.

> Compute S analytic (factor)(lbl 1)...(lbl 2r)

Compute the Kac-Peterson formula as an analytic function on weight space. “factor” is a

real factor multiplying the exponents in the Weyl sum. (factor=1 gives the KP-formula).

“lbl i” are analytically continued Dynkin labels, 2r in total, where “r” is the rank; “labl i”

may be any expression that evaluates to a real number.

> Compute S sum (field lbl1)...(field lbln)

Compute sum of indicated rows of S.

> Compute Scale orbits

Compute scale orbits.

> Compute Simple current invariant (current J 1)(current J 2)...(current J n)

Compute all invariants for the subgroup generated by all currents under fusion. Without

parameters: consider all subgroups.

> Conjugate (name 1)(name 2)

Without parameters: conjugate the current bulk invariant. With one parameter: conjugate
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the named invariant and store the result under an automatically generated name. With two
parameters: conjugate the invariant “name 1” and store the result as “name 2”.

> Continue

Do nothing.
> Create [CFT name]

Create a new CFT.
> Current (fcur current 1)...(fcur current n)

Add simple current combination.
> Define [string][replacement]

Macro definition for “string”.
> Dimension [field lbl]

Get dimension of ground state “lbl”.
> Display (field min)(field max)

Display spectrum (Only for field “min” or from “min” to “max”).
> Display Entry [col][field i]

Display entry in column “col” and row i of the spectrum table.
> Display Massless

Display fields contributing to the massless spectrum.
> Dynkin (int i1)...(int in)

Get the label for representation (i1,...,in) For untwisted affine Lie algebras i1,...,in are Dynkin
labels, not including the last (extended) label. Hence “n” equals the rank For all other al-
gebras the labels are those listed by the “display” command.

> Evaluate [expression]

Evaluate algebraic expression.
> Execute [expression]

Execute algebraic expression without printing output.
> Expand [field lbl]

Expand coset field into Dynkin labels.
> Extract [pos int label][string]

Extract integer nr. “label” from “string”.(Count starts at 1) “string” is taken literally in
command line use of “extract”. When “extract” is used as a function, e.g “extract(1,string)”,
“string” is evaluated as an expression.

> File (fn)

Output to file; file name = fn.
> File Append (fn)

Append output to file; file name = fn.
> File Off

Close output file.
> File On (fn)

Output to file; file name = fn.
> Find [string]

List all commands or keywords containing “string” as a substring.
> Fix Cpmult (entry 1)...(entry n)

fix Chan-Paton multiplicity. Entries have the form label:value.Here label is any valid bound-
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ary label. When the tadpoleequations are solved these labels are kept fixed.For boundary

conjugates the fixed values are set automaticaly.

> Float [expression]

Evaluate algebraic expression and convert to floating point number.

> For [command1][condition][command2][commandline]

Execute commandline while “condition” holds. before execution of “commandline”,”command1”

is executed once. After each execution of “commandline” “command2” is executed.

> Free All

Remove all macros, procedures and variables.

> Free Global (variable)

Remove “variable” (global); without parameters: remove all global variables

> Free Local (variable)

Remove “variable” (local); without parameters: remove all local variables.

> Free Macros (macro)

Remove “macro”; without parameters: remove all macro definitions.

> Free Procedures (procedure)

Remove “procedure”; without parameters: remove all procedures.

> Free Variable (variable)

Remove “variable” (local and/or global); without parameters: remove all variables.

> Fusion (field i)(field j)(field k)

Compute fusion rules.

> G A [rank r][level k]

> G At [rank r][level k]

> G B [rank r][level k]

> G Bc [rank r][level k]

> G Bt [rank r][level k]

> G C [rank r][level k]

> G Cft [CFT name]

Load cft “CFT name”.

> G Ct [rank r][level k]

> G D [rank r][level k]

> G E [rank r][level k]

> G F [rank r][level k]

> G Ft [rank r][level k]

> G G [rank r][level k]

> G Gt [rank r][level k]

> G Minimal [N susy N][level k]

Minimal model with “N” Supersymmetries and level k.

