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Abstract We investigate the formation of the ten double-lined double white dwarfs that
have been observed so far. A detailed stellar evolution code is used to calculate grids of
single-star and binary models and we use these to reconstruct possible evolutionary scen-
arios. We apply various criteria to select the acceptable solutions from these scenarios.
‘We confirm the conclusion of Nelemans et al. (2000) that formation via conservative mass
transfer and a common envelope with spiral-in based on energy balance or via two such
spiral-ins cannot explain the formation of all observed systems. We investigate three differ-
ent prescriptions of envelope ejection due to dynamical mass loss with angular-momentum
balance and show that they can explain the observed masses and orbital periods well. Next,
we demand that the age difference of our model is comparable to the observed cooling-
age difference and show that this puts a strong constraint on the model solutions. One of
these solutions explains the DB-nature of the oldest white dwarf in PG 1115+116 along the
evolutionary scenario proposed by Maxted et al. (2002a), in which the helium core of the
primary becomes exposed due to envelope ejection, evolves into a giant phase and loses its
hydrogen-rich outer layers.
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5.1 Introduction

Ten double-lined spectroscopic binaries with two white-dwarf components are currently
known. These binaries have been systematically searched for to find possible progenitor
systems for Type Ia supernovae, for instance by the SPY (ESO SN Ia Progenitor surveY)
project (e.g. Napiwotzki et al. 2001, 2002). Short-period double white dwarfs can lose
orbital angular momentum by emitting gravitational radiation and if the total mass of the
binary exceeds the Chandrasekhar limit, their eventual merger might produce a supernova
of type Ia (Iben & Tutukov 1984).

The observed binary systems all have short orbital periods that, with one exception,
range from an hour and a half to a day or two (see Table 5.1), corresponding to orbital sep-
arations between 0.6 R and 7 Rs. The white-dwarf masses of 0.3 M or more indicate
that their progenitors were (sub)giants with radii of a few tens to a few hundred solar radii.
This makes a significant orbital shrinkage (spiral-in) during the last mass-transfer phase
necessary and fixes the mechanism for the last mass transfer to common-envelope evolu-
tion. In such an event the envelope of the secondary engulfs the oldest white dwarf due to
dynamically-unstable mass transfer. Friction then causes the two white dwarfs to spiral in
towards each other while the envelope is expelled. The orbital energy that is freed due to
the spiral-in provides for the necessary energy for the expulsion (Webbink 1984).

The first mass transfer phase is usually thought to be either another spiral-in or stable
and conservative mass transfer. The first scenario predicts that the orbit shrinks appreciably
during the mass transfer whereas the second suggests a widening orbit. Combined with
a core mass—radius relation (e.g. Refsdal & Weigert 1970) these scenarios suggest that
the mass ratio go = Mo /M; of the double white dwarfs is much smaller than unity in
the first scenario and larger than unity in the second scenario. The observed systems all
have mass ratios between 0.70 and 1.28 (Table 5.1), which led Nelemans et al. (2000) to
conclude that a third mechanism is necessary to explain the evolution of these systems.
They suggested envelope ejection due to dynamical mass loss based on angular-momentum
balance, in which little orbital shrinkage takes place. They used analytical approximations
to reconstruct the evolution of three double white dwarfs and concluded that these three
systems can only be modelled if this angular-momentum prescription is included.

In this chapter we will use the same method as Nelemans et al. (2000), to see if a
stable-mass-transfer episode followed by a common envelope with spiral-in can explain the
observed double white dwarfs. We will improve on their calculations in several respects.
First, we extend the set of observed binaries from 3 to 10 systems. Second, we take into
account progenitor masses for the white dwarf that was formed last up to 10 M, and allow
them to evolve beyond core helium burning to the asymptotic giant branch. Nelemans et al.
(2000) restricted themselves to progenitor masses of 2.3 M, or less and did not allow these
stars to evolve past the helium flash. This was justified because the maximum white-dwarf
mass that should be created by these progenitors was 0.47 M, the maximum helium-core
mass of a low-mass star and less than the minimum mass for a CO white dwarf formed in a
spiral-in (see Fig. 5.1). The most massive white dwarf in our sample is 0.71 M, and cannot
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have been created by a low-mass star on the red-giant branch. Third, we use more sophist-
icated stellar models to reconstruct the evolution of the observed systems. This means that
the radius of our model stars does not depend on the helium-core mass only, but also on
total mass of the star (see Fig. 5.1). Furthermore, we can calculate the binding energy of the
hydrogen envelope of our models so that we do not need the envelope-structure parameter
Aenv and can calculate the common-envelope parameter ., directly. Last, because we use
a full binary-evolution code, we can accurately model the stable mass transfer rather than
estimate the upper limit for the orbital period after such a mass-transfer phase. This places
a strong constraint on the possible stable-mass-transfer solutions. The evolution code also
takes into account the fact that the core mass of a donor star can grow appreciably during
stable mass transfer, a fact that alters the relation between the white-dwarf mass and the
radius of the progenitor mentioned earlier for the case of stable mass transfer.

Our research follows the lines of Nelemans et al. (2000), calculating the evolution of the
systems in reverse order, from double white dwarf, via some intermediate system with one
white dwarf, to the initial ZAMS binary. In Sect. 5.2 we list the observed systems that we try
to model. The stellar evolution code that we use to calculate stellar models is described in
Sect. 5.3. In Sect. 5.4 we present several grids of single-star models from which we will use
the helium-core mass, stellar radius and envelope binding energy to calculate the evolution
during a spiral-in. We show a grid of ‘basic’ models with standard parameters and describe
the effect of chemical enrichment due to accretion and the wind mass loss. We find that these
two effects may be neglected for our purpose. In Sect. 5.5 we use the single-star models to
calculate spiral-in evolution for each observed binary and each model star in our grid and
thus produce a set of progenitor binaries. Many of these systems can be rejected based on
the values for the common-envelope parameter or orbital period. The remainder is a series
of binaries consisting of a white dwarf and a giant star that would cause a common envelope
with spiral-in and produce one of the observed double white dwarfs. In Sect. 5.6 we model
the first mass-transfer scenario that produces the systems found in Sect. 5.5 to complete the
evolution. We consider three possible mechanisms: stable and conservative mass transfer,
a common envelope with spiral-in based on energy balance and envelope ejection based on
angular-momentum balance. We introduce two variations in the latter mechanism and show
that they can explain the observed binaries. In addition, we show that the envelope-ejection
scenario based on angular-momentum balance can also explain the second mass-transfer
episode. In Sect.5.6.4 we include the observed age difference in the list of parameters our
models should explain and find that this places a strong constraint on our selection criteria.
In Sect.5.7 we compare this study to earlier work and discuss an alternative formation
scenario for PG 1115+116. Our conclusions are summed up in Sect. 5.8.

5.2 Observed double white dwarfs

At present, ten double-lined spectroscopic binaries consisting of two white dwarfs have
been observed. The orbital periods of these systems are well determined. The fact that both
components are detected makes it possible to constrain the mass ratio of the system from
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the radial-velocity amplitudes. The masses of the components are usually determined by
fitting white-dwarf atmosphere models to the observed effective temperature and surface
gravity, using mass—radius relations for white dwarfs. The values thus obtained are clearly
better for the brightest white dwarf but less well-constrained than the values for the period
or mass ratio. It is also harder to estimate the errors on the derived mass. In the publications
of these observations, the brightest white dwarf is usually denoted as ‘star 1’ or ‘star A’.
Age determinations suggest in most cases that the brightest component of these systems
is the youngest white dwarf. These systems must have evolved through two mass-transfer
episodes and the brightest white dwarf is likely to have formed from the originally less
massive component of the initial binary (consisting of two ZAMS stars). We will call this
star the secondary or ‘star 2’ throughout this chapter, whereas the primary or ‘star 1’ is the
component that was the initially more massive star in the binary. The two components will
carry these labels throughout their evolution, and therefore white dwarf 1 will be the oldest
and usually the faintest and coldest of the two observed components. The properties of the
ten double-lined white-dwarf systems are listed in Table 5.1. For our calculations we will
use the parameters that are best determined from the Table: P, ¢o and Ms. For M7 we
will not use the value listed in Table 5.1, but the value Ms /¢ instead. We hereby ignore the
observational uncertainties in g2, because they are small with respect to the uncertainties in
the mass. In Sects. 5.5 and 5.6 we will use a typical value of 0.05 M, (Maxted et al. 2002b)
for the uncertainties in the estimate of the secondary mass.

Although the cooling-age determinations are strongly dependent on the cooling model
used, the thickness of the hydrogen layer on the surface and the occurrence of shell flashes,
the cooling-age difference is thought to suffer less from systematic errors. The values for At
in Table 5.1 have an estimated uncertainty of 50% (Maxted et al. 2002b). The age determina-
tions of the components of WD 1704+481a suggest that star 2 may be the oldest white dwarf,
although the age difference is small in both absolute (20 Myr) and relative (=~ 3%) sense
(Maxted et al. 2002b). Because of this uncertainty we will introduce an eleventh system
with a reversed mass ratio. This new system will be referred to as WD 1704+481b or 1704b
and since we assume that the value for M5 is better determined, we will use the following
values for this system: M; = 0.39 Mg, g2 = 1.43 £ 0.06 and My = g2 M; = 0.56 M.

5.3 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally de-
veloped by Eggleton (1971, 1972) and with updated input physics as described in Pols et al.
(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complemented with
low-temperature opacities from Alexander & Ferguson (1994).

The equations for stellar structure and composition are solved implicitly and simultan-
eously, along with an adaptive mesh-spacing equation. Because of this, the code is quite
stable numerically and relatively large timesteps can be taken. As a result of the large
timesteps and because hydrostatic equilibrium is assumed, the code does not easily pick up
short-time-scale instabilities such as thermal pulses. We can thus quickly evolve our models
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up the asymptotic giant branch (AGB), without having to calculate a number of pulses in
detail. We thus assume that such a model is a good representation of an AGB star.

Convective mixing is modelled by a diffusion equation for each of the composition
variables, and we assume a mixing-length to scale-height ratio [/ H,, = 2.0. Convective
overshooting is taken into account as in Schroder et al. (1997), with a parameter d,, = 0.12
which corresponds to overshooting lengths of about 0.3 pressure scale heights (H},) and is
calibrated against accurate stellar data from non-interacting binaries (Schroder et al. 1997,
Pols et al. 1997). The code circumvents the helium flash in the degenerate core of a low-
mass star by replacing the model at which the flash occurs by a model with the same total
mass and core mass but a non-degenerate helium core in which helium was just ignited. The
masses of the helium and carbon-oxygen cores are defined as the mass coordinates where
the abundances of hydrogen and helium respectively become less than 10%. The binding
energy of the hydrogen envelope of a model is calculated by integrating the sum of the
internal and gravitational energy over the mass coordinate, from the helium-core mass M.
to the surface of the star M:

M,
Uy.e :/ <Uint(m) - G—m) dm 5.1

M. r(m)

The term Uiy is the internal energy per unit of mass, that contains terms such as the thermal
energy and recombination energy of hydrogen and helium.

We use a version of the code (see Eggleton & Kiseleva-Eggleton 2002) that allows for
non-conservative binary evolution. We use the code to calculate the evolution of both single
stars and binaries in which both components are calculated in full detail. With the adaptive
mesh, mass loss by stellar winds or by Roche-lobe overflow (RLOF) in a binary is simply
accounted for in the boundary condition for the mass. The spin of the stars is neglected in the
calculations and the spin-orbit interaction by tides is switched off. The initial composition
of our model stars is similar to solar composition: X = 0.70,Y = 0.28 and Z = 0.02.

5.4 Giant branch models

As we have seen in Sect. 5.1, each of the double white dwarfs that are observed today must
have formed in a common-envelope event that caused a spiral-in of the two degenerate stars
and expelled the envelope of the secondary. The intermediate binary system that existed
before this event, but after the first mass-transfer episode, consisted of the first white dwarf
(formed from the original primary) and a giant-branch star (the secondary). This giant is
thus the star that caused the common envelope and in order to determine the properties of
the spiral-in that formed each of the observed systems, we need a series of giant-branch
models. In this section we present a grid of models for single stars that evolve from the
ZAMS to high up the asymptotic giant branch (AGB). For each time step we saved the total
mass of the star, the radius, the helium-core mass and the binding energy of the hydrogen
envelope of the star.
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In an attempt to cover all possibilities, we need to take into account the effects that
can change the quantities mentioned above. We consider the chemical enrichment of the
secondary by accretion in a first mass-transfer phase and the effect a stellar-wind mass loss
may have. For each of these changes, we compare the results to a grid of ‘basic’ models
with default parameters. We keep the overshooting parameter d,, constant for all these
grids, because this effect is unimportant for low-mass stars (M < 2.0 M) and its value is
well calibrated for intermediate-mass stars (see Sect. 5.3).

5.4.1 Basic models

In order to find the influence of the effects mentioned above, we want to compare the models
including these effects to a standard. We therefore calculated a grid of stellar models, from
the zero-age main sequence to high up the asymptotic giant branch (AGB), with default
values for all parameters. These models have solar composition and no wind mass loss.
We calculated a grid of 199 single-star models with these parameters with masses between
0.80 and 10.0 M, with the logarithm of their masses evenly distributed. Model stars with
masses lower than about 2.05 M, experience a degenerate core helium flash and are at that
point replaced by a post-helium-flash model as described in Sect. 5.3. Because of the large
timesteps the code can take, the models evolve beyond the point on the AGB where the
carbon-oxygen core (CO-core) mass has caught up with the helium-core mass and the first
thermal pulse should occur.

