
Chapter 5

Modelling the formation of double

white dwarfs

M.V. van der Sluys, F. Verbunt and O.R. Pols

Submitted to Astronomy and Astrophysics

Abstract We investigate the formation of the ten double-lined double white dwarfs that

have been observed so far. A detailed stellar evolution code is used to calculate grids of

single-star and binary models and we use these to reconstruct possible evolutionary scen-

arios. We apply various criteria to select the acceptable solutions from these scenarios.

We confirm the conclusion of Nelemans et al. (2000) that formation via conservative mass

transfer and a common envelope with spiral-in based on energy balance or via two such

spiral-ins cannot explain the formation of all observed systems. We investigate three differ-

ent prescriptions of envelope ejection due to dynamical mass loss with angular-momentum

balance and show that they can explain the observed masses and orbital periods well. Next,

we demand that the age difference of our model is comparable to the observed cooling-

age difference and show that this puts a strong constraint on the model solutions. One of

these solutions explains the DB-nature of the oldest white dwarf in PG1115+116 along the

evolutionary scenario proposed by Maxted et al. (2002a), in which the helium core of the

primary becomes exposed due to envelope ejection, evolves into a giant phase and loses its

hydrogen-rich outer layers.



80 Chapter 5

5.1 Introduction

Ten double-lined spectroscopic binaries with two white-dwarf components are currently

known. These binaries have been systematically searched for to find possible progenitor

systems for Type Ia supernovae, for instance by the SPY (ESO SN Ia Progenitor surveY)

project (e.g. Napiwotzki et al. 2001, 2002). Short-period double white dwarfs can lose

orbital angular momentum by emitting gravitational radiation and if the total mass of the

binary exceeds the Chandrasekhar limit, their eventual merger might produce a supernova

of type Ia (Iben & Tutukov 1984).

The observed binary systems all have short orbital periods that, with one exception,

range from an hour and a half to a day or two (see Table 5.1), corresponding to orbital sep-

arations between 0.6R⊙ and 7R⊙. The white-dwarf masses of 0.3M⊙ or more indicate

that their progenitors were (sub)giants with radii of a few tens to a few hundred solar radii.

This makes a significant orbital shrinkage (spiral-in) during the last mass-transfer phase

necessary and fixes the mechanism for the last mass transfer to common-envelope evolu-

tion. In such an event the envelope of the secondary engulfs the oldest white dwarf due to

dynamically-unstable mass transfer. Friction then causes the two white dwarfs to spiral in

towards each other while the envelope is expelled. The orbital energy that is freed due to

the spiral-in provides for the necessary energy for the expulsion (Webbink 1984).

The first mass transfer phase is usually thought to be either another spiral-in or stable

and conservative mass transfer. The first scenario predicts that the orbit shrinks appreciably

during the mass transfer whereas the second suggests a widening orbit. Combined with

a core mass–radius relation (e.g. Refsdal & Weigert 1970) these scenarios suggest that

the mass ratio q2 ≡ M2/M1 of the double white dwarfs is much smaller than unity in

the first scenario and larger than unity in the second scenario. The observed systems all

have mass ratios between 0.70 and 1.28 (Table 5.1), which led Nelemans et al. (2000) to

conclude that a third mechanism is necessary to explain the evolution of these systems.

They suggested envelope ejection due to dynamical mass loss based on angular-momentum

balance, in which little orbital shrinkage takes place. They used analytical approximations

to reconstruct the evolution of three double white dwarfs and concluded that these three

systems can only be modelled if this angular-momentum prescription is included.

In this chapter we will use the same method as Nelemans et al. (2000), to see if a

stable-mass-transfer episode followed by a common envelope with spiral-in can explain the

observed double white dwarfs. We will improve on their calculations in several respects.

First, we extend the set of observed binaries from 3 to 10 systems. Second, we take into

account progenitor masses for the white dwarf that was formed last up to 10 M⊙ and allow

them to evolve beyond core helium burning to the asymptotic giant branch. Nelemans et al.