> G Orbifold [pos int N]

Z2 orbifold of U2N .

> G Test [pos int k]

minimal N=2 level k

> G U [radius R]

> Get Bfusion [field i][bound a]
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compute boundary fusion

> Get Charge [current J][field a]

Get the charge of “a” w.r.t. “J”.

> Get Class alg [Ishibashi i][Ishibashi j][Ishibashi k]

Compute classifying algebra coefficients.

> Get Conjugate [field a]

Get the conjugate of field “a”.

> Get Crosscap (Ishibashi i)

Get the crosscap coefficient for Ishibashi field “i”.

> Get Fcft [pos int current]

Load fixed point cft for current “current”.

> Get Fcft shift [current J]

Get the shift parameter “m” that determines the phase between the fixed point resolution

matrix SĴ and the orbit Lie algebra matrix OĴ: SĴ = exp[-i pi m/4] OĴ.

> Get Fp fusion [current J][field i][field g][field h]

Compute fixed point fusion rules This command computes Sum n S in OĴ gn OĴ hn/S 0n

where “g” and “h” are fixed points of “J” and the sum is over all fixed points. The matrix OĴ

is the matrix S of the orbit lie algebra, which differs from the fixed point resolution matrix

SĴ by a phase.

> Get G schur [field p][field q]

Compute generalized Frobenius-Schur indicator of fields “p” and “q”.

> Get Nimrep (field i)(bound a)(bound b)

Compute NIMrep matrix (Ai)ba. Without arguments: all matrices. One argument: Matrix

Ai. Two arguments: (Ai)ba (all b).Three arguments: (Ai)ba.

> Get Order [current J][field a]

Get the order of the simple current “J” on “a”.

> Get Reflection (Ishibashi i)(bound a)

Get the reflection coefficient for Ishibashi field “i” on boundary “a”.

> Get S fix [current J][field i][field j]

Compute the matrix element SJ
ij of the fixed point resolution matrix of current J.

> Get S ola [current J][field i][field j]

Compute the matrix element OJ
ij of the orbit lie algebra matrix of current J.

> Get Schur (field a)

Compute Frobenius-Schur indicator of field “a”. Without arguments: all fields.

> Get Twist [field ][current K][current J]

Get the twist F(a,K,J).

> Get Weight [field a]

Get the weight of field “a” in rational form.

> Global [assignment]

Declare global variable local and assign a value.

> Grade [current J]

Add an NSR-type grading according to the charges of the current “J”. These charges must

be (half)-integer.

> H A [rank r][level k]
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> H At [rank r][level k]

> H B [rank r][level k]

> H Bc [rank r][level k]

> H Bt [rank r][level k]

> H C [rank r][level k]

> H Cft [CFT name]

Load cft “CFT name”.

> H Ct [rank r][level k]

> H D [rank r][level k]

> H E [rank r][level k]

> H F [rank r][level k]

> H Ft [rank r][level k]

> H G [rank r][level k]

> H Gt [rank r][level k]

> H U [radius R]

> Help (command)(key 1)...(key n)

General help or help for commands.

> Identify (fprim lbl 1)...(fprim lbl n)

Find orbit in which primary combination occurs (if any).

> Identify Orientifold

Find equivalence class of the current orientifold.

> If [condition][true commandline](false commandline)

Execute one of the two commandlines depending on “condition”.

> Indices (field lbl)

Compute indices (for rep. “lbl”).

> Initialize

TEMPORARY

> Intersect [bound a][bound b]

Compute the oriented chiral intersection matrix of boundaries “a” and “b”. This is defined

as Iab = sum(i, massless, lefthanded)Ai
ab Character(i) Also shown is the chirality, Iab−Iacbc

(Implemented only for 4-D CY compactifactions)

> Klein (field i)

Compute Klein bottle coefficient Ki.

> List (column 1)...(column n)

Restore printing of all columns of spectrum tables with name that starts with “column i”

> Load (filename)

Read command or procedure file.