Figure 5.1 shows the radii of a selection of our grid models as a function of their helium-
core masses. We used different line styles to mark different phases in the evolution of these
stars, depending on their ability to fill their Roche lobes or cause a spiral-in and the type
of star a common envelope would result in. The solid lines show the evolution up the first
giant branch (FGB), where especially the low-mass stars expand much and could cause a
common envelope with spiral-in, in which a helium white dwarf would be formed. Fig.5.1a
shows that low-mass stars briefly contract for core masses around 0.3 M. This is due to
the first dredge-up, where the convective envelope deepens down to just above the hydrogen
burning shell and increases the hydrogen abundance there. The contraction happens when
the hydrogen-burning shell catches up with this composition discontinuity. After ignition
of helium in the core, all stars shrink and during core helium burning and the first phase
of helium fusion in a shell, their radii are smaller than at the tip of the FGB. This means
that these stars could never start filling their Roche lobes in this stage. These parts of the
evolution are plotted with dotted lines. Once a CO core is established, the stars evolve up
the AGB and eventually get a radius that is larger than that on the FGB. The stars are now
capable of filling their Roche lobes again and cause a common envelope with spiral-in. In
such a case we assume that the whole helium core survives the spiral-in and that the helium
burning shell will convert most of the helium to carbon and oxygen, eventually resulting
in a CO white dwarf, probably with an atmosphere that consists of a mixture of hydrogen
and helium. This part of the evolution is marked with dashed lines. Fig.5.1b shows that
the most massive models in our grid have a decreasing helium-core mass at some point
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Figure 5.1: Core-mass—radius relations for the ‘basic’ models, as described in the text. The
lines show the logarithm of the radius of the stars as a function of the helium-core mass.
Upper panel (a): grid models with low masses: 0.91, 1.01, 1.14, 1.30, 1.48, 1.63, 1.81 and
2.00 M. Lower panel (b): grid models with high masses: 2.00, 2.46, 2.79, 3.17, 3.60,
4.09, 4.65, 5.28 and 6.00 M. The 2 M model is plotted in both panels throughout as a
solid line for easier comparison. The other models are shown as solid lines on the first giant
branch (FGB), where they could cause a common envelope with a spiral-in and create a
helium white dwarf. The dashed lines show the asymptotic giant branch (AGB), where a
spiral-in would lead to the formation of a carbon-oxygen white dwarf. Dotted lines are parts
of the evolution where the stars either are smaller than at the tip of the FGB (at lower radii)
or where their envelope binding energies become positive on the AGB (at large radii).
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on the AGB. This happens at the so-called second dredge-up, where the convective mantle
extends inward, into the helium core and mixes some of the helium from the core into the
mantle, thereby reducing the mass of the core. Models with masses between about 1.2
and 5.6 M, expand to such large radii that the binding energy of their hydrogen envelopes
become positive. In Sect. 5.5 we are looking for models that can cause a spiral-in based on
energy balance in the second mass-transfer phase, for which purpose we require stars that
have hydrogen envelopes with a negative binding energy. A positive binding energy means
that there is no orbital energy needed for the expulsion of the envelope and thus the orbit
will not shrink during a common envelope caused by such a star. We have hereby implicitly
assumed that the recombination energy is available during common-envelope ejection.

To give some idea what kind of binaries can cause a spiral-in and could be the progen-
itors of the observed double white dwarfs, we converted the radii of the stars displayed in
Fig.5.1 into orbital periods of the pre-common-envelope systems. To do this, we assumed
that the Roche-lobe radius is equal to the radius of the model star, and that the mass of
the companion is equal to the mass of the helium core of the model. This is justified by
Table 5.1, where the geometric mean of the mass ratios is equal to 1.03. The result is shown
in Fig.5.2.

In Sect. 5.5 we will need the efficiency parameter .. of each common-envelope model
to judge whether that model is acceptable or not. In order to calculate this parameter we
must know the binding energy of the hydrogen envelope of the progenitor star (see Eq. 5.4),
that is provided by the evolution code as shown in Eq. 5.1. The envelope binding energy is
therefore an important parameter and we show it for a selection of models in Fig. 5.3, again
as a function of the helium-core mass. Because the binding energy is usually negative, we
plot the logarithm of —U}, .. The phases where the envelope binding energy is non-negative
are irrelevant for our calculations of a.. and therefore not shown in the Figure.

Many common-envelope calculations in the literature use the so-called envelope-
structure parameter Ao, to estimate the envelope binding energy from basic stellar para-
meters in case a detailed model is not available

G My Meny
Upe = ————F

— 5.2
’ )\env R* ( )

De Kool et al. (1987) suggest that Aepy =~ 0.5. Since we calculate the binding energy of
the stellar envelope accurately, we can invert Eq. 5.2 and calculate A, (see also Dewi &
Tauris 2000). Figure 5.4 shows the results of these calculations as a function of the helium
core mass, for the same selection of models as in Fig. 5.3. We see that a value of A\¢py = 0.5
is a good approximation for the lower FGB of a low-mass star, or the FGB of a higher-mass
star. A low-mass star near the tip of the first giant branch has a structure parameter between
0.5 and 1.5 and for most stars Aepy increases to more than unity rather quickly, especially
when the stars expand to large radii and the binding energies come close to zero.
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Figure 5.2: Helium-core-mass—orbital period tracks for the ‘basic’ models. The lines show
the logarithm of the orbital period at which the Roche lobe is filled for grid models with
masses of 1.01, 1.27, 1.59, 2.00, 2.52, 3.17, 3.99, 5.02 and 6.32 M. The period was
obtained from the radius of the model star, under the assumption that it fills its Roche lobe
and the companion has a mass equal to the helium-core mass of the model. This way, the
system would undergo a spiral-in that would lead to a binary with mass ratio ¢ = 1. The
line styles have the same meaning as in Fig. 5.1.

5.4.2 Chemical enrichment by accretion

The secondary that causes the common envelope may have gained mass by accretion during
the first mass-transfer phase. If this mass transfer was stable, the secondary has probably
accreted much of the envelope of the primary star. The deepest layers of the envelope of the
donor are usually enriched with nuclear burning products, brought up from the core by a
dredge-up process. This way, the secondary may have been enriched with especially helium
which, in sufficiently large quantities, can have an appreciable effect on the opacity in the
envelope of the star and thus its radius. This would change the core-mass—radius relation of
the star and the common envelope it causes.

To see whether this effect is significant, we considered a number of binary models that
evolved through stable mass transfer to produce a white dwarf and a main-sequence second-
ary. The latter had a mass between 2 and 5 M, in the cases considered, of which 50-60%
was accreted. We then took this secondary out of the binary and let it evolve up the asymp-
totic giant branch, to the point where the code picks up a shell instability and terminates. We
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Figure 5.3: The logarithm of the binding energy of the ‘basic’ model stars as a function
of the helium-core mass. The grid models with masses of 0.91, 1.01, 1.14, 1.30, 1.48,
1.63, 1.81, 2.00, 2.46, 2.79, 3.17, 3.70, 4.09, 4.65, 5.28, 6.00 and 6.82 M, are shown. The
2.00 M model is drawn as a solid line, the line styles for the other models have the same
meaning as in Fig. 5.1. The parts where the envelope binding energy is zero (before a helium
core develops) or positive are not shown.

then compared this final model to a model of a single star with the same mass, but with solar
composition, that was evolved to the same stage. In all cases the core mass—radius relations
coincide with those in Fig. 5.1. When we compared the surface helium abundances of these
models, after one or two dredge-ups, we found that although the abundances were enhanced
appreciably since the ZAMS, they were enhanced with approximately the same amount and
the relative difference of the helium abundance at the surface between the different models
was always less than 1.5%. In some cases the model that had accreted from a companion
had the lower surface helium abundance.

The small amount of helium enrichment due to accretion gives rise to such small changes
in the core mass—radius relation, that we conclude that this effect can be ignored in our
common-envelope calculations in Sect. 5.5.
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Figure 5.4: The envelope-structure parameter Aoy, for the ‘basic’ models, as a function of
the helium-core mass. The same grid models are shown as in Fig. 5.3. The meaning of the
line styles is explained in the caption of Fig.5.1.

5.4.3 Wind mass loss

The mass loss of a star by stellar wind can change the mass of a star appreciably before
the onset of Roche-lobe overflow, and the mass loss can influence the relation between
the core mass and the radius of a star. From Fig.5.1 it is already clear that this relation
depends on the total mass of the star. In this section, we would therefore like to find out
whether a conservative model star of a certain total mass and core mass has the same radius
and envelope binding energy as a model with the same total mass and core mass, but that
started out as a more massive star, has a strong stellar wind and just passes by this mass
on its evolution down to even lower masses. We calculated a small grid of models with ten
different initial masses between 1.0 M and 8.0 My, evenly spread in log M and included
a Reimers type mass loss (Reimers 1975) of variable strength:

. L R M\
M = —4x100B Moyr  Com | — ) [ == ) [ — , 5.3
: ot "\Lo ) \Ro ) \ My ©-)
where we have used the values C,,; = 0.2, 0.5 and 1.0. The basic models of Sect. 5.4.1 are
conservative and therefore have C.,1 = 0. The effect of these winds on the total mass of the

model stars in our grid is displayed in Fig. 5.5. It shows the fraction of mass lost at the tip
of the first giant branch (FGB) and the ‘tip of the asymptotic giant branch’ (AGB). The first
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Figure 5.5: The fraction of mass lost at two moments in the evolution of a star as a function
of its initial mass, for the three different wind strengths (C',; = 0.2, 0.5 and 1.0) used in the

grid. This fraction is shown for the tip of the FGB (dashed lines and crosses), and the ‘tip
of the AGB’ (dotted lines and plusses). See the text for details.

moment is defined as the point where the star reaches its largest radius before helium ignites
in the core, the second as the point where the radius of the star reaches its maximum value
while the envelope binding energy is still negative. Values for both moments are plotted in
Fig.5.5 for each non-zero value of Cy, in the grid. For the two models with the lowest
masses the highest mass-loss rates are so high that the total mass is reduced sufficiently on
the FGB to keep the star from igniting helium in the core, and the lines in the plot coincide.
Stars more massive than 2 M, have negligible mass loss on the FGB, because they have
non-degenerate helium cores so that they do not ascend the FGB as far as stars of lower
mass. Their radii and luminosities stay relatively small, so that Eq.5.3 gives a low mass
loss rate. For stars of 4 M, or more, the mass loss is diminutive and happens only shortly

before the envelope binding energy becomes positive. We can conclude that for these stars
the wind mass loss has little effect on the core mass—radius relation.

The core mass—radius relations for a selection of the models from our wind grid are
shown in Fig. 5.6. The Figure compares models without stellar wind with models that have
the strongest stellar wind in our grid (C,p,1 = 1.0). Models with the other wind strengths
would lie between those shown, but are not plotted for clarity. The greatest difference in
Fig.5.6 is in the 1.0 M model. The heavy mass loss reduces the total mass of the star to
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Figure 5.6: Comparison of a selection from the small grid of models with a stellar wind.
The models displayed have masses of 1.0, 1.6, 2.5, 3.2, 4.0, 5.0 and 6.3 M. The wind
strength parameters are Cyy) = 0.0 (dotted lines) and Cp, = 1.0 (solid lines, the strongest
mass loss in the grid). Stars with mass loss are usually larger, but for models of 4.0 M, or
more this effect becomes negligible. The 1.0 M model loses so much mass that it never
ignites helium in the core.

0.49 M, on the first giant branch, so that the star is not massive enough to ignite helium in
the core. Fig. 5.6 shows that models with mass loss are larger than conservative models for
the same core mass, as one would expect from Fig. 5.1. This becomes clear on the FGB for
stars that have degenerate helium cores, because they have large radii and luminosities and
lose large amounts of mass there. For stars more massive than about 2 M, the mass loss
becomes noticeable on the AGB. Stars of 4 M, or more show little difference in Fig.5.6.
The envelope binding energies have similar differences in the same mass regions.

The question is whether the properties of the model with reduced mass due to the wind
are the same as those for a conservative model of that mass. In order to answer this question,
we have compared the models from the ‘wind grid’ to the basic, conservative models. As
the wind reduces the total mass of a model star, it usually reaches masses that are equal
to that of several models in the conservative grid. As this happens, we interpolate linearly
within the mass-losing model to find the exact moment where its mass equals the mass of
the conservative model. We then use the helium-core mass of the interpolated mass-losing
model to find the moment where the conservative model has the same core mass and we
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calculate its radius and envelope binding energy, again by linear interpolation. This way
we can compare the two models at the moment in evolution where they have the same total
mass and the same core mass. This comparison is done in Fig.5.7. Figure5.7a directly
compares the radii of the two sets of models, in Fig. 5.7b the ratio of the two radii is shown.

Of the data points in Fig.5.7b 83% lie between 0.9 and 1.1 and 61% between 0.95 and
1.05. For the wind models with C},,; = 0.2 these numbers are 99% and 97%, and for
the models with Ciyy = 0.5 they are 94% and 85% respectively. As can be expected, the
models that have a lower — and perhaps a more realistic — mass-loss rate compare better
to the conservative models. We see in Fig. 5.7a that many of the points that lie farther from
unity need only a small shift in core mass to give a perfect match. This shift is certainly less
than 0.05 M, which is what we will adopt for the uncertainty of the white-dwarf masses in
Sect. 5.5. We conclude here that there is sufficient agreement between a model that reaches
a certain total mass because it suffers from mass loss and a conservative model of the same
mass. The agreement is particularly good for stars high up on the FGB or AGB, where the
density contrast between core and envelope is very large.