(2000) restricted themselves to progenitor masses of 2.3 M⊙ or less and did not allow these

stars to evolve past the helium flash. This was justified because the maximum white-dwarf

mass that should be created by these progenitors was 0.47 M⊙, the maximum helium-core

mass of a low-mass star and less than the minimum mass for a CO white dwarf formed in a

spiral-in (see Fig. 5.1). The most massive white dwarf in our sample is 0.71 M⊙ and cannot
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have been created by a low-mass star on the red-giant branch. Third, we use more sophist-

icated stellar models to reconstruct the evolution of the observed systems. This means that

the radius of our model stars does not depend on the helium-core mass only, but also on

total mass of the star (see Fig. 5.1). Furthermore, we can calculate the binding energy of the

hydrogen envelope of our models so that we do not need the envelope-structure parameter

λenv and can calculate the common-envelope parameter αce directly. Last, because we use

a full binary-evolution code, we can accurately model the stable mass transfer rather than

estimate the upper limit for the orbital period after such a mass-transfer phase. This places

a strong constraint on the possible stable-mass-transfer solutions. The evolution code also

takes into account the fact that the core mass of a donor star can grow appreciably during

stable mass transfer, a fact that alters the relation between the white-dwarf mass and the

radius of the progenitor mentioned earlier for the case of stable mass transfer.

Our research follows the lines of Nelemans et al. (2000), calculating the evolution of the

systems in reverse order, from double white dwarf, via some intermediate system with one

white dwarf, to the initial ZAMS binary. In Sect. 5.2 we list the observed systems that we try

to model. The stellar evolution code that we use to calculate stellar models is described in

Sect. 5.3. In Sect. 5.4 we present several grids of single-star models from which we will use

the helium-core mass, stellar radius and envelope binding energy to calculate the evolution

during a spiral-in. We show a grid of ‘basic’ models with standard parameters and describe

the effect of chemical enrichment due to accretion and the windmass loss. We find that these

two effects may be neglected for our purpose. In Sect. 5.5 we use the single-star models to

calculate spiral-in evolution for each observed binary and each model star in our grid and

thus produce a set of progenitor binaries. Many of these systems can be rejected based on

the values for the common-envelope parameter or orbital period. The remainder is a series

of binaries consisting of a white dwarf and a giant star that would cause a common envelope

with spiral-in and produce one of the observed double white dwarfs. In Sect. 5.6 we model

the first mass-transfer scenario that produces the systems found in Sect. 5.5 to complete the

evolution. We consider three possible mechanisms: stable and conservative mass transfer,

a common envelope with spiral-in based on energy balance and envelope ejection based on

angular-momentum balance. We introduce two variations in the latter mechanism and show

that they can explain the observed binaries. In addition, we show that the envelope-ejection

scenario based on angular-momentum balance can also explain the second mass-transfer

episode. In Sect. 5.6.4 we include the observed age difference in the list of parameters our

models should explain and find that this places a strong constraint on our selection criteria.

In Sect. 5.7 we compare this study to earlier work and discuss an alternative formation

scenario for PG 1115+116. Our conclusions are summed up in Sect. 5.8.

5.2 Observed double white dwarfs

At present, ten double-lined spectroscopic binaries consisting of two white dwarfs have

been observed. The orbital periods of these systems are well determined. The fact that both

components are detected makes it possible to constrain the mass ratio of the system from
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the radial-velocity amplitudes. The masses of the components are usually determined by

fitting white-dwarf atmosphere models to the observed effective temperature and surface

gravity, using mass–radius relations for white dwarfs. The values thus obtained are clearly

better for the brightest white dwarf but less well-constrained than the values for the period

or mass ratio. It is also harder to estimate the errors on the derived mass. In the publications

of these observations, the brightest white dwarf is usually denoted as ‘star 1’ or ‘starA’.

Age determinations suggest in most cases that the brightest component of these systems

is the youngest white dwarf. These systems must have evolved through two mass-transfer

episodes and the brightest white dwarf is likely to have formed from the originally less

massive component of the initial binary (consisting of two ZAMS stars). We will call this

star the secondary or ‘star 2’ throughout this chapter, whereas the primary or ‘star 1’ is the

component that was the initially more massive star in the binary. The two components will

carry these labels throughout their evolution, and therefore white dwarf 1 will be the oldest

and usually the faintest and coldest of the two observed components. The properties of the

ten double-lined white-dwarf systems are listed in Table 5.1. For our calculations we will

use the parameters that are best determined from the Table: Porb, q2 andM2. ForM1 we

will not use the value listed in Table 5.1, but the valueM2/q2 instead. We hereby ignore the

observational uncertainties in q2, because they are small with respect to the uncertainties in

the mass. In Sects. 5.5 and 5.6 we will use a typical value of 0.05 M⊙ (Maxted et al. 2002b)

for the uncertainties in the estimate of the secondary mass.