> Localize Boundary [bound a]

Find location of D-brane (U(1) and orbifold only)

> Localize Crosscap

Find location of O-plane (U(1) and orbifold only)

> Make Bulk Exceptional

Regard the current bulk invariant as an exceptional invariant.

> Modelscan [filename]
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Scan models in “filename” for tadpole solutions

> Modelscan2 [filename]

UNDOCUMENTED

> Moebius (field i)(bound a)

Compute Moebius strip coefficient M i
a = M(i, a).

> Multiply [name1][name2](name3)

Multiply bulk invariants “name1” and “name2” to yield “name3”. If not specified, “name3”

is automatically assigned.

> Multiply Close

Close set of bulk invariants under multiplication.

> Multiply Close Display

Close set of bulk invariants under multiplication and display new items.

> New Column [name][expression]

Add new column to current output table.

> Orbit [current J][field i]

Compute J-orbit of i.

> Pfusion (field i)(field j)(field k)

Compute P-fusion rules.

> Pmatrix (field lbl1)(field lbl2)

Compute matrix elements of P.

> Print [string]

Print string.

> Procedure [name][commandline]

Define a procedure.

> Prompt

read further input from terminal

> Quit

Exit program.

> Repeat [pos int count][commandline]

Execute “commandline” “count” times.

> Reset Boundary search

Reset exceptional boundary coefficients to start new search.

> Reset Bulk

Reset bulk invariant and Klein bottle.

> Reset Currents

Reset currents.

> Reset Errors

Restore all error messages previously disabled with “ignore”.

> Reset Invariants

Reset modular invariant storage.

> Reset Orientifold

Resets all crosscap signs.

> Reset Selection

Reset criteria for modular invariant selection.
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> Reset Tadpole

Reset tadpole conditions.
> Reset Tensor

Reset tensor mode.
> Return [expression]

Execute algebraic expression and return value, but do not print it.
> S (field lbl1)(field lbl2)

Compute matrix elements of S.
> Save Preferences

Save preferences.
> Search Boundaries (pos int Maxloop)

Attempt to determine boundary coefficients given a bulk invariant. “Maxloop” is the maxi-
mal loop size. “Methods” chooses between full loop search (value 0) and the shortcut (value
1).

> Search Crosscap

Attempt to find crosscap coefficients given a complete set of boundaries.
> Search Galois invariants

Search for galois invariants.
> Search Klein bottle

Search for Klein bottle signs consistent with Ishibashi states.
> Search Klein bottle All

Search for Klein bottle signs consistent with Ishibashi states and satisfying the trace formula
and the Klein bottle constraint.

> Search Klein bottle Kbc

Search for Klein bottle signs consistent with Ishibashi states and the Klein bottle constraint.
> Search Klein bottle Trace

Search for Klein bottle signs consistent with Ishibashi states and satisfying the trace formula.
> Search Mipf

search all Modular Invariant Partition Functions that can be obtained combining all avail-
able methods.

> Search Mipf Automorphism

search for Modular Invariant Partition Functions of automorphism type.
> Search Mipf Built in

list Modular Invariant Partition Functions that are explicitly built in (currently only for c=1
orbifolds).

> Search Mipf Extension

search for Modular Invariant Partition Functions of extension type (non-exhaustive algo-
rithm).

> Search Mipf Simple current

list all Modular Invariant Partition Functions of simple current type.
> Search Moebius

Attempt to find a Moebius and Klein bottle given a complete set of boundaries.
> Search Nimrep (pos int Maxloop)

Attempt to determine NIMrep given a bulk invariant. “Maxloop” is the maximal loop size.
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> Select Boundary set [non neg int nr]

Select boundary set “nr” from the list. obtained with “search boundaries”.
> Select Conjugation invariant

Set bulk partition function to the conjugation invariant.
> Select Diagonal invariant

Set bulk partition function to the diagonal invariant.
> Select Invariant [invariant]

Set bulk partition function to an explicitly given modular invariant. Format as for “check
invariant”. If “invariant” starts with a character it is interpreted as a name of a stored
invariant.