5.5 Second mass-transfer phase

For the formation of two white dwarfs in a close binary system, two phases of mass transfer
must happen. We will call the binary system before the first mass transfer the initial binary,
with masses and orbital period Mi;, Mo; and P;. If one considers mass loss due to stellar
wind before the first mass-transfer episode, these parameters are not necessarily equal to the
ZAMS parameters, especially for large ‘initial’ periods. The binary between the two mass-
transfer phases is referred to as the intermediate binary with My, Moy, and P,. After
the two mass-transfer episodes, we obtain the final binary with parameters My¢, Mo¢ and
P, that should correspond to the values that are now observed and listed in Table 5.1. The
subscripts ‘1’ and ‘2’ are used for the initial primary and secondary as defined in Sect. 5.2.
In the first mass transfer, the primary star fills its Roche lobe and loses mass, that may
or may not be accreted by the secondary. This leads to the formation of the intermediate
binary, that consists of the first white dwarf and a secondary of unknown mass. In the second
mass-transfer phase, the secondary fills its Roche lobe and loses its envelope. The second
mass transfer results in the observed double white dwarf binaries that are listed in Table 5.1
and must account for significant orbital shrinkage. This is because the youngest white dwarf
must have been the core of its progenitor, the secondary in the intermediate binary. Stars
with cores between 0.3 and 0.7 M, usually have radii of several tens to several hundreds
of solar radii, and the orbital separation of the binaries they reside in must be even larger
than that. The orbital separation of the observed systems is typically only in the order of a
few solar radii (Table 5.1). Giant stars with large radii have deep convective envelopes and
when such a star fills its Roche lobe, the ensuing mass transfer will be unstable and occur
on a very short, dynamical timescale, especially if the donor is much more massive than its
companion. It is thought that the envelope of such a star can engulf its companion and this
event is referred to as a common envelope. The companion and the core of the donor orbit
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Figure 5.7: Comparison of a selection of grid models with C;,; = 1.0 with initial masses of
1.3,1.6,2.0,2.5 and 3.2 M to the basic models (C},1 =0.0). Upper panel (a): Comparison
of the radius of the models with a stellar wind (solid lines) and the radius of a basic model
with the same mass and core mass (plusses). Lower panel (b): The fraction of the radius of
the wind model R, over the radius of the basic model Ry}, with the same total and core mass.
Each data point corresponds to a point in the upper panel. Of the data points in the upper
panel, 7 out of 143 (5%) lie outside the plot boundaries in the lower panel. The dashed lines
show the region where agreement is better than 10%, where 83% of the data points lie. The
1.0 M model was left out because there are only a few basic models with lower mass, the
higher-mass models were left out because they lose very little mass (see Fig.5.5).
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inside the common envelope and drag forces will release energy from the orbit, causing the
orbit to shrink and the two degenerate stars to spiral in. The freed orbital energy will heat
the envelope and eventually expel it. This way, the hypothesis of the common envelope
with spiral-in can phenomenologically explain the formation of close double-white-dwarf
binaries.

5.5.1 The treatment of a spiral-in

In order to estimate the orbital separation of the post-common envelope system quantitat-
ively, it is often assumed that the orbital energy of the system is decreased by an amount
that is equal to the binding energy of the envelope of the donor star (Webbink 1984):

GMsM: GMim Mo,
Upe = —Qee S ! 2 . 5.4)
’ 2af 2am

The parameter v is the common-envelope parameter that expresses the efficiency by which
the orbital energy is deposited in the envelope. Intuitively one would expect that e ~ 1.
However, part of the liberated orbital energy might be radiated away from the envelope
during the process, without contributing to its expulsion, thereby lowering a.e. Conversely,
if the common-envelope phase would last long enough that the donor star can produce a
significant amount of energy by nuclear fusion, or if energy is released by accretion on to
the white dwarf, this energy will support the expulsion and thus increase oce.

In the forward calculation of a spiral-in the final orbital separation a; depends strongly
on the parameter o, which must therefore be known. In this section we will try to establish
the binary systems that were the possible progenitors of the observed double white dwarfs
and we will therefore perform backward calculations. The advantage of this is that we start
as close as possible to the observations thus introducing as little uncertainty as possible.
The problem with this strategy is that we do not know the mass of the secondary progenitor
beforehand. We will have to consider this mass as a free parameter and assume a range
of possible values for it. The grid of single-star models of Sect. 5.4 provides us with the
total mass, core mass, radius and envelope binding energy at every moment of evolution,
for a range of total masses between 0.8 and 10 M. It is then not necessary to know the
common-envelope parameter, and we can even calculate the o, that is needed to shrink the
orbit of a model with a given mass to the observed period of the double white dwarf from
the binding energy. We make two assumptions about the evolution of the two stars during
the common envelope to perform these backward calculations:

1. the core mass of the donor does not change,
2. the mass of the companion does not change.

The first assumption will be valid if the timescale on which the common envelope takes
place is much shorter than the nuclear-evolution timescale of the giant donor. This is cer-
tainly true, since the mass transfer occurs on the dynamical timescale of the donor. The
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second assumption is supported firstly by the fact that the companion is a white dwarf, a
degenerate object that has a low Eddington accretion limit and is furthermore difficult to
hit directly by a mass stream from the donor. The white dwarf could accrete matter in the
Bondi-Hoyle fashion (Bondi & Hoyle 1944). This would not change the mass of the white
dwarf significantly but could release appreciable amounts of energy. Secondly, a common
envelope is established very shortly after the beginning of the mass transfer, so that the mass
stream disappears and the white dwarf is orbiting inside the fast-expanding envelope rather
than accreting mass from the donor. In the terminology used here, the second assumption
can be written as M1, = M.

From the two assumptions above it follows that the mass of the second white dwarf,
the one that is formed in the spiral-in, is equal to the helium-core mass of the donor at the
moment it fills its Roche lobe. There is therefore a unique moment in the evolution of a
given model star at which it could cause a common envelope with spiral-in and produce
a white dwarf of the proper mass. Recall from Fig.5.1b that although the second dredge-
up reduces notably the helium-core mass of the more massive models in the grid, there is
no overlap in core mass in the phases where the star could fill its Roche lobe on the first
giant branch (solid lines) or asymptotic giant branch (dashed lines). The moment where the
model star could produce a white dwarf of the desired mass in a common envelope with
spiral-in is therefore defined by two conditions:

1. the helium-core mass of the model reaches the mass of the white dwarf,
2. the model star has its largest radius so far in its evolution.

The second restriction is necessary because stars can shrink appreciably during their evolu-
tion, as noted in Sect. 5.4.1. If the core of a model star obtains the desired mass at a point
in the evolution where the star is smaller than it has been at some point in the past, then the
star cannot fill its Roche lobe at the right moment to produce a white dwarf of the proper
mass and therefore this star cannot be the progenitor of the white dwarf. This way, each
model star has at most one moment in its evolution where it could fill its Roche lobe and
produce the observed double white dwarf. If such a moment does not exist, the model star
is rejected as a possible progenitor of the second white dwarf.

If the model star could be the progenitor of the youngest white dwarf in the observed
system, the computer model gives us the radius of the donor star, that must be equal to the
Roche-lobe radius. Under the assumption that the mass of the first white dwarf does not
change in the common envelope, the mass ratio of the two stars gom, = Mo /Mim and
the Roche-lobe radius of the secondary star Rrjoy, give us the orbital separation before the
spiral-in a,,, where we use the fit by Eggleton (1983)

0.49 ¢3/3

0.6 q;/j +In (1 + Q;r/r?) |

RRri2m = am 0< gom < OQ. (5.5)

Kepler’s law finally provides us with the orbital period P, of the intermediate system. The
stellar model also gives the binding energy of the envelope of the donor U, . at the onset of
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the common envelope and we can use Eq. 5.4 to determine the common-envelope parameter
Qe We will use ace to judge the validity of the model star to be the progenitor of the second
white dwarf. There are several reasons why a numerical solution can be rejected. Firstly, the
proposed donor could be a massive star with a relatively small radius. Then a,, will be small
and it might happen that a,, < af A]@?ﬁ“, so that aiee < 0. This means that energy is needed
to change the orbit from a,, to ag, or even that a,, < ar and a spiral-in (if it can be called
that) to the desired orbit will not lead to expulsion of the common envelope. Secondly,
as mentioned above, a.e is expected to be close, though not necessarily equal, to unity.
However if the parameter is either much smaller or much larger than 1, we will consider the
spiral-in to be ‘physically unbelievable’. We arbitrarily chose the boundaries between which
ace must lie for a believable spiral-in to be a factor of ten either way: 0.1 < ac < 10. We
think that the actual value for o should be more constrained than that because common-
envelope evolution is thought to last only a short time so that there is little time to generate
or radiate large amounts of energy, but keep the range as broad as it is to be certain that all
possible progenitor systems are considered in our sample.

5.5.2 Results of the spiral-in calculations

We will now apply the stellar models of Sect. 5.4.1 as described in the previous section to
calculate potential progenitors to the observed double white dwarfs as listed in Table 5.1.
As input parameters we took the values P = P, and Mss = M from the table, and
assumed that Mys = Mas/qe, where g9 is the observed mass ratio listed in Table 5.1. We
thus ignore for the moment any uncertainty in the observed masses. Figure 5.8 shows the
orbital period P, as a function of the secondary mass Ma,,. Each symbol is a solution to the
spiral-in calculations and represents an intermediate binary system that consists of the first
white dwarf of mass M1, = M1¢, a companion of mass Mo, and an orbital period P,,. The
secondary of this system will fill its Roche lobe at the moment when its helium-core mass
is equal to the mass of the observed white dwarf My, and can thus produce the observed
double-white-dwarf system with a common-envelope parameter that lies between 0.1 and
10.

The solutions for each system in Fig. 5.8 seem to lie on curves that roughly run from
long orbital periods for low-mass donors to short periods for higher-mass secondaries. This
is to be expected, partially because higher-mass stars have smaller radii at a certain core
mass than stars of lower mass (see Fig. 5.1) and thus fill their Roche lobes at shorter orbital
periods, but mainly because the orbital period of a Roche-lobe filling star falls off approx-
imately with the square root of its mass. The Figure also shows gaps between the solutions,
for instance for WD 0957-666 and WD 1704+481a, between progenitor masses May, of
about 2 and 2.5 M. These gaps arise because the low-mass donors on the left side of the
gap ignite helium degenerately when the core mass is 0.47 M, after which the star shrinks,
whereas for stars with masses close to 2 M helium ignition is non-degenerate and occurs
at lower core masses, reaching a minimum for stars with a mass of 2.05 M, where helium
ignition occurs when the helium-core mass amounts to 0.33 M, (see Fig.5.1). Thus, for
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Figure 5.8: Results of the spiral-in calculations, each individual symbol is a solution of
the calculations and thus represents one pre-CE binary. The figure shows the logarithm of
the orbital period of the intermediate binary P, as a function of the secondary mass May,.
Different symbols represent different observed systems, as explained in the legend. System
1704a is the system listed in Table 5.1, 1704b is the same system, but with the reverse
mass ratio. For solutions with Ms,, < 2.5 M, only every third solution is plotted for
clarity. Around My, =1.2 and log P, = 2.8 the symbols of WD 0135-052, WD 0136+768
and WD 1204+450 overlap due to the fact that they have similar white-dwarf masses. For
comparison we show the lines of the solutions for (top to bottom) WD 0136+768, WD 0957-
666 and WD 11014364 taken from Nelemans et al. (2000), as described in the text.

white dwarfs with masses between 0.33 and 0.47 M, there is a range of masses between
about 1.5 and 3 M, for which the progenitor has just ignited helium in the core, and thus
shrunk, when it reaches the desired helium-core mass.

The dip and gap in Fig. 5.8 for WD 11014364 (with My ~ 0.29M ) around My, =
1.8 M, can be attributed to the first dredge-up that occurs for low-mass stars (M < 2.2 M)
early on the first giant branch. Stars with these low masses shrink slightly due to this dredge-
up that occurs at core masses between about 0.2 and 0.33 M, the higher core masses for
the more massive stars (see Fig.5.1a). Stars at the low-mass (May,) side of the gap obtain
the desired core mass just after the dredge-up, are relatively small and fill their Roche lobes
at short periods. Stars with masses that lie in the gap reach that core mass while shrinking
and cannot fill their Roche lobes for that reason. Stars at the high-mass end of the gap fill
their Roche lobes just before the dredge-up so that this happens when they are relatively
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large and therefore this happens at longer orbital periods.

For comparison we display as solid lines in Fig. 5.8 the results for the white-dwarf sys-
tems WD 0136+768, WD 0957-666 and WD 1101+364 (from top to bottom), as found by
Nelemans et al. (2000) and shown in their Fig. 1. The differences between their and our
results stem in part from the fact that the values for the observed masses have been updated
by observations since their paper was published. To compensate for this we include dashed
lines for the two systems for which this is the case. The dashed lines were calculated with
their method but the values for the observed masses as listed in this chapter. By compar-
ing the lines to the symbols for the same systems, we see that they lie in the same region
of the plot and in the first order approach they give about the same results. However, the
slopes in the two sets of results are clearly different. This can be attributed to the fact that
Nelemans et al. (2000) used a power law to describe the radius of a star as a function of its
core mass only. The change in orbital period with mass in their calculations is the result
of changing the total mass in Kepler’s law. Furthermore, they assumed that all stars with
masses between 0.8 and 2.3 M, have a solution, whereas we find limits and gaps, partially
due to the fact that we take into account the fact that stars shrink and partially because in
Fig. 5.8 only solutions with a restricted c.. are allowed. On the other hand, we allow stars
more massive than 2.3 M, as possible progenitors.