Although the cooling-age determinations are strongly dependent on the cooling model

used, the thickness of the hydrogen layer on the surface and the occurrence of shell flashes,

the cooling-age difference is thought to suffer less from systematic errors. The values for∆τ
in Table 5.1 have an estimated uncertainty of 50% (Maxted et al. 2002b). The age determina-

tions of the components ofWD 1704+481a suggest that star 2 may be the oldest white dwarf,

although the age difference is small in both absolute (20Myr) and relative (≈ 3%) sense

(Maxted et al. 2002b). Because of this uncertainty we will introduce an eleventh system

with a reversed mass ratio. This new system will be referred to as WD1704+481b or 1704b

and since we assume that the value forM2 is better determined, we will use the following

values for this system: M1 = 0.39 M⊙, q2 = 1.43 ± 0.06 andM2 ≡ q2M1 = 0.56 M⊙.

5.3 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally de-

veloped by Eggleton (1971, 1972) and with updated input physics as described in Pols et al.

(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complemented with

low-temperature opacities from Alexander & Ferguson (1994).

The equations for stellar structure and composition are solved implicitly and simultan-

eously, along with an adaptive mesh-spacing equation. Because of this, the code is quite

stable numerically and relatively large timesteps can be taken. As a result of the large

timesteps and because hydrostatic equilibrium is assumed, the code does not easily pick up

short-time-scale instabilities such as thermal pulses. We can thus quickly evolve our models
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up the asymptotic giant branch (AGB), without having to calculate a number of pulses in

detail. We thus assume that such a model is a good representation of an AGB star.

Convective mixing is modelled by a diffusion equation for each of the composition

variables, and we assume a mixing-length to scale-height ratio l/Hp = 2.0. Convective
overshooting is taken into account as in Schröder et al. (1997), with a parameter δov = 0.12
which corresponds to overshooting lengths of about 0.3 pressure scale heights (Hp) and is

calibrated against accurate stellar data from non-interacting binaries (Schröder et al. 1997;

Pols et al. 1997). The code circumvents the helium flash in the degenerate core of a low-

mass star by replacing the model at which the flash occurs by a model with the same total

mass and core mass but a non-degenerate helium core in which helium was just ignited. The

masses of the helium and carbon-oxygen cores are defined as the mass coordinates where

the abundances of hydrogen and helium respectively become less than 10%. The binding

energy of the hydrogen envelope of a model is calculated by integrating the sum of the

internal and gravitational energy over the mass coordinate, from the helium-core massMc

to the surface of the starMs:

Ub,e =

∫ Ms

Mc

(

Uint(m) −
Gm

r(m)

)

dm (5.1)

The term Uint is the internal energy per unit of mass, that contains terms such as the thermal

energy and recombination energy of hydrogen and helium.

We use a version of the code (see Eggleton & Kiseleva-Eggleton 2002) that allows for

non-conservative binary evolution. We use the code to calculate the evolution of both single

stars and binaries in which both components are calculated in full detail. With the adaptive

mesh, mass loss by stellar winds or by Roche-lobe overflow (RLOF) in a binary is simply

accounted for in the boundary condition for the mass. The spin of the stars is neglected in the

calculations and the spin-orbit interaction by tides is switched off. The initial composition

of our model stars is similar to solar composition: X = 0.70, Y = 0.28 and Z = 0.02.

5.4 Giant branch models

As we have seen in Sect. 5.1, each of the double white dwarfs that are observed today must

have formed in a common-envelope event that caused a spiral-in of the two degenerate stars

and expelled the envelope of the secondary. The intermediate binary system that existed

before this event, but after the first mass-transfer episode, consisted of the first white dwarf

(formed from the original primary) and a giant-branch star (the secondary). This giant is

thus the star that caused the common envelope and in order to determine the properties of

the spiral-in that formed each of the observed systems, we need a series of giant-branch

models. In this section we present a grid of models for single stars that evolve from the

ZAMS to high up the asymptotic giant branch (AGB). For each time step we saved the total

mass of the star, the radius, the helium-core mass and the binding energy of the hydrogen

envelope of the star.
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In an attempt to cover all possibilities, we need to take into account the effects that

can change the quantities mentioned above. We consider the chemical enrichment of the

secondary by accretion in a first mass-transfer phase and the effect a stellar-wind mass loss

may have. For each of these changes, we compare the results to a grid of ‘basic’ models

with default parameters. We keep the overshooting parameter δov constant for all these

grids, because this effect is unimportant for low-mass stars (M ∼
< 2.0 M⊙) and its value is

well calibrated for intermediate-mass stars (see Sect. 5.3).