> Select Klein (entry 1)...(entry n)

Set exceptional Klein bottles. Entries are of the form “lbl:value”. Missing entries are set
equal Zii.

> Select Klein Nr [non neg int nr]

Select exceptional Klein bottle “nr” from the list. obtained with “search klein bottle”.
> Select Orientifold [non neg int i]

Select one of the allowed orientifolds
> Select Simple current invariant (current J 1)(current J 2)...(current J n)

Compute all invariants for the subgroup generated by all currents under fusion, and prompt
for selection. Without arguments: consider all subgroups.

> Set Autoselect [pos int choice]

Set modular invariant selection to automatic mode, with automatic selection of invariant
“choice”.

> Set Autoselect Off

Set modular invariant selection to interactive mode.
> Set Autostore (switch ON/OFF)

Switch Automatic storage of modular invariants.
> Set Boundary search Capacity [pos int value]

Set storage space scaling factor used in boundary search.
> Set Boundary search Info level [non neg int value]

Set amount of information printed while searching for boundaries and crosscaps.
> Set Boundary search Use all sets (switch ON/OFF)

Switch usage of all boundary sets versus maximal size ones only.
> Set Create Show info (switch ON/OFF)

Switch display of information during CFT creation.
> Set Crosscap signs (sign s 1)...(sign s n)

Set signs used in crosscap formula. There is one sign choice for each cyclic factor in the
simple current group that defines the bulk invariant. Signs for odd cyclic factors are ignored.
Missing signs are set to 1.

> Set Debug Alloc trace Off

Stop showing all (re-)allocations.
> Set Debug Alloc trace On

Show all (re-)allocations.
> Set Debug Level [pos int level]
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Set debug level to “level” (maximum value 4).
> Set Debug Off

Switch debug off.
> Set Dimension [dim value]

Set space time dimension for superstring mode.
> Set Disable sub [command](key 1)...(key n)

Disable automatic substitution for parameters of “command key 1 ... key n”.
> Set Echo (switch ON/OFF)

Switch command echoing
> Set Enable sub [command](key 1)...(key n)

Enable automatic substitution for parameters of “command key 1 ... key n”.
> Set Error log (switch ON/OFF)

Switch error log file use
> Set Error trace (switch ON/OFF)

Switch error trace
> Set Fusion Sumcheck (switch ON/OFF)

Switch dimension sum rule check in fusion.
> Set Graded (switch ON/OFF)

Switch graded/ungraded tensor product evaluation.
> Set High precision (switch ON/OFF)

Switch high or low precision in modular data display.
> Set Init debug (switch ON/OFF)

Switch display initialization information
> Set Interactive (switch ON/OFF)

Switch terminal input
> Set Invariant Show info (switch ON/OFF)

Switch display of information during simple current invariant computation.
> Set Invariant Statistics (switch ON/OFF)

Switch display of statistics of bulk invariants.
> Set Kleinbottle [current J]

Specify simple current “J” to be used to modify Klein bottle projection.
> Set Log (switch ON/OFF)

Switch log file use
> Set Loop command [commandline]

Set “commandline” to be applied to each modular invariant. Choose “commandline” equal
to “off” to turn off.

> Set Math (switch ON/OFF)

Switch math mode
> Set Maxrank [non neg int value]

Set maximal rank.
> Set Moebius Security level [non neg int value]

Set Level of reliability required for solving moebius polynomial equations.
> Set Nimrep Max row [non neg int value]

Set maximal number of NIMrep row candidates
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> Set Orientifold (switch ON/OFF)

Switch requirement of Crosscap/Moebius/Klein consistency during boundary search.

> Set Outputdir [string]

Directory for output files

> Set Outputfilepostfix [string]

postfix for output file name

> Set Outputfileprefix [string]

prefix for output file name

> Set Reject Info (switch ON/OFF)

Switch display of permutation rejection criteria

> Set Reject Permutations (switch ON/OFF)

Switch automatic suppression of invariants related by permutations and outer automor-

phisms

> Set S matrix Maxsize [non neg int value]

Set maximal size for S matrix storage.