In Fig. 5.9, we display the common-envelope parameter o, for a selection of the solu-
tions with 0.1 < ac < 10 as a function of the unknown intermediate secondary mass
Moy,. Each of the plot symbols has a corresponding symbol in Fig.5.8. To produce these
two figures, we have so far implicitly assumed that the masses of the two components are
exact, so that there is at most one acceptable solution for each progenitor mass. This is
of course unrealistic and it might keep us from finding an acceptable solution. At this
stage we therefore introduce an uncertainty on the values for M5 in Table 5.1 and take Moy
=My — 0.05 Mg, My — 0.04 Mg, ..., My + 0.05 M. Meanwhile we assume that the
mass ratio and orbital period have negligible observational error, because these errors are
much smaller than those on the masses, and obtain the mass for the first white dwarf from
Mi¢ = Mos¢/qo. Thus we have 11 pairs of values for M;¢ and Moy¢ for each observed sys-
tem, which we use as input for our spiral-in calculations. The results are shown in Fig. 5.10.

If we compare Fig. 5.8 and Fig. 5.10, we see that the wider range in input masses results
in a wider range of solutions, similar to those we found in Fig. 5.8, but extended in orbital
period. This can be understood intuitively, since lowering the white-dwarf mass demands a
lower helium-core mass in the progenitor and thus a less evolved progenitor with a smaller
radius at the onset of Roche-lobe overflow. Conversely, higher white-dwarf masses need
more evolved progenitors that fill their Roche lobes at longer orbital periods. The introduc-
tion of this uncertainty clearly results in a larger and more realistic set of solutions for the
spiral-in calculations and therefore should be taken into account.

Each system in Fig. 5.10 is a possible progenitor of one of the ten observed double white
dwarfs listed in Table 5.1. We now turn to the question whether and how these intermediate
systems can be produced.



100 Chapter 5

~— T
| ) ] ) |
|- o -
*
LQ L X * * |
=} P °. *
r x O* a -
|- X OO** -
| XX @ OO o |
9 L XXX ®®®® o |
5 XX @ o
o X @@ o |
eI} x 0%
&
o . B
—~ &
| A . DD |
o
| . |
o [ ﬁw‘;gllﬂii“ 0o* Ddﬂdjdjdj B
y + 0, * o e
(@R == 0% 0w, —
bl R +0135 #0136 ©0957
| o058 . x1101 ©1115 21204 |
OOx* Sggtong ¢
L S AL ©1349 41414 *1704a
g N #1704b *2209 |
— L \ L \ \
1 2 3 4 5
MEm <M®)

Figure 5.9: The logarithm of the common-envelope parameter a.. for the solutions of the
spiral-in calculations shown in Fig. 5.8. Different symbols represent different observed sys-
tems. For My, < 2.5 Mg, every third solution is plotted only.

5.6 First mass-transfer phase

The solutions of the spiral-in calculations we found in the previous section are in our no-
menclature intermediate binaries, that consist of one white dwarf and a non-degenerate
companion. In this section we will look for an initial binary that consists of two zero-age
main-sequence (ZAMS) stars of which the primary evolves, fills its Roche lobe, loses its hy-
drogen envelope, possibly transfers it to the secondary, so that one of the intermediate binar-
ies of Fig. 5.10 is produced. The nature of this first mass transfer is a priori unknown. In the
following subsections we will consider (1) stable and conservative mass transfer that will
result in expansion of the orbit in most cases, (2) a common envelope with spiral-in based
on energy balance (see Eq. 5.4) that usually gives rise to appreciable orbital shrinkage and
(3) envelope ejection due to dynamically unstable mass loss based on angular-momentum
balance, as introduced by Paczyriski & Zidtkowski (1967) and already used by Nelemans
et al. (2000) for the same purpose, which can take place without much change in the orbital
period.
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Figure 5.10: Results of the spiral-in calculations. This figure is similar to Fig. 5.8 and shows
the orbital period of the pre-CE system as a function of the secondary mass. The solutions
for each system are plotted in a separate panel, as labelled in the upper-right corner. All
solutions with acceptable a.e are plotted. The number of solutions for each system is shown
in the lower-right corner. We assumed an uncertainty in Ms¢ of 0.05 M, and calculated My
using go.

5.6.1 Conservative mass transfer

In this section we will find out which of the spiral-in solutions of Fig.5.10 may be pro-
duced by stable, conservative mass transfer. We use the binary evolution code described in
Sect. 5.3. For simplicity, we ignore stellar wind and the effect of stellar spin on the structure
of the star. Because we assume conservative evolution, the total mass of the binary is con-
stant, so that M1; + Ms; = Mim + Mo, where the last two quantities are known. Also,
we ignore angular momentum exchange between spin and orbit by tidal forces, so that the
orbital angular momentum is conserved. This implies that

Py ( My M, )3

— —_— 5.6
]Di Mlm M2m ( )

Because of the large number of possible intermediate systems we will first remove all
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such systems for which it can a priori be shown that they cannot be produced by conservative
mass transfer. These systems have orbital periods that are either too short or too long to be
formed this way. We can find a lower limit to the intermediate period as a function of
secondary mass Moy, using the fact that the total mass of the initial system must be equal
to the sum of the mass of the observed white dwarf M and Ms,,,. We distributed this mass
equally over two ZAMS stars and set the Roche-lobe radii equal to the two ZAMS radii. By
substituting the initial and desired masses in Eq. 5.6 we find a lower limit to the period of
the intermediate binary, which we will call Py

An upper limit to the intermediate period P, can also be obtained. In order to do this,
we note that the maximum orbital period after conservative mass transfer for a given binary
mass is obtained for an optimum initial mass ratio go; opt = 0.62 (Nelemans et al. 2000).
We can therefore calculate the masses M1; opy and Ma; opt of the initial binary that evolves
to that maximum intermediate period by distributing the total system mass (M7 + Mop)
according to the mass ratio go; opt. The optimum initial period is the maximum period at
which stable mass transfer can still occur in a binary with masses M7; opt and Ma; opt. This
is the orbital period at which the donor star fills its Roche lobe just before it reaches the
base of the giant branch (BGB). We use the conditions by Hurley et al. (2000) who define
this point as the moment where the mass of the convective envelope Mcg exceeds a certain
fraction of the total mass of the hydrogen envelope My, for the first time:

MCE =2 ME7 Mli,opt S 1.995 M@v

Mg =1 Mg, Mo > 1.995 Mo, S

for Z = 0.02. We then find from our grid of Sect. 5.4 the two single-star models with masses
that bracket M1; opt and interpolate within these models to find the radii of these stars where
the condition of Eq.5.7 is fulfilled for the first time. Subsequently, we interpolate again
between these two bracketing models to find the radius of the star with the desired mass at
the base of the giant branch (Rpgp). By assuming that this radius is equal to the Roche-lobe
radius and using Eq. 5.5, the initial masses and period that lead to the maximum intermediate
period are known and we can use Eq. 5.6 to find this upper limit to the intermediate period,
which we will call Py ax, as a function of the secondary mass. All intermediate systems
that result from our spiral-in calculations and have longer orbital periods than P;,,x cannot
result from conservative mass transfer.

The lower and upper limits for the orbital period between which a conservative solution
must lie for WD 0957-666 are shown in Fig.5.11 together with the intermediate systems
found from the spiral-in calculations. Black dots represent solutions that lie between the
limits and could match the outcome of a conservative model, grey dots lie outside these
limits and cannot be created by conservative mass transfer. There is a slight difference
between the dashed lines and the division between filled and open symbols in the Figure,
because the spiral-in solutions are shown with the uncertainty in the masses described in the
previous section, whereas the period limits are only shown for the measured M> and ¢ (see
Table 5.1) for clarity.

After selecting the spiral-in solutions that lie between these period limits for all el-
even systems, we find that such solutions exist for only six of the observed binaries, as
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Figure 5.11: Results of the spiral-in calculations for WD 0957-666 with period limits for
a conservative first mass transfer. This figure contains the same data as the third panel in
Fig.5.10 (symbols) plus the period limits Pp,in, and Py ax (dashed lines). The solutions that
lie between these limits are shown in black, the others in grey. See the main text for details.

shown in Fig.5.12. We tried to model these intermediate systems with the binary evolu-
tion code described in Sect. 5.3. Because of the large number of allowed spiral-in solutions
for WD 0957-666 and WD 1101+364, we decided to model about half of the solutions for
these two systems and all of the solutions for the other four. Because we assume that during
this part of the evolution mass and orbital angular momentum are conserved, the only free
parameter is the initial mass ratio q;; = My;/May;. For each of the spiral-in solutions we
selected, we chose five different values for q;;, evenly spread in the logarithm: 1.1, 1.3, 1.7,
2.0 and 2.5. The total number of conservative models that we calculated is 570, of which
270 resulted in a double white dwarf. The majority of the rest either experienced dynamical
mass transfer or evolved into a contact system. A few models were discarded because of
numerical problems. The results of the calculations for the conservative first mass transfer
are compared to the solutions of the spiral-in calculations in Fig. 5.13.

The systems that result from our conservative models generally have longer orbital peri-
ods than the intermediate systems that we are looking for. This means that stable mass
transfer in the models continues beyond the point where the desired masses and orbital
period are reached. The result is that My, is too small and that Moy, and P, are too large.
The reason that mass transfer continues is that the donor star is not yet sufficiently evolved:
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Figure 5.12: Results of the spiral-in calculations with period limits for conservative mass
transfer as in Fig.5.11, but for all systems. The number in the upper left corner of each
panel is the number of systems that lie between the period limits.

the helium core is still small and there is sufficient envelope mass to keep the Roche lobe
filled. White dwarfs of higher mass would result from larger values of q1;. This way, the
initial primary is more massive and the initial period is longer, so that the star fills its Roche
lobe at a slightly later stage in evolution. Both effects increase the mass of the resulting
white dwarf. However, if once chooses the initial mass ratio too high, the system evolves
into a contact binary or, for even higher ¢;;, mass transfer becomes dynamically unstable.
In both cases the required intermediate system will not be produced. These effects put an
upper limit to the initial mass ratio for which mass transfer is still stable, and thus an upper
limit to the white-dwarf mass that can be produced with stable mass transfer for a given sys-
tem mass. Our calculations show that conservative models with an initial mass ratio of 2.5
produce no double white dwarfs. Apparently this value of ¢;; is beyond the upper limit. The
solutions in Fig. 5.14 with a final mass ratio close to or in agreement with the observations
come predominantly from the models with initial mass ratios of 1.7 and 2.0.

Because small deviations in the masses and orbital period of the intermediate systems
can still lead to acceptable double white dwarfs, we monitor the evolution of these systems
to the point where the secondary fills its Roche lobe and determine the mass of the second
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Figure 5.13: Results of the spiral-in calculations (grey symbols), obtained as in Fig.5.11,
and the solutions of calculations of conservative evolution (black symbols). Only the six
systems shown have spiral-in solutions within the period limits (see Fig. 5.12). The numbers
in the lower left and lower right corners are the numbers of plotted spiral-in solutions and
conservative solutions respectively.

white dwarf My¢ from the helium-core mass of the secondary at that point. Because the
secondary in the intermediate binary is slightly too massive in most cases, it is smaller at a
given core mass (see Fig. 5.1) so that the mass of the second white dwarf becomes larger than
desired. Combined with an undermassive first white dwarf this results in a too large mass
ratio go¢. This is shown in Fig. 5.14, where the values for gof for our conservative models
are compared to the observations. The Figure also shows the difference in age of the system
between the moment where the second white dwarf was formed and the moment when
the first white dwarf was formed (A7). This difference should be similar to the observed
difference in cooling age between the two components of the binary (see Table5.1). The
vertical dotted lines show this observed cooling-age difference with an uncertainty of 50%.

Figure 5.14 shows that of the six systems presented, only two have a mass ratio within
the observed range, although values for the other systems may be close. We see that the mass
ratios of the solutions for most of the systems are divided in two groups and the difference
in mass ratio can amount to a factor of 2 between them. The division arises because in most
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Figure 5.14: The mass ratio of model double white dwarfs formed by a conservative first
mass transfer and a common envelope with spiral-in, against the age difference between
the two components. The dashed horizontal lines show the observed range of possible
mass ratios as shown in Table 5.1. The dotted vertical lines are the estimated cooling-age
differences £50% (see Table 5.1).

models the common envelope is supposed to occur on the short giant branch of stars that are
more massive than 2 Mq,. If the secondary is slightly smaller and the orbital period slightly
longer than it should be, the star can ignite helium in its core and start shrinking before it has
expanded sufficiently to fill its Roche lobe. When this star expands again after core helium
exhaustion, it has a much more massive helium core and produces a much more massive
white dwarf than desired (see Fig. 5.1). Thus, a small offset in the parameters of the model
after the first mass-transfer phase can result in large differences after the spiral-in. Of the
270 stable models shown in Fig.5.14, 126 (47%) are in the group with lower mass ratios
(gor S 1.7).