5.4.1 Basic models

In order to find the influence of the effects mentioned above, we want to compare the models

including these effects to a standard. We therefore calculated a grid of stellar models, from

the zero-age main sequence to high up the asymptotic giant branch (AGB), with default

values for all parameters. These models have solar composition and no wind mass loss.

We calculated a grid of 199 single-star models with these parameters with masses between
0.80 and 10.0M⊙, with the logarithm of their masses evenly distributed. Model stars with

masses lower than about 2.05M⊙ experience a degenerate core helium flash and are at that

point replaced by a post-helium-flash model as described in Sect. 5.3. Because of the large

timesteps the code can take, the models evolve beyond the point on the AGB where the

carbon-oxygen core (CO-core) mass has caught up with the helium-core mass and the first

thermal pulse should occur.

Figure 5.1 shows the radii of a selection of our grid models as a function of their helium-

core masses. We used different line styles to mark different phases in the evolution of these

stars, depending on their ability to fill their Roche lobes or cause a spiral-in and the type

of star a common envelope would result in. The solid lines show the evolution up the first

giant branch (FGB), where especially the low-mass stars expand much and could cause a

common envelope with spiral-in, in which a helium white dwarf would be formed. Fig. 5.1a

shows that low-mass stars briefly contract for core masses around 0.3M⊙. This is due to

the first dredge-up, where the convective envelope deepens down to just above the hydrogen

burning shell and increases the hydrogen abundance there. The contraction happens when

the hydrogen-burning shell catches up with this composition discontinuity. After ignition

of helium in the core, all stars shrink and during core helium burning and the first phase

of helium fusion in a shell, their radii are smaller than at the tip of the FGB. This means

that these stars could never start filling their Roche lobes in this stage. These parts of the

evolution are plotted with dotted lines. Once a CO core is established, the stars evolve up

the AGB and eventually get a radius that is larger than that on the FGB. The stars are now

capable of filling their Roche lobes again and cause a common envelope with spiral-in. In

such a case we assume that the whole helium core survives the spiral-in and that the helium

burning shell will convert most of the helium to carbon and oxygen, eventually resulting

in a CO white dwarf, probably with an atmosphere that consists of a mixture of hydrogen

and helium. This part of the evolution is marked with dashed lines. Fig. 5.1b shows that

the most massive models in our grid have a decreasing helium-core mass at some point
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Figure 5.1: Core-mass–radius relations for the ‘basic’ models, as described in the text. The

lines show the logarithm of the radius of the stars as a function of the helium-core mass.

Upper panel (a): grid models with low masses: 0.91, 1.01, 1.14, 1.30, 1.48, 1.63, 1.81 and

2.00M⊙. Lower panel (b): grid models with high masses: 2.00, 2.46, 2.79, 3.17, 3.60,

4.09, 4.65, 5.28 and 6.00M⊙. The 2M⊙ model is plotted in both panels throughout as a

solid line for easier comparison. The other models are shown as solid lines on the first giant

branch (FGB), where they could cause a common envelope with a spiral-in and create a

helium white dwarf. The dashed lines show the asymptotic giant branch (AGB), where a

spiral-in would lead to the formation of a carbon-oxygenwhite dwarf. Dotted lines are parts

of the evolution where the stars either are smaller than at the tip of the FGB (at lower radii)

or where their envelope binding energies become positive on the AGB (at large radii).



Modelling the formation of double white dwarfs 87

on the AGB. This happens at the so-called second dredge-up, where the convective mantle

extends inward, into the helium core and mixes some of the helium from the core into the

mantle, thereby reducing the mass of the core. Models with masses between about 1.2

and 5.6M⊙ expand to such large radii that the binding energy of their hydrogen envelopes

become positive. In Sect. 5.5 we are looking for models that can cause a spiral-in based on

energy balance in the second mass-transfer phase, for which purpose we require stars that

have hydrogen envelopes with a negative binding energy. A positive binding energy means

that there is no orbital energy needed for the expulsion of the envelope and thus the orbit

will not shrink during a common envelope caused by such a star. We have hereby implicitly

assumed that the recombination energy is available during common-envelope ejection.