> Set Selection Automorphism (pair 1)(pair 2)...(pair n)

Require simple current invariant to be of automorphism type. Parameters of the form i:j

require pairing of field “i” with field “j” Turn off with “set selection automorphism off.”

> Set Selection Extension (switch ON/OFF)

Switch restriction to extension invariants during modular invariant selection

> Set Selection Left (current J 1)(current J 2)...(current J n)

Require presence of indicated currents in the left chiral algebra

> Set Selection Max display [non neg int value]

Set Maximal number of orbits shown during selection of simple current invariants.

> Set Selection Right (current J 1)(current J 2)...(current J n)

Require presence of indicated currents in the right chiral algebra

> Set Selection Symmetric (switch ON/OFF)

Switch restriction to symmetric invariants during modular invariant selection

> Set Sm search Check moebius (switch ON/OFF)

Switch check Moebius chirality for (anti)-symmetric tensors

> Set Sm search Global Show all (switch ON/OFF)

Switch Display all independent global anomalies

> Set Sm search Global Show new (switch ON/OFF)

Switch Display all new independent global anomalies

> Set Sm search New search (switch ON/OFF)

Switch updating of existing msol/stat files

> Set Sm search Nfamily [pos int value]

Set Number of families searched for in “Search Standard model”

> Set Sm search No abort (switch ON/OFF)

Switch fast abort during standard model search

> Set Sm search No frac (switch ON/OFF)

Switch Require absence of fractionally charged massless states

> Set Sm search Pati-salam (switch ON/OFF)

Switch Include Pati-Salam models in search
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> Set Sm search Print numbers (switch ON/OFF)

Switch Print invariant numbers in output
> Set Sm search Reject massive y (switch ON/OFF)

Switch Reject triplets with massive Y-bosons
> Set Sm search Reject repeated [non neg int value]

Set Reject brane configurations similar to previous ones Values: 0: no skip; 1: Skip previous
solutions 2: skip previous occurrence

> Set Sm search Zero-tension (switch ON/OFF)

Switch Include zero tension orientifolds in search
> Set Store s (switch ON/OFF)

Switch storage of orbit-orbit S-matrix elements for single algebras
> Set Super (switch ON/OFF)

Switch superstring interpretation of spectra.
> Set Tadpole Check solution (switch ON/OFF)

Switch automatic equation check for tadpole solutions.
> Set Tadpole Info level [non neg int value]

Set amount of information printed while solving tadpole conditions.
> Set Tadpole Remove identical (switch ON/OFF)

Switch remove variables with identical tadpole coefficients
> Set Tadpole Show solution (switch ON/OFF)

Switch automatic display of CP multiplicities for each solution.
> Set Tadpole Show spectrum (switch ON/OFF)

Switch automatic spectrum computation for tadpole solutions.
> Set Tadpole Simplest only (switch ON/OFF)

Switch Only find simplest Chan-Paton groups
> Set Tadpole Single solution (switch ON/OFF)

Switch interrupt loop search after a single solution is found
> Set Tadpole Unitary groups only (switch ON/OFF)

Switch Allow only unitary CP groups
> Set Trace resolution (switch ON/OFF)

Switch display of FCFT contributions to resolved S If this switch is ON, the contributions
to S ab are shown for each current J that fixes a and b.

> Set Use orbits [non neg int value]

Set level of orbit usage for fusion and annulus computations
> Show Autostore

Show setting of Automatic storage of modular invariants.
> Show Boundary search Capacity

Show storage space scaling factor used in boundary search.
> Show Boundary search Info level

Show amount of information printed while searching for boundaries and crosscaps.
> Show Boundary search Use all sets

Show setting of usage of all boundary sets versus maximal size ones only.
> Show Create Show info