The modelled mass ratios for the systems WD 0957-666 and WD 1101+364 are close to
the observed values, and we find that this is especially true for the models on the low-mass
end of the range in observed white-dwarf masses we used. This can be understood, because
the maximum mass of a white dwarf that can be created with conservative mass transfer is
set by the total mass in the system. The system mass is determined by the spiral-in calcu-
lations in Sect. 5.5.2, where we find that the total mass that is available to create these two
systems lies between about 2 and 3.5 M. This system mass is simply insufficient to create
white dwarfs with the observed masses. If we would extend the uncertainty in the observed
masses to allow lower white-dwarf masses, it seems likely that we could explain these two
double white dwarfs with a conservative mass-transfer phase followed by a common en-
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velope with spiral-in. The same could possibly be achieved with stable, non-conservative
mass transfer. Losing mass from the system stabilises the mass transfer, so that it can still
be stable for slightly longer initial periods, and allows higher initial primary masses. Both
effects result in higher white-dwarf masses.

All 126 stable solutions in the lower group of mass ratios (gor < 1.7) have aee > 1
and 83 (66%) have a. < 5. If we become more demanding and insist that a..e should be
less than 2, we are left with 14 solutions, all for WD 0957-666. These solutions all have
oce > 1.6. If we additionally demand that the age difference of these models be less than
50% from the observed cooling-age difference, only 6 solutions are left with age differences
roughly between 190 and 410 Myr, crce > 1.8 and 1.32 < qof < 1.44.

We conclude that although the evolutionary channel of conservative mass transfer fol-
lowed by a spiral-in can explain some of the observed systems, evolution along this channel
cannot produce all observed double white dwarfs. We must therefore reject this formation
channel as the single mechanism to create the white-dwarf binaries. The reason that this
mechanism fails to explain some of the observed white dwarfs is that the observed masses
for the first white dwarfs in these systems are too high to be explained by conservative mass
transfer in a binary with the total mass that is set by the spiral-in calculations. Allowing for
mass loss from the system during mass transfer could result in better matches for this mech-
anism. However it is clear from Fig. 5.12 that this will certainly not work for at least 5 of the
10 observed systems because their orbital periods are too large. We will need to consider
other mechanisms in addition to stable mass transfer to produce the observed white-dwarf
primaries for these systems.

5.6.2 Unstable mass transfer

In this section we try to explain the formation of the first white dwarf in the intermediate
systems shown in Fig. 5.10 by unstable mass transfer. Mass transfer occurs on the dynam-
ical timescale if the donor is evolved and has a deep convective envelope. There are two
prescriptions that predict the change in orbital period in such an event. The first is a clas-
sical common envelope with a spiral-in, based on energy conservation as we have used in
Sect.5.5. The second prescription was introduced by Nelemans et al. (2000) and further
explored by Nelemans & Tout (2005) and uses angular-momentum balance to calculate the
change in orbital period. Where the first prescription results in a strong orbital shrinkage
(spiral-in) for all systems, in the second mechanism this is not necessarily the case so that
the orbital period may hardly change while the envelope of the donor star is lost.

In both scenarios we are looking for an initial binary of which the components have
masses Mi; and Ms;. The primary will evolve fastest, fill its Roche lobe and eject its
envelope due to dynamically unstable mass loss, so that its core becomes exposed and forms
a white dwarf with mass Mi,,. We assume that the mass of the secondary star does not
change during this process, so that My; = Ms,,. We use the model stars from Sect. 5.4.1
as the possible progenitors for the first white dwarf. The orbital period before the envelope
ejection is again determined by setting the radius of the model star equal to the Roche-lobe
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radius and applying Eq. 5.5, where the subscripts ‘m’ must be replaced by ‘i’.

Because we demand that My; > Mo, the original secondary can be any but the most
massive star from our grid and the total number of possible binaries in our grid is > :ffl n =
19701 for each system we want to model. The total number of systems that we try to model
is 121: the 11 observed systems (the 10 from Table 5.1 plus the system WD 1704+481b)
times 11 different assumptions for the masses of the observed stars (between +0.05 Mg,
from the observed value). We have thus tried slightly less than 2.4 million initial binaries
to find acceptable progenitors to these systems. All these possible progenitor systems have

been filtered by the following criteria, in addition to the ones already mentioned in Sect. 5.5:

1. the radius of the star is larger than the radius at the base of the giant branch R >
Ry, which point is defined by Eq.5.7,

2. the mass ratio is larger than the critical mass ratio for dynamical mass transfer ¢ >
qerit as defined by Eq. 57 of Hurley et al. (2002). Together with the previous criterium,
this ensures that the mass transfer can be considered to proceed on the dynamical
timescale,

3. the time since the ZAMS after which the first white dwarf is created 77 is less than
the same for the second white dwarf (7») and, additionally, 7 < 13 Gyr.

After we filter the approximately 2.4 million possible progenitor systems with the cri-
teria above, about 204,000 systems are left in the sample (8.5%) for which two subsequent
envelope-ejection scenarios could result in the desired masses, provided that we can some-
how explain the change in orbital period that is needed to obtain the observed periods. For
each of the two prescriptions for dynamical mass loss we will see whether this sample con-
tains physically acceptable solutions in the sections that follow.

Classical common envelope with spiral-in

The treatment of a classical common envelope with spiral-in based on energy conservation
has been described in detail in Sect. 5.5 and therefore need not be reiterated here. In the
calculations described above, Eq. 5.4 provides us with the parameter a..q; for the first spiral-
in. In order to use Eq. 5.4 the subscripts ‘m’ must be replaced by ‘i’ and the subscripts ‘f’ by
‘m’. The values of the common-envelope parameter for the first spiral-in must be physically
acceptable and we demand that 0.1 < a1 < 10. When we apply this criterion to the results
of our calculations, only 25 possible progenitors out of the 204,000 binaries in our sample
survive. All 25 survivors are solutions for WD 0135-052 and have a1 2 2.5.

We find that of the systems that pass the criterion in the second spiral-in and have 0.1 <
ez <10, most (99%) need a negative a1 in order to satisfy Eq. 5.4, so that we reject them.
We can clearly conclude that the scenario of two subsequent classical common envelopes
with spiral-in can be rejected as the formation mechanism for any of the observed double
white dwarfs. This confirms the conclusions of Nelemans et al. (2000) and Nelemans &
Tout (2005), based on the value of the product ace Aenv, Where Agyy is the envelope-structure
parameter defined in Eq.5.2.
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Envelope ejection with angular-momentum balance

The idea to determine the change in orbital period in a common envelope from balance of
angular momentum originates from Paczyfiski & Ziotkowski (1967). In Nelemans et al.
(2000) and Nelemans & Tout (2005) the mechanism was used to model observed double
white dwarfs. The principle is similar to that of a classical common envelope, here with
an efficiency parameter that we will call «y in the general case. In this section we will use
three slightly different prescriptions for mass loss with angular-momentum balance requir-
ing three different definitions of . For all three mechanisms the mass loss of the donor is
dynamically unstable and its envelope is ejected from the system. Because not all of these
mechanisms necessarily involve an envelope that engulfs both stars, we shall refer to them
as envelope ejection or dynamical mass loss rather than common-envelope evolution. The
first mechanism is that defined by Nelemans et al. (2000), where a common envelope is
established first, after which the mass is lost from its surface. The mass thus carries the
average angular momentum of the system and we will call the parameter for this mechan-
ism 7s. In the second mechanism the mass is first transferred and then re-emitted with the
specific angular momentum of the accretor. We will designate -y, for this mechanism. In
the third mechanism the mass is lost directly from the donor in an isotropic wind and the
corresponding parameter is vq. We will call the companion to the donor star ‘accretor’, even
if no matter is actually accreted.

The prescription for dynamical mass loss with the specific angular momentum of the
system as the mechanism for the first mass-transfer phase, using this and earlier subscript
conventions, is:

7. = (5.8)
where J is the total orbital angular momentum (Nelemans et al. 2000). Our demands for a
physically acceptable solution to explain the observed binaries is now 0.1 <~g; <10 for the
first envelope ejection and 0.1 < o2 < 10 for the second. From the set of about 204,000
solutions we found above, almost 150,000 (72%) meet these demands and nearly 134,000
solutions (66%) have values for v4; between 0.5 and 2, in which all observed systems are
represented.

We tried to constrain the ranges for 51 and a2 as much as possible, thereby keeping at
least one solution for each observed system. We can write these ranges as (o — % , Yo+ %)
and (ap — %, ag + %), where 7 and o are the central values and A~y and A« are the
widths of each range. We independently varied vy and o and for each pair we took the
smallest values of A~ and A« for which there is at least one solution for each observed
system that lies within both ranges. The set of smallest ranges thus obtained is considered
to be the best range for v5; and a2 that can explain all systems. Because it is harder to
trifle with the angular-momentum budget than with that of energy, we kept the relative width
of the range for g twice as small as that for ae2 (2% = g—:). Our calculations show that
changing this factor merely redistributes the widths over the two ranges without affecting
the central values much and thus precisely which factor we use seems to be unimportant for
the result. We find that the set of narrowest ranges that contain a solution for each system is
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1.45 <51 <1.58 and 0.61 < aeen <0.72. These results are plotted in Fig. 5.15.

We can alternatively treat the second envelope ejection with the angular-momentum
prescription as well, where we need to introduce a factor 52 by replacing all subscripts ‘m’
by ‘f” and all subscripts ‘i’ by ‘m’ in Eq.5.8. Again we search for the narrowest ranges
of vs1 and 7,2 that contain at least one solution per observed system. We now force the
relative widths of the two ranges to be equal. The best solution is then 1.16 < g < 1.22
and 1.62 <50 <1.69.

In both prescriptions above (V51 ce2 and vs1vs2) we find that the values for «y lie signi-
ficantly above unity. This is in accordance with the findings of Nelemans et al. (2000) and
Nelemans & Tout (2005), but slightly discomforting because there is no obvious physical
mechanism that can transfer this extra angular momentum to the gas of the envelope. We
will therefore rewrite Eq. 5.8 for the case where the mass is lost with the specific angular
momentum of one of the stars in the binary, so that we can expect that v ~ 1. In order to do
this we use the equations derived by Soberman et al. (1997) in their Section 2.1. We ignore
the finite sizes of the star by putting A,, = 1 and assume that no matter is accreted, so that
w + Bw = 1 and €, = 0, where we introduced the subscript ‘w’ to avoid confusion with
ace. Their Eq. 24 then gives (replacing their notation by ours):

I G \ ™ 1+ g
Jm _ (Gm , 5.9
Ji (%) 14+ gm (>9)

where we will consider the cases where o, = 0 (hence 3, = 1), describing isotropic re-
emission by the accretor, and oy, = 1 for an isotropic wind from the donor. Their ¢ is
defined as Mdonor/Maccretor- We can now rewrite Eq. 5.8 for these two cases:

Ji— T My — My,

i Tl N Mo (a ) (5.10)
Ji— Jo My — My, My

i TN Mo My, ) .10

By comparing Eq.5.8 to Eq.5.10, we can directly see that for an envelope ejection with
given masses and angular momenta, v, < s must hold in order to keep it satisfying the
equation. For Eq. 5.11, this is not necessarily true for a first envelope ejection but the effect
is even stronger for all second envelope ejections considered in this chapter. The results of
the analysis described above, but now for the modified definitions of -y, for the ya and ~y
scenarios, each with oy, = 0 (isotropic re-emission) and a, = 1 (donor wind) are shown
in Table 5.2 and compared to the previous results.

We see that the values for v change drastically, as may be expected. The fact that the
values for a.. change slightly has to do with the fact that we now select different solutions
to the calculations than before. Numerically, the fifth solution in the table seems the most
attractive: y41 ~ 1.0 and ace2 =~ 0.6. Although the value for a.cz is lower than unity, it
may not be unrealistic that 40 % of the freed orbital energy is emitted by radiation. This is
the scenario where the mass is lost in an isotropic wind by the donor in the first dynamical



Modelling the formation of double white dwarfs 111

0135

0136

0957

1101

1115

1204

1349

1414

1704a

1704b

2209

0135

0136

0957

RS i
1101

R

1115

N R R i i

1204

0.5 1

Figure 5.15: Solutions for the double dynamical mass-loss scenario for each system. Each
dot represents one system that evolves through an episode of dynamical mass loss with
vs1 and then a common envelope with spiral-in with ace2 to form one of the observed
white dwarfs. Upper panel: (a): the value for log 51 for the first envelope ejection for all
solutions with 0.1 < v5; < 10 and 0.1 < ez < 10. Solutions with 0.61 < aeer < 0.72
(the dashed lines in (b)) are plotted as large dots, the rest as small ones. Lower panel: (b):
the value for log a2 for the second envelope ejection for the same set of solutions. Here,
the large dots have 1.45 < 74; < 1.58 (the dashed lines in (a)). The smallest set with at
least one solution for each system is the intersection of these two sets (the large dots that
lie between the dashed lines). The vertical position of each dot within its line shows the
deviation from the observed secondary mass My: Mor = My —0.05 M, for the lower dots,
Mas¢ = Ms + 0.05 Mg, for the upper. The Figure is made after Nelemans & Tout (2005).
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Prescription Y1 ’}/()71 ’)/Q/Oéceg ")/()72/04072
V51 ce2 1.45-1.58 152 «:0.61-0.72 «:0.66
Ys1Ys2 1.16-1.22  1.19 ~:1.62-1.69 ~:1.65
YalOlce2 0.81-0.94 0.88 «:0.50-0.68 «:0.59
Ya17a2 0.50-0.52 0.51 ~:0.68-0.70 ~:0.69
Yd1Cce2 0.92-1.08 1.00 «:047-0.64 «:0.56
Ya1Yd2 0.91-1.07 099 ~:2.55-3.02 ~:2.78

Table 5.2: Narrowest ranges for v and a., that contain at least one solution to the envelope-
ejection scenario per observed system and their central values. The six different prescrip-
tions are explained in the main text.

mass-loss episode and the second mass loss is a canonical common envelope with spiral-in.
We also see that the best solutions with a second envelope ejection based on the angular-
momentum prescription obtained with this method has values for ~ that lie much farther
from unity than the y-values for the ya-scenarios.