To give some idea what kind of binaries can cause a spiral-in and could be the progen-

itors of the observed double white dwarfs, we converted the radii of the stars displayed in

Fig. 5.1 into orbital periods of the pre-common-envelope systems. To do this, we assumed

that the Roche-lobe radius is equal to the radius of the model star, and that the mass of

the companion is equal to the mass of the helium core of the model. This is justified by

Table 5.1, where the geometric mean of the mass ratios is equal to 1.03. The result is shown

in Fig. 5.2.

In Sect. 5.5 we will need the efficiency parameter αce of each common-envelopemodel

to judge whether that model is acceptable or not. In order to calculate this parameter we

must know the binding energy of the hydrogen envelope of the progenitor star (see Eq. 5.4),

that is provided by the evolution code as shown in Eq. 5.1. The envelope binding energy is

therefore an important parameter and we show it for a selection of models in Fig. 5.3, again

as a function of the helium-core mass. Because the binding energy is usually negative, we

plot the logarithm of−Ub,e. The phases where the envelope binding energy is non-negative

are irrelevant for our calculations of αce and therefore not shown in the Figure.

Many common-envelope calculations in the literature use the so-called envelope-

structure parameter λenv to estimate the envelope binding energy from basic stellar para-

meters in case a detailed model is not available

Ub,e = −
GM∗ Menv

λenv R∗

. (5.2)

De Kool et al. (1987) suggest that λenv ≈ 0.5. Since we calculate the binding energy of
the stellar envelope accurately, we can invert Eq. 5.2 and calculate λenv (see also Dewi &

Tauris 2000). Figure 5.4 shows the results of these calculations as a function of the helium

core mass, for the same selection of models as in Fig. 5.3. We see that a value of λenv = 0.5
is a good approximation for the lower FGB of a low-mass star, or the FGB of a higher-mass

star. A low-mass star near the tip of the first giant branch has a structure parameter between

0.5 and 1.5 and for most stars λenv increases to more than unity rather quickly, especially

when the stars expand to large radii and the binding energies come close to zero.
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Figure 5.2: Helium-core-mass–orbital period tracks for the ‘basic’ models. The lines show

the logarithm of the orbital period at which the Roche lobe is filled for grid models with

masses of 1.01, 1.27, 1.59, 2.00, 2.52, 3.17, 3.99, 5.02 and 6.32M⊙. The period was

obtained from the radius of the model star, under the assumption that it fills its Roche lobe

and the companion has a mass equal to the helium-core mass of the model. This way, the

system would undergo a spiral-in that would lead to a binary with mass ratio q = 1. The
line styles have the same meaning as in Fig. 5.1.

5.4.2 Chemical enrichment by accretion

The secondary that causes the common envelope may have gained mass by accretion during

the first mass-transfer phase. If this mass transfer was stable, the secondary has probably

accreted much of the envelope of the primary star. The deepest layers of the envelope of the

donor are usually enriched with nuclear burning products, brought up from the core by a

dredge-up process. This way, the secondary may have been enriched with especially helium

which, in sufficiently large quantities, can have an appreciable effect on the opacity in the

envelope of the star and thus its radius. This would change the core-mass–radius relation of

the star and the common envelope it causes.

To see whether this effect is significant, we considered a number of binary models that

evolved through stable mass transfer to produce a white dwarf and a main-sequence second-

ary. The latter had a mass between 2 and 5 M⊙ in the cases considered, of which 50–60%

was accreted. We then took this secondary out of the binary and let it evolve up the asymp-

totic giant branch, to the point where the code picks up a shell instability and terminates. We
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Figure 5.3: The logarithm of the binding energy of the ‘basic’ model stars as a function

of the helium-core mass. The grid models with masses of 0.91, 1.01, 1.14, 1.30, 1.48,

1.63, 1.81, 2.00, 2.46, 2.79, 3.17, 3.70, 4.09, 4.65, 5.28, 6.00 and 6.82M⊙ are shown. The

2.00M⊙ model is drawn as a solid line, the line styles for the other models have the same

meaning as in Fig. 5.1. The parts where the envelope binding energy is zero (before a helium

core develops) or positive are not shown.

then compared this final model to a model of a single star with the same mass, but with solar

composition, that was evolved to the same stage. In all cases the core mass–radius relations

coincide with those in Fig. 5.1. When we compared the surface helium abundances of these

models, after one or two dredge-ups, we found that although the abundances were enhanced

appreciably since the ZAMS, they were enhanced with approximately the same amount and

the relative difference of the helium abundance at the surface between the different models

was always less than 1.5%. In some cases the model that had accreted from a companion

had the lower surface helium abundance.