Show setting of display of information during CFT creation.
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> Show Default file

show filename of default file
> Show Dimension

Show space time dimension for superstring mode.
> Show Echo

Show setting of command echoing
> Show Error log

Show setting of error log file use
> Show Error trace

Show setting of error trace
> Show Fusion Sumcheck

Show setting of dimension sum rule check in fusion.
> Show Graded

Show setting of graded/ungraded tensor product evaluation.
> Show High precision

Show setting of high or low precision in modular data display.
> Show Init debug

Show setting of display initialization information
> Show Interactive

Show setting of terminal input
> Show Invariant Show info

Show setting of display of information during simple current invariant computation.
> Show Invariant Statistics

Show setting of display of statistics of bulk invariants.
> Show Log

Show setting of log file use
> Show Math

Show setting of math mode
> Show Maxrank

Show maximal rank.
> Show Moebius Security level

Show Level of reliability required for solving moebius polynomial equations.
> Show Nimrep Max row

Show maximal number of NIMrep row candidates
> Show Orientifold

Show setting of requirement of Crosscap/Moebius/Klein consistency during boundary search.
> Show Outputdir

Show Directory for output files
> Show Outputfilepostfix

Show postfix for output file name
> Show Outputfileprefix

Show prefix for output file name
> Show Reject Info

Show setting of display of permutation rejection criteria
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> Show Reject Permutations

Show setting of automatic suppression of invariants related by permutations and outer au-
tomorphisms

> Show S matrix Maxsize

Show maximal size for S matrix storage.
> Show Selection Criteria

Show current settings of criteria used for invariant selection.
> Show Selection Extension

Show setting of restriction to extension invariants during modular invariant selection
> Show Selection Max display

Show Maximal number of orbits shown during selection of simple current invariants.
> Show Selection Symmetric

Show setting of restriction to symmetric invariants during modular invariant selection
> Show Sm search Check moebius

Show setting of check Moebius chirality for (anti)-symmetric tensors
> Show Sm search Global Show all

Show setting of Display all independent global anomalies
> Show Sm search Global Show new

Show setting of Display all new independent global anomalies
> Show Sm search New search

Show setting of updating of existing msol/stat files
> Show Sm search Nfamily

Show Number of families searched for in “Search Standard model”
> Show Sm search No abort

Show setting of fast abort during standard model search
> Show Sm search No frac

Show setting of Require absence of fractionally charged massless states
> Show Sm search Pati-salam

Show setting of Include Pati-Salam models in search
> Show Sm search Print numbers

Show setting of Print invariant numbers in output
> Show Sm search Reject massive y

Show setting of Reject triplets with massive Y-bosons
> Show Sm search Reject repeated

Show Reject brane configurations similar to previous ones Values: 0: no skip; 1: Skip previ-
ous solutions 2: skip previous occurrence

> Show Sm search Zero-tension

Show setting of Include zero tension orientifolds in search
> Show Store s

Show setting of storage of orbit-orbit S-matrix elements for single algebras
> Show Super

Show setting of superstring interpretation of spectra.
> Show Tadpole Check solution

Show setting of automatic equation check for tadpole solutions.
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> Show Tadpole Info level

Show amount of information printed while solving tadpole conditions.

> Show Tadpole Remove identical

Show setting of remove variables with identical tadpole coefficients

> Show Tadpole Show solution

Show setting of automatic display of CP multiplicities for each solution.

> Show Tadpole Show spectrum

Show setting of automatic spectrum computation for tadpole solutions.

> Show Tadpole Simplest only

Show setting of Only find simplest Chan-Paton groups

> Show Tadpole Single solution

Show setting of interrupt loop search after a single solution is found

> Show Tadpole Unitary groups only

Show setting of Allow only unitary CP groups

> Show Trace resolution

Show setting of display of FCFT contributions to resolved S If this switch is ON, the con-

tributions to S ab are shown for each current J that fixes a and b.

> Show Use orbits

Show level of orbit usage for fusion and annulus computations

> Simple fusion [current J](field j)

Compute simple current fusion rules.

> Single

Switch to single algebra mode; Display presently available algebra

> Solve Tadpole (switch parm)

Attempt to solve tadpole conditions. parm=ON: find parametrized solution (default).

parm=OFF: find all solutions.