5.6.3 Formation by multiple mechanisms

So far, we assumed that all ten observed double white dwarfs were formed by one and the
same mechanism. Although some mechanisms are clearly better in explaining the formation
of all the observed systems than others, none of them is completely satisfactory, mainly
because the parameters 7y or e are far from the desired values. Furthermore, there is no
reason why the ten systems should all have been formed by the same mechanism in nature
if there are several options available. We therefore slightly change our strategy here by
assuming that different envelope-ejection prescriptions, described in Sect. 5.6.2, can play a
role in the formation of the observed systems.

For the dynamical mass loss, we now demand that v and o, are close to unity. Because
angular momentum should be better conserved than energy, we accept solutions with 0.95 <
v < 1.05 and 0.90 < ace < 1.10, except for the mechanism described by Eq. 5.8, for which
Nelemans & Tout (2005) show that all systems can be explained with 1.50 < v < 1.75,
which we reduce to 1.54 < v < 1.71 to give it the same relative width. For each observed
system and each mechanism, we look whether there is at least one solution with a envelope-
ejection parameter within these ranges. The results are shown as the first symbol in each
entry of Table5.3. The plus signs show which mechanism can explain the mass ratio of
an observed double white dwarf. The table shows that although none of the mechanisms
can explain all observed systems within the chosen ranges of v and .., the second-last
column shows that a combination of these mechanisms can. The table also indicates that
mechanisms containing only vs and none of the other +’s cannot explain all systems. The
same is true for v, and v4. If we expand the chosen ranges for v and «.. with a factor of
two, our calculations show that the mechanisms 7575 and 4y, can explain the mass ratios
of all systems. Expanding the allowed ranges in this way more than quadruples the total
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System 1: 2: 3: 4: 5: 6: Opt. Best
VsClce Vs Vs Yalce YaVa YdCOce YdVa Ics. mech.
0135 -/- 4/~ =/ =/= 4/~ /= +/~ 25
0136  +/+ +/+ +/~ /- +/+ /=  +/+ 125
0957 +/+ +/+ +/+ +/+ +/+ +/~ +/+ 1-5
1101 +/~ /= 4/~ +/- —/= —/= +/~ 1,3
1115 +/~ +/~ +/+ +/~ +/+ —/—= +/+ 35
1204 —/= —/= —/- —/—- +/—- +/—  +/= 56
1349 +/+ +/+ +/+ -/- +/+ —/- +/+ 1,2,3,5
1414 —/— —/- —/- —/- /-  +/+ +/+ 6
17042 +/— +/—- /=  +/- —=/=  +/=-  +/- 1,2,4,6
1704 +/— +/-  +/—  +/-  +/=  +/=  +/= 16
2209 —/-  +/+ /= +/+ /= 4/~ +/+ 24

Table 5.3: Comparison of the different mechanisms used to reconstruct the observed double
white dwarfs. The symbols +, ~ and — mean that the model solutions are in good, moderate
or bad agreement with the observations. The first of the two symbols in each column is
based on the mass ratio only and the second includes the age difference. The method for
obtaining the first symbol in each entry is described in Sect. 5.6.3, that for the second symbol
in Sect. 5.6.4. The symbols in the headers of the columns labelled 1-6 are explained in the
main text. The columns for v,7v4 and 474 were left out because they do not contain any
solutions. The last two columns show the optimum result and the mechanisms that give this
result (1-6).

number of solutions from 7866 to 36 867.

5.6.4 Constraining the age difference

The large number of solutions found in the previous section allows us to increase the number
of selection criteria that we use to qualify a solution as physically acceptable. We now
include the age difference of the components in our model systems and demand that it is
comparable to the observed cooling-age difference for that system. The age difference in
our models is the difference in age at which each of the components fills its Roche lobe and
causes dynamical mass loss.

Table 5.4 lists the number of model solutions for each mechanism and each system. The
columns labelled 1-6 are the same as those in Table 5.3. The first number in each of these
columns is the number of solutions that is found within the same ranges for v and a.. as
we used in Table 5.3. This means that a minus sign in that table corresponds to a zero in
Table 5.4. Behind the entries with a positive number of solutions the range of age difference
that these solutions span is shown. Again, the columns for y,7v4 and 44 are not displayed,
because they do not contain any solutions for any system. We have to expand the y-ranges
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System Obs. AT Number of solutions and model age differences (Myr)
(Myr) 1: vsouce 2: YsYs 3 Yallce 4: YaYa 5: YaQce 6: YaYa
0135 175-525 0 1, 0 0 49, 56,
1131 1302-2610 2067-5620
0136 225-675 35, 32, 2, 0 58, 0
44-281 43-237 76-94 44-418
0957 163488 36, 1925, 59, 292, 30, 1554,
352-818 144-3601 163-506 308-3387 352-851 490-12094
1101 108-323 318, 941, 242, 91, 0 0
995-10910 2202-10917 857-9124 5897-9577
1115 80-240 159, 80, 157, 378, 19, 0
368-1019 313-550 182-841 552-998 240-758
1204 40-120 0 0 0 0 46, 75,
1329-3780 2101-6161
1349 ? 13, 19, 5, 0 101, 0
64-235 64-235 64-134 64-905
1414 100-300 0 0 0 0 0 34,
36-385
1704a -30--10 3, 98, 0 218, 0 17,
858-1020 216-1381 1565-3313 2735-5386
1704b 10-30 3, 17, 1, 43, 2, 237,
519-553 217-364 465 199-781 536-553 181-1771
2209 250-750 0 188, 0 206, 0 26,
87-781 456-1115 1012-2041

Table 5.4: Results for the various evolution scenarios for double white dwarfs with two unstable mass-transfer episodes. The
range of observed At is the observed cooling-age difference + 50%. Columns labelled 1 through 6 give the number of model
solutions for each scenario followed by the range in age difference of these solutions in Megayears. The columns with v,7v4 and
Yava were left out, because they do not contain any solutions. For the different mechanisms we demanded that 1.54 <7, <1.71,

0.95 <, <1.05, 0.95 <v4<1.05 and 0.90 < carce < 1.10.
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to 0.25-1.75 in order to get the first solution for just a single system with one of these two
mechanisms. All mechanisms that are listed in Table 5.4 provide a solution for more than
one observed system, and each observed system has at least one mechanism that provides
it with a solution. The number of solutions per combination of mechanism and observed
system ranges from zero to several hundreds and the age differences of the accepted models
lie between 36 Myr and more than 12 Gyr.

We will use Table 5.4 to compare the age differences of the models to the observed val-
ues and use this comparison to judge the ‘quality’ of the model solutions. We will assume
that if the age difference in the model lies within 50% of the measured cooling-age differ-
ence (the range in the second column of Table 5.4) that this is a good agreement which we
will assign the symbol ‘+’. If the difference is larger than that, but smaller than a factor of
five we will call it ‘close’ and assign a ‘~’. Cases where the nearest solution has an age
difference that is more than a factor of five from the observed value is considered ‘bad’ and
assigned the symbol ‘—’. If we do this for all cases, we obtain the second symbol for each
entry in Table 5.3, which we can use to directly compare the quality of the solutions for each
mechanism and each observed system.

We find that these results are robust, in the sense that if we expand the ranges for v
and ae with a factor of two, the optimum result does not change, although there are more
mechanisms contributing to this result, i.e. the column ‘opt. result’ remains unchanged,
while the number of labels in the last column increases. The same is even true if we expand
the ranges for a.e with a factor of ten instead of two. If we use a factor of 2 in stead of 5
for the upper limit of a ‘close solution’, we need to expand the ranges for v and a with
a factor of 2.6 to get tildes at the same places in the column ‘optimum result’ as shown in
Table 5.3.

We conclude that our models can form double white dwarfs with the observed masses
and orbital periods if we invoke multiple formation mechanisms. Our calculations show
that if we double the allowed ranges for v and . with respect to those used in Tables 5.3
and 5.4, it is even possible to form all observed systems with mechanisms 47y only or 74y,
only. If we demand in addition that the age differences of the model systems lie within 50%
of the observed value, we can still explain the formation of most observed systems, while
for some double white dwarfs this becomes difficult. This is the case with WD 0135-052,
WD 1204+450, WD 1704+481b and to a lesser extent WD 1101+364. These four systems
can usually either be explained with an acceptable age difference but a value for v that is
off, or an acceptable v and an age difference that lies (sometimes much) more that 50%
from the observed value.

5.6.5 Description of the individual solutions

The goal of this research is, of course, to find out whether we can somehow explain the
formation of the observed double white dwarfs. If this is the case, we hope to learn firstly
which mechanisms govern this formation and secondly what the progenitor systems are that
evolve to the observed white-dwarf binaries. Although we do not find one mechanism that
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can explain all observed systems in a satisfying way, we present here the evolution of some
of the best solutions among our calculations. We list the five main parameters that describe
the evolutionary scenario of a solution (two initial masses, the initial period and the two
envelope-ejection parameters) and two minor ones (the actual final masses that the models
give) in a table. Because we present solutions for six different formation mechanisms and
eleven observed systems that may have more than one ‘best’ solution this table is quite large.
This is particularly the case because we want to remove the arbitrarily chosen boundaries
that we have used so far to qualify a solution. We therefore list at least one solution per
mechanism per system, independent of how far its parameters lie from the preferred values.
We chose to present the complete table as Table 5.6 in Sect. 5.9 and give an excerpt of it in
Table 5.5. In this way, the reader may verify how particular models do or do not work.

‘We manually picked the ‘best’ solutions for a given combination of formation mechan-
ism and observed system, in the sense that the solution has a v close to unity (or, in case of
vs, close to 1.63), an a., close to the range of 0.5-1.0 and an age difference that is close
to the observed value. In the cases where there are different solutions that each excel in a
different one of these three properties, we may present more than one solution. If there are
several solutions that are similar on these grounds, we prefer those with lower initial masses.
We then leave it to the reader to judge whether these solutions are acceptable. The values for
qor and P are identical to the value listed in Table 5.1 and therefore not shown in Table 5.5.
The intermediate masses are also left out of the table, because no matter is accreted dur-
ing the dynamical mass loss and thus My, = Mjs and My, = Moy; in our models. The
numbering of the solutions in the excerpted table is the same as in the complete version.

We tabulate 120 solutions in total. The initial binaries have primary masses between
1.09 M and 5.42 M, though there are only two solutions with M;; > 4 Mq,. Of the 120
solutions, 50% have an initial primary mass less than 2 M and 87% of the primaries are
less massive than 3 M. Thus, the models suggest that the double white dwarfs are formed
by low-mass stars, as may be required to explain the observed numbers of these binaries.
Of the initial systems, 90% have orbital periods between 10 and 1000days. All proposed
solutions undergo a first envelope ejection described by angular-momentum balance of some
sort, which allows the orbital period to increase during such a mass-transfer phase. In 61%
of the selected solutions this is the case, and for 45% of the solutions the intermediate orbital
period is twice or more as long as the initial period. Of the 120 solutions listed, 51% have
initial mass ratios ¢q1; > 1.07 while only 17% have ¢;; > 1.2. A bit worrying may be that
for 24% of the solutions, ¢1; < 1.03. It could be that these initial systems evolve into a
double common envelope, where the two white dwarfs are formed simultaneously and the
second white dwarf is undermassive. On the other hand, because the orbital period increases
in most of the first envelope ejections, the outcome of such a common envelope is uncertain.
One should treat these solutions with some scepticism.

We now briefly discuss the solutions for each observed system that are listed in the
excerpted Table 5.5. For WD 0135-052 it is difficult to get both «’s close to the preferred
values. In solution5, v,; is off while a2 is acceptable, solution 8 has a 7y,; not too far
from unity but ,2 is off and for solution 9 the reverse is the case. The three solutions have
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acceptable age differences. The solutions 17 and 22 for WD 0136+768 and 28 and 30 for
WD 0957-666 have values close to desired for both envelope-ejection parameters and the
Ar. Solution 38 is by far the best solution for WD 1101+364, though 7,1 is not very close
to unity. Solutions 50 and 54 for PG 1115+116 have envelope-ejection parameters close
to the desired values and acceptable A7’s, though the initial masses are high. This is in
accordance with the fact that these stars are required to form white dwarfs with masses as
high as 0.7 M. Solution55 shows that one has to accept a large value for vq; in order to
find a solution with significantly smaller initial masses.