The small amount of helium enrichment due to accretion gives rise to such small changes

in the core mass–radius relation, that we conclude that this effect can be ignored in our

common-envelope calculations in Sect. 5.5.
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Figure 5.4: The envelope-structure parameter λenv for the ‘basic’ models, as a function of

the helium-core mass. The same grid models are shown as in Fig. 5.3. The meaning of the

line styles is explained in the caption of Fig. 5.1.

5.4.3 Wind mass loss

The mass loss of a star by stellar wind can change the mass of a star appreciably before

the onset of Roche-lobe overflow, and the mass loss can influence the relation between

the core mass and the radius of a star. From Fig. 5.1 it is already clear that this relation

depends on the total mass of the star. In this section, we would therefore like to find out

whether a conservative model star of a certain total mass and core mass has the same radius

and envelope binding energy as a model with the same total mass and core mass, but that

started out as a more massive star, has a strong stellar wind and just passes by this mass

on its evolution down to even lower masses. We calculated a small grid of models with ten

different initial masses between 1.0M⊙ and 8.0M⊙, evenly spread in log M and included

a Reimers type mass loss (Reimers 1975) of variable strength:

Ṁrml = −4 × 10−13 M⊙ yr−1 Crml

(

L

L⊙

) (

R

R⊙

) (

M

M⊙

)−1

, (5.3)

where we have used the values Crml = 0.2, 0.5 and 1.0. The basic models of Sect. 5.4.1 are

conservative and therefore haveCrml = 0. The effect of these winds on the total mass of the
model stars in our grid is displayed in Fig. 5.5. It shows the fraction of mass lost at the tip

of the first giant branch (FGB) and the ‘tip of the asymptotic giant branch’ (AGB). The first
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Figure 5.5: The fraction of mass lost at two moments in the evolution of a star as a function

of its initial mass, for the three different wind strengths (Crml = 0.2, 0.5 and 1.0) used in the

grid. This fraction is shown for the tip of the FGB (dashed lines and crosses), and the ‘tip

of the AGB’ (dotted lines and plusses). See the text for details.

moment is defined as the point where the star reaches its largest radius before helium ignites

in the core, the second as the point where the radius of the star reaches its maximum value

while the envelope binding energy is still negative. Values for both moments are plotted in

Fig. 5.5 for each non-zero value of Crml in the grid. For the two models with the lowest

masses the highest mass-loss rates are so high that the total mass is reduced sufficiently on

the FGB to keep the star from igniting helium in the core, and the lines in the plot coincide.

Stars more massive than 2M⊙ have negligible mass loss on the FGB, because they have

non-degenerate helium cores so that they do not ascend the FGB as far as stars of lower

mass. Their radii and luminosities stay relatively small, so that Eq. 5.3 gives a low mass

loss rate. For stars of 4M⊙ or more, the mass loss is diminutive and happens only shortly

before the envelope binding energy becomes positive. We can conclude that for these stars

the wind mass loss has little effect on the core mass–radius relation.

The core mass–radius relations for a selection of the models from our wind grid are

shown in Fig. 5.6. The Figure compares models without stellar wind with models that have

the strongest stellar wind in our grid (Crml = 1.0). Models with the other wind strengths
would lie between those shown, but are not plotted for clarity. The greatest difference in

Fig. 5.6 is in the 1.0M⊙ model. The heavy mass loss reduces the total mass of the star to
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Figure 5.6: Comparison of a selection from the small grid of models with a stellar wind.

The models displayed have masses of 1.0, 1.6, 2.5, 3.2, 4.0, 5.0 and 6.3M⊙. The wind

strength parameters are Crml = 0.0 (dotted lines) and Crml = 1.0 (solid lines, the strongest

mass loss in the grid). Stars with mass loss are usually larger, but for models of 4.0M⊙ or

more this effect becomes negligible. The 1.0M⊙ model loses so much mass that it never

ignites helium in the core.

0.49M⊙ on the first giant branch, so that the star is not massive enough to ignite helium in

the core. Fig. 5.6 shows that models with mass loss are larger than conservative models for

the same core mass, as one would expect from Fig. 5.1. This becomes clear on the FGB for

stars that have degenerate helium cores, because they have large radii and luminosities and

lose large amounts of mass there. For stars more massive than about 2 M⊙ the mass