> Solve Tadpole Bounds (switch parm)(pos int interrupt)

Attempt to solve tadpole conditions by reducing bounds parm=ON: find parametrized solu-

tion (default). parm=OFF: find all solutions. Pause after “interrupt” seconds (default 60).

> Solve Tadpole Kernel (switch parm)(pos int max loop)

Attempt to solve tadpole conditions by determining kernel parm=ON: find parametrized

solution (default). parm=OFF: find all solutions. Give up after “max loop” candidates per

CP label (default 10000).

> Solve Tadpole Loops (switch parm)(pos int interrupt)

Attempt to solve tadpole conditions using diophantine loops parm=ON: find parametrized

solution (default). parm=OFF: find all solutions. Pause after “interrupt” seconds (default

60).

> Solve Tadpole Simple

Attempt to solve tadpole conditions using only simple current boundaries.

> Status

Show mode

> Status Definitions

Show defined macros, variables and procedures.

> Status Errors
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Show error statistics.

> Status Memory

Show total memory use.

> Status Memory Detail

Show details of memory use for various parts of the program.

> Status Memory More detail

Show memory use for arrays in the program.

> Status Parameters

Show values of internal parameters.

> Status Preferences

Show values of parameters in default data base.

> Store (name)

Store current bulk invariant as “name”. If no argument is present a name is automatically

assigned.

> System [cmd...]

Perform Unix command [cmd...].

> Table Header [table]

Switch on header for table “table”.

> Table Info [table]

Info on table “table”.

> Table Left adjust [table][column]

left adjust “column” in “table”.

> Table List

List output tables.

> Table Noheader [table]

Switch off header for table “table”.

> Table Restore [table][column]

Restore displaying of “column” in “table”.

> Table Right adjust [table][column]

right adjust “column” in “table”.

> Table Set space [table][column][pos int s]

set spacing of “column” in “table” to “s”.

> Table Suppress [table][column]

Suppress displaying of “column” in “table”.

> Tensor

Switch to tensor mode; Display factors and simple currents

> Terminal

Switch for terminal output (without keyword equivalent to ‘Terminal On’).

> Terminal Off

Switch output to terminal off.

> Terminal On

Switch output to terminal on.

> Time

Print CPU time used so far.
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> Total Boundaries

Return total number of boundary labels
> Total Invariants

Return total number of modular invariants stored as “Invariant n”
> Total Ishibashi

Return total number of Ishibashi labels
> Total Primaries

Return total number of primaries
> Total Simple currents

Return total number of simple currents
> Transpose (name 1)(name 2)

Without parameters: transpose the current bulk invariant. With one parameter: transpose
the named invariant and store the result under an automatically generated name. With two
parameters: transpose the invariant “name 1” and store the result as “name 2”.

> Try Boundary [limits]

Try a boundary “a”, specified by a set of annuli Ai
aa Input of the form 1,2,0:2,3 means

A0 = 1, A1 = 2, A2 ranges from 0 to 2 (inclusive), A3 = 3.
> Undefine [string]

Remove macro definition for “string”.
> Unlist (column 1)...(column n)

Suppress printing of all columns of spectrum tables with name that starts with “column i”.
> Verify [commandline]

Execute “commandline” showing no output, but only errors.
> Weyl Group

Display decomposition of Weyl group elements in terms of simple roots.
> Weyl Multiply [non neg int i][non neg int j]

Multiply Weyl group elements “i” and “j”
> Weyl Orbit [field i]

Compute the complete Weyl orbit of field “i”. Same as “Weyl reflection i” except that iden-
tical weights are shown only once.

> Weyl Order

Display order of the Weyl group
> Weyl Parity Orbits

Compute the complete Weyl orbits modulo 2.
> Weyl Reflection [field i](simple root j)

Compute the horizontal Weyl reflection of field “i” in the plane orthogonal to simple root
“j”; Without second parameter: compute action of all Weyl group elements.

> While [condition][commandline]

Execute “commandline” while “condition” holds.
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