Solutions 58 and 65 are the only two for WD 12044450 from the complete table that
have age differences within 50% of the observed value, and still the envelope-ejection para-
meters are far from the desired values. There seems to be no convincing solution for this
system in our models. For WD 1349+144 the cooling ages are not known, although the
similar Balmer spectra of the two components (Karl et al. 2003a) seem to suggest that A7
is small. Solution 74 (which is the same as solutions 66, 69 and 70 in the complete table but
with a different definition of ) has a small age difference of 64 Myr but also a disturbingly
small initial mass ratio of 1.01. Since the orbital period is supposed to increase with more
than 200% during the first dynamical mass-loss episode, it is uncertain how this initial sys-
tem would evolve. Solution 68 has a larger initial mass ratio, but also a larger age difference.
The complete table shows solutions for WD 1349+144 with values for A7 of about 64, 140,
230, 370 and 450 Myr, so that they span a large range within which the actual age difference
is likely to lie. For HE 1414-0848 we find an acceptable solution for almost all mechan-
isms and 4 out of the 8 solutions listed in the complete table refer to the same solution with
different values for the envelope-ejection parameters for the different mechanisms. Since
the observed age difference of WD 1704+481a is —20 Myr, we have introduced a system
with the reversed mass ratio (WD 1704+481b) and hence an age difference of +20Myr.
Interestingly enough, the solutions with closest age difference for WD 1704+481b have
AT 2,180 Myr, a factor of nine or more than observed, as is the case for solution 103. How-
ever, for WD 1704+481a we find solutions with good envelope-ejection parameters and an
age difference of around 50 Myr, like solution 92, and with parameters that are more off, but
with an age difference of only 2 Myr as in solution 98. The system WD 1704+481a seems
therefore better explained by our models than the system with the reverse mass ratio. Be-
cause the observed cooling-age difference is only in the order of a few per cent of the total
age of the system (see Table 5.1), a change of 10% in the determined cooling age of one of
the two components is sufficient to alter the age difference from —20 Myr to +50 Myr. For
HE 2209-1444, we present solutions 114 and 115, that have envelope-ejection parameters
close to the desired values and an age difference that agrees very well with the observed
cooling-age difference.

Summarising, we find that for the ten observed systems, two can only be explained
with values for v that differ appreciably from the desired values (WD 0135-052 (31%) and
WD 1204+450 (20%)). For two systems the values of the envelope-ejection parameters
and age difference may not be too convincing, partially due to uncertainties in the observa-
tions (WD 11014364 (v = 1.17) and WD 1704+481(a) (AT = 52Myr)) and the other six
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systems (WD 01364768, WD 0957-666, PG 1115+116, WD 1349+144, HE 1414-0848 and
HE 2209-1444) can be well explained (Avy < 5%, A(A7) < 50%) by one or more of the
described mechanisms, although several of these mechanisms are needed to account for all
six observed systems.

5.7 Discussion

5.7.1 Comparison to other work

In this chapter we investigate the formation scenarios for double white dwarfs first put for-
ward by Nelemans et al. (2000). Their paper is based on three double white dwarfs and we
expanded this to the set of ten that has been observed so far. Rather than using analytical
approximations, we used a stellar evolution code to do most of the calculations. One of
the advantages of this is that we calculate the binding energy of the donor star at the onset
of a common envelope, so that we can directly calculate the common-envelope parameter
e Without the need of the envelope-structure parameter \eyy, that turns out to be far from
constant during the evolution of a star (see Fig. 5.4). This allows us to demand physically
acceptable values for ace.

The use of an evolution code instead of analytical expressions obviously gives more
accurate values for instance for the core-mass—radius relation. Our main conclusions are
nevertheless the same as that of Nelemans et al. (2000), even though they are based on a
larger sample of observed binaries: stable, conservative mass transfer followed by a com-
mon envelope with spiral-in based on energy balance cannot explain the formation of the
observed systems, and neither can the aceice scenario of two such spiral-ins. We therefore
arrive at the same conclusion, that a third mass-transfer mechanism is needed to explain the
first mass-transfer phase of these systems and we use their envelope-ejection prescription,
based on angular-momentum conservation (Eq. 5.8).

Nelemans & Tout (2005) use more advanced fits to stellar models, but still need the
envelope-structure parameter A, so that it is difficult to interpret the values they find for
the product ace Aenv. They use the same ten observed double-lined white dwarfs as we do,
next to a number of single-lined systems. They also conclude that a y-envelope ejection
is needed for the first mass transfer and find, like Nelemans et al. (2000), that all observed
systems can be explained by 1.50 < v¢ < 1.75, for both mass-transfer phases. Alternatively
the second mass-transfer episode can be reconstructed with 0 < e Aenv < 4. However,
Nelemans & Tout (2005) do not discuss the coupling of the two solution sets for the two
phases, e.g. it is not described how many of the solutions with 1.50 < 74 < 1.75 have
7s2 in the same range. We introduced slightly different definitions for the ~y-algorithm in
Eqs.5.10 and 5.11, so that we can demand that + is in the order of unity. We find indeed
that we can explain the observed masses and periods with v, vq ~ 1.0.

We add to the treatment by Nelemans et al. (2000) and Nelemans & Tout (2005) in de-
manding that, in addition to the masses and orbital period, the age difference of our models
must be comparable to the observed value. It turns out that this puts a strong constraint on
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the selection of model solutions for all three definitions of . However, we can still explain
most systems, although we need mass loss described by both v, and 4 to do so.

The description for dynamical mass loss with the specific angular momentum of the
donor star (Eq.5.11) is similar to the scenario of a tidally-enhanced stellar wind (Tout &
Eggleton 1988b,a). In this scenario the mass loss from a (sub)giant due to stellar wind
increases up to a factor of 150 with respect to Reimers’ empirical law (Reimers 1975) when
the star is close to filling its Roche lobe. Tout & Eggleton (1988b) postulate the enhanced
wind to explain for instance observed pre-Algol systems such as ZHer. In this binary the
more evolved star is less massive than its main-sequence companion by 10%, while only
filling about half of its Roche lobe.

Han (1998) uses this tidally-enhanced stellar wind in his research on the formation of
double degenerates and concludes, among others, that his models that include this enhanced
stellar wind give a better explanation of the observed double-degenerate binaries than mod-
els that do not include it. The enhanced mass loss makes subsequent mass transfer due to
Roche-lobe overflow dynamically more stable. Envelope ejection due to dynamical mass
loss is then more often prevented and binaries evolve to longer orbital periods before the
second mass transfer, which is then more likely to produce a CO white dwarf. Thus, the
enhanced-wind scenario increases the ratio of CO-helium double white dwarfs to helium-
helium binaries.

Envelope ejection described by Eq.5.11 is essentially the same as the limiting case in
which most or all of the envelope is lost due to an enhanced wind. Tout & Eggleton (1988b)
show that the tidally-enhanced wind can indeed prevent Roche-lobe overflow altogether
because the envelope is completely lost by the wind and the core becomes exposed. Without
an enhanced wind, this happens for binaries with an initial mass ratio of 2 or less only if they
have initial periods of more than 1000 days. When the tidally-enhanced wind is included,
core exposure without Roche-lobe overflow occurs for these binaries with initial periods as
short as 10-30days.

5.7.2 Alternative formation scenario for massive white dwarfs

In the present research we have assumed that after envelope ejection occurs, the core of
the Roche-lobe filling giant becomes a helium or CO white dwarf with no further evolution
other than cooling. However, helium cores that are more massive than 0.33 M, are not
degenerate and those more massive than about 0.5 M, will burn most of the helium in their
cores and produce a CO core. If exposed, they are in effect helium stars. For helium stars
less massive than about 0.75 M, the radius hardly changes during the helium (shell) burn-
ing, but stars more massive than that experience a giant phase. This is shown in Fig. 5.16a,
where the radius of a selection of helium-star models is plotted as a function of the CO-core
mass. For the more massive models in the Figure, the stars expand from the order of a few
tenths of a solar radius to a few hundred solar radii. Thus, helium stars with a core mass
Mco 2 0.7 Mg may and those with Mco 2 0.8 Mg must become giants and could fill
their Roche lobes as a consequence. The black dots in Fig. 5.16a indicate the maximum
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Figure 5.16: Upper panel (a): The radius of a helium star as a function of its CO-core
mass, for a selection of 15 models with total masses between 0.41 and 1.43 M. The dots
show where the maximum radii are obtained and are used for the lower panel. The dashed
line is the Roche-lobe radius for the intermediate primary of PG 1115+116 according to our
solution 54. Lower panel (b): The maximum radius of a low-mass helium star as a function
of its total mass, for a selection of 33 models with masses between 0.33 and 1.4 M. The

dots are the data points, the solid line connects them to guide the eye.



122 Chapter 5

radius for a certain helium-star model and if we plot the maximum radii of these and other
models as a function of the total mass of the star, we obtain Fig.5.16b. This Figure shows
that a helium star more massive than about 0.83 M, must evolve through a giant phase (see
e.g. Paczyniski 1971; Habets 1986).

There are two double white dwarfs in the observed sample that have My > 0.6 M),
PG 1115+116 (both components) and HE 1414-0848 (the secondary). The evolutionary
scenarios in Table 5.5 suggest that all these stars emerge from the envelope ejection with a
CO core, except solution 54 for PG 1115+116, where the 5.42 M, primary progenitor pro-
duces a 0.89 M, helium core before helium ignites. The Roche-lobe radius of the 0.89 M,
helium star in the intermediate binary is 187 R according to this solution and shown as the
dashed line in Fig. 5.16.

The Figure shows that the mass and Roche-lobe radius of this star are in the proper
range to fit the helium-giant scenario. We show a small numerical example to illustrate this
scenario. The dot in Fig.5.16a at Mc0=0.88 M and R = 171 R, just below the dashed
line, is the point where the model of 0.93 M, from our grid of helium-star models reaches
its largest radius. The star thus has an envelope mass of only 0.05 M, and with a mass ratio
of almost 4, mass transfer would be stable (Eq.57 of Hurley et al. (2002)). If we assume
that this star would be the primary of solution 54 in Table 5.5 and that 0.04 M would be
transferred conservatively, the orbital period after the mass transfer would be 1115d, so that
the period would not change drastically and the ensuing second envelope ejection would be
similar to the one found in solution 54. If the mass were lost in a wind, which could be
triggered by the fact that the star expands, but for which the Roche lobe need not be filled,
the orbital period would change less than 2% to 1031 d. It seems that a complete, detailed
model could be found to explain this system along these lines.

Both components in HE 1414-0848 are DA white dwarfs (Napiwotzki et al. 2002), as
is the secondary of PG 1115+116. The hydrogen in the spectra of these stars suggests that
the surface layer that formed after the envelope was ejected is still present. However, the
primary in PG 11154116 is a DB white dwarf. As Maxted et al. (2002a) point out, the giant
phase of a helium star could be the explanation for this and the scenario sketched above
might indeed describe the formation of this system.

5.8 Conclusions

We investigated several formation scenarios for the observed ten double white dwarfs listed
in Table 5.1 and present the best models in Table 5.5. We draw four main conclusions:

e The scenario where the first mass-transfer phase is stable and conservative, followed
by a common envelope with spiral-in based on energy conservation (see Eq. 5.4) can-
not explain the observed masses and periods of all double white dwarfs.

e The scenario with envelope ejection based on angular-momentum conservation fol-
lowed by ejection of the second envelope with either energy or angular-momentum
balance can explain the observed masses and orbital periods very well.



Modelling the formation of double white dwarfs 123

e Including the age difference as a quality criterion for model solutions produces strong
restrictions to the selection of solutions and makes it much more difficult to find
acceptable solutions.

e By taking into account the possibilities that mass is lost either from the donor or from
the accretor, we show that the formation of the close double white dwarfs can be
explained if the mass carries the specific angular momentum of one of the two binary
members.

Acknowledgements We thank P.P. Eggleton for making his binary evolution code avail-
able to us.

5.9 Appendix: Table of model solutions

Nr. Meth. 7 v2, AT AAT T My Mai  qu P G2m Pm My Moy
ace2 Myr % Gyr Mg Mg d d Mo Mg

WD 0135-052
1 ysowe 202 087 377 1.7 314 151 146 1.04 5045 3.12 2647 047 042
2 soce 081 061 899  157. 217 211 1.63 129 3322 320 3725 0.51 046
3 s 188 1.62 610 74 136 255 206 124 3005 356 1109 0.58 0.52
4 svs 200 1.74 523 49. 329 151 144 1.05 5039 3.08 2689 047 042
5 Yaoee 1.31 087 377 7.7 314 151 146 1.04 5045 3.12 2647 047 042
6 Yaocce 1.29 086 523 49. 329 151 144 1.05 5039 3.08 2689 047 042
7  ~Yaocce 128 085 667 91. 343 151 142 1.07 5033 3.04 2723 047 042
8 ~Yava L15 066 524 50. 136 246 2.06 120 4298 356 1109 0.58 0.52

=)

YaYa 1.40 0.99 454  30. 537 128 125 1.03 596.6 268 313.7 047 042
10 7vava 129 0.81 523 49 329 151 144 1.05 5039 3.08 2689 047 042
I 7vaya 131 080 377 7.7 314 151 146 1.04 5045 3.12 2647 047 042
12 ygoace 136 089 261  25. 3.02 151 148 1.03 5051 3.16 260.8 047 042
13 ~v47a. 140 0.89 341 26 407 138 135 1.03 5538 2.89 288.6 047 042
14 ~vgva 1.00 098 2067 491. 343 206 142 145 1553 272 490.6 0.52 047

Table 5.6: Selected model solutions for the double envelope-ejection scenario. This is the
full table with 120 entries of which Table 5.5 is an excerpt. The first eight columns show the
number of the entry, the double white dwarf that the model is a solution to, the mechanism
used, the two envelope-ejection parameters, the age difference of the two components in the
model (A7) in Myr, the relative difference between the observed and model age difference,

defined as AAT = |ATmed—BTebe | in 9, the time of the formation of the double white dwarf

obs

since the ZAMS (72) in Gyr. The last eight columns list binary parameters: the initial
(ZAMS) masses, mass ratio and orbital period, the intermediate mass ratio and period and
the final masses. See Sect. 5.6.5 for more details. (continued on the next pages)
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Nr. Meth. ~1 Y2, AT AAT T2 My Mo qui
ace2 Myr % Gyr Mp Mg

q2m ™ Mys Mo

&

WD 0136+768

15 ~sace 148 1.01 449 0.2 373 144 138 1.04 7227 416 2659 033 042
16 v 153 1.53 300 33. 268 159 153 1.04 6422 460 2356 033 042
17 ~sys 151 161 450 00 239 170 159 1.07 106.1 436 371.4 037 046
18  ~aace 091 099 317  30. 390 140 137 1.03 7407 411 269.8 033 042
19  7vava 092 099 321 29. 524 128 127 1.01 171.1 339 5329 037 047
20 7vava 090 1.01 460 22 537 128 125 1.03 1709 335 540.8 0.37 047
21 Yaowce 093 099 317  30. 390 140 137 1.03 7407 411 269.8 033 042
22 ygowce 095 1.00 299 34, 268 159 153 1.04 7588 450 2695 034 043
23 yg7a 094 095 599  33. 467 135 130 1.04 1625 348 5179 037 047
24 7yava 093 099 574  28. 524 130 127 1.03 168.8 3.39 5329 037 047

WD 0957-666

25  Asace 174 1.00 341 4.8 .16 225 2.00 112 1522 6.66 28.52 030 0.34
26 ysace 1.62  1.00 427  31. 1.16 234 200 117 8110 6.66 28.52 030 0.34
27 sys 167 162 328 09 777 1.14 1.13 1.01 27.78 399 5690 0.28 0.32
28  vaace 1.02 097 321 1.2 1.65 190 179 1.07 20.15 631 27.07 028 0.32
29 ~ava 104 1.00 309 49 919 1.09 1.07 101 1002 3.19 1951 034 038
30 ~vgoce 1.00 1.00 427  31. 1.16 234 200 1.17 8110 6.66 28.52 030 0.34
31 Yaoee 1.06  1.00 341 4.8 .16 225 2.00 112 1522 6.66 28.52 030 0.34
32 ygowce 1.02 071 334 28 225 170 1.61 1.05 13.89 570 35.74 0.28 0.32
33 ~v47a 105 1.00 309 49 919 109 1.07 1.01 1002 3.19 195.1 034 0.38

WD 11014364

34 Asace 195 0.89 487 126. 1.71 198 176 1.12 122.8 4.51 4824 039 034
35  ysoee 208 1.00 208 3.3 238 1.63 159 1.03 1187 433 39.18 037 0.32
36 sy 181 1.30 312 45, 0.80 2.72 228 120 44.86 5.82 30.61 039 034
37 s 213 161 216 05 451 133 132 1.01 1831 347 6290 038 033
38 vaoe 1.17 096 308  43. 1.57 195 181 1.08 127.1 463 4528 039 0.34
39 7vava 140 074 208 3.3 6.12 122 120 1.01 1641 327 55.68 037 0.32
40  ygoce 133 1.00 137 36. 327 146 144 1.01 1122 404 3590 036 0.1
41 Yaoee 1.26 1.01 256  19. 1.52 195 1.83 1.07 1272 469 4320 039 0.34
42 ygoace 141 1.00 317  47. 809 1.13 1.2 1.01 9107 335 2896 033 0.29
43 vygva 151 095 299 39. 9.18 1.09 1.07 101 2650 2.74 96.55 039 0.34
44 ygva 139 071 227 56 429 135 133 101 217.1 341 7652 039 0.34

PG1115+116

45  ysoce 179 1.00 239 49. 050 3.70 294 126 1693. 3.58 980.4 0.82 0.69
46 ysace 195 1.00 203  27. 073 290 259 1.12 2088. 3.24 1017. 0.80 0.67
47 ysoce 190 1.00 165 29 050 338 294 1.15 1960. 3.58 9804 0.82 0.69
48 s 179 162 198 24, 042 394 313 126 2127. 3.56 1240. 0.88 0.74
49 s 193 162 156 24 054 321 287 1.12 2075. 3.49 1020. 0.82 0.69
50  qaace 1.01 1.00 239  49. 050 3.70 294 126 1693. 3.58 980.4 0.82 0.69
51 Yatce 1.18 1.00 228  42. 073 294 259 1.14 2057. 3.24 1017. 0.80 0.67
52 ~ava 139 1.00 150 6.2 1.16 231 219 1.05 3581. 249 1952. 0.88 0.74
53 7vava 1.00 0.62 230 44. 047 3.84 3.02 127 1945. 3.52 1162. 0.86 0.72
54 ~ygoce 097 093 240  50. 032 542 342 158 2012 3.84 1012. 089 0.75
55  7vava 145 1.00 214 34, .11 240 222 1.08 3567. 249 2032. 0.89 0.75
56 yq7va 1.00 054 235 47. 032 528 342 154 190.8 3.89 758.6 088 0.74

Table 5.6: Selected model solutions for the double envelope-ejection scenario (continued)



Modelling the formation of double white dwarfs 125
Nr.  Meth. 7 Y2, AT AAT T My My qu B G2m Pm My Moy
ace2 Myr % Gyr Mg Mg d d Mo Mg
WD 1204+450
57 Ysace 2.15 0.83 136  70. 537 127 125 1.01 6303 2.65 2743 047 041
58 ¥svs  1.83  1.30 71 11. 0.25 394 347 1.14 6923 592 56.81 0.59 0.51
59 Yatce 1.45 0.87 138  72. 466 132 130 1.01 6066 2.76 2634 047 041
60 YaYa 0.63 0.65 225 181. 158 2.06 1.81 1.14 3289 3.58 2562 0.51 0.44
61 YaYa 0.78 0.72 491 514. 1.85 2.06 1.72 120 86.06 3.33 3124 052 045
62 Yaoece 072 096 225 181. 1.58 2.06 1.81 1.14 3289 3.58 2562 0.51 0.44
63 Yaoce 1.47 0.87 138  72. 4.66 132 130 1.01 6066 2.76 2634 047 041
64 YaYa 149 097 136 70. 537 127 125 1.01 6303 2.65 2743 047 041
65 YaYa 1.10 034 74 7.8 0.26 3.89 342 1.14 3882 596 51.85 0.57 0.50
WD 1349+144
66 Ysoce 1.56  0.98 64 0.0 245 1.59 1.57 1.01 1204 431 3734 037 046
67 Ysace 1.45 1.01 461 0.0 452 135 132 1.03 1059 3.77 3645 035 044
68 Y¥svs  1.51  1.63 426 0.0 268 1.61 153 1.05 1150 420 3857 0.37 0.46
69 Y¥svs  1.56  1.60 64 0.0 245 1.59 1.57 1.01 1204 431 3734 037 046
70 Yacce 0.96 098 64 0.0 245 159 1.57 1.01 1204 431 3734 037 046
71 Yacce 091 1.01 229 0.0 452 133 132 1.01 1074 377 3645 035 044
72 YaYa 091 1.00 143 0.0 537 127 1.25 1.01 173.1 3.35 540.8 0.37 047
73 YaYa 0.90 1.00 460 0.0 537 128 1.25 1.03 1709 3.35 540.8 0.37 047
74 Yaoce 097 098 64 0.0 245 1.59 1.57 1.01 1204 431 3734 037 046
75 Yacce 092 099 147 0.0 4.67 132 130 1.01 108.7 3.72 369.7 035 0.44
76 Yava 093 094 368 0.0 4.67 133 130 1.03 1647 348 5179 037 047
77 YaYa 092 1.00 460 0.0 537 128 1.25 1.03 1709 3.35 540.8 0.37 047
78 YaYa 092 1.00 143 0.0 537 127 125 1.01 173.1 3.35 540.8 0.37 047
HE 1414-0848
79 Ysace 1.52  0.71 188 5.9 043 351 3.09 1.14 7081 599 3583 0.52 0.66
80 Y¥svs 146 1.79 119  40. 090 252 240 1.05 4674 4.09 1720. 059 0.75
81 Y¥svs 1.52 145 188 5.9 043 351 3.09 1.14 7081 599 3583 0.52 0.66
82 Yacce 0.83  0.71 188 5.9 043 351 3.09 1.14 7081 599 3583 0.52 0.66
83 Yava 091 099 177 12. 1.33 2,19 208 1.05 7122 3.51 2170. 0.59 0.76
84 Yacece 095 0.71 188 5.9 043 351 3.09 1.14 7081 599 3583 052 0.66
85 Yava 095 099 219 95 1.33 222 208 1.07 7013 3.51 2170. 0.59 0.76
86 YaYa 096 098 170 15. 1.28 222 211 1.05 702.1 3.55 2134. 0.59 0.76
WD 1704+481a
87 Ysoce 1.67 0.60 52 360. 1.41 206 1.88 1.09 40.37 3.66 65.66 0.51 0.36
88 Ysace 1.88  0.62 15 175, 1.17 219 2.00 1.09 9352 379 6689 0.53 0.37
89 Ysoce 2.05 043 7 135. 136 203 190 1.07 2528 3.51 96.02 0.54 0.38
90 Ysvs 1.67 152 52 360. 141 2.06 1.88 1.09 4037 3.66 6566 051 0.36
91 Y¥svs 1.88  1.50 15 175.  1.17 219 200 1.09 9352 3.79 66.89 0.53 0.37
92 Yatce 1.01  0.60 52 360. 141 2.06 188 1.09 4037 3.66 6566 051 0.36
93 Yatce 1.13  0.62 15 175, 1.17 219 2.00 1.09 9352 379 6689 053 0.37
94 YaYa 1.01 0.55 52 360. 1.41 206 1.88 1.09 40.37 3.66 65.66 0.51 0.36
95 Yaoce 1.11  0.60 52 360. 141 2.06 188 1.09 4037 3.66 6566 051 0.36
96 Yaoce 1.24  0.62 15 175. 1.17 219 200 1.09 9352 3.79 66.89 0.53 0.37
97 Yaoce 1.37 034 2 110. 148 193 186 1.04 2945 333 1202 056 0.39
98 YdYa 1.37 0.63 2 110. 148 193 1.86 1.04 2945 333 1202 0.56 0.39

Table 5.6: Selected model solutions for the double envelope-ejection scenario (continued)



126 Chapter 5

Nr. Meth. ~1 Y2, AT AAT T2 My Mo qui
Qce2 Myr % Gyr Mg Mo

q2m P My Mo
d My Mg

&

WD 1704+481b

99 Ysace 1.65 053 292 1360. 0.73 2.83 2.59 1.09 4721 637 161.8 041 0.58
100 7ysoce 1.74 076 285 1326. 0.75 276 255 1.08 49.12 6.40 1073 040 0.57
101 sy 1.64 1.87 182 810. 223 1.68 1.65 1.01 212.1 408 478.6 041 0.58
102 vacce 096 1.05 465 2223. 1.00 262 231 1.14 4402 6.10 63.28 0.38 0.54
103 7vaya 098 099 199 895. 259 159 157 1.01 2560 3.81 6640 041 0.59
104 ~vava 094 097 181 805. 223 1.68 1.65 101 2840 3.88 892.6 043 0.61
105  ~ygoce 1.03 015 182  810. 223 1.68 1.65 1.01 212.1 4.08 478.6 041 0.58
106 ~vgace 1.00 0.76 332 1562. 0.75 2.87 255 1.12 3329 640 107.3 040 0.57
107 ~vg47va 095 097 181 805. 223 168 1.65 1.01 284.0 3.88 892.6 043 0.61
108  ~v97a 1.00 099 199 895. 259 159 157 101 2560 3.81 664.0 041 0.59

HE 2209-1444

109 ~Asace 1.69 054 517 3.3 145 237 195 121 1485 355 1682 0.55 0.55
110 7soce 1.56  0.88 552 10. 075 379 255 149 87.01 448 113.8 0.57 0.57
111 vy 162 1.64 262 48 120 237 216 1.09 150.0 393 304.6 0.55 0.55
112 vy 163 1.73 510 2.1 1.24 259 214 121 4036 3.62 596.1 059 0.59
113 vaoce 1.19 090 42 92. 120 219 216 101 121.7 408 97.10 0.53 0.53
114 ~vaoce 098 054 517 3.3 145 237 195 121 1485 355 1682 0.55 0.55
115  7a7ya 1.00 1.00 612 22 1.65 228 186 123 968.0 295 1061. 0.63 0.63
116 ~vava 1.08 1.00 499 0.2 1.87 206 176 1.17 809.5 294 777.6 0.60 0.60
117 ~ygoce 1.06 053 347  31. 1.35 231 203 1.14 8061 3.76 169.5 054 0.54
118  ~vgace 1.12 0.88 559  12. 075 384 255 150 7151 448 113.8 0.57 0.57
119  ~g7va 1.15 086 744  49. 1.35 276 203 136 556.8 327 881.7 0.62 0.62
120 ~v9va 1.00 0.81 731 46. 148 255 193 132 135.6 3.38 4375 0.57 0.57

Table 5.6: Selected model solutions for the double envelope-ejection scenario (continued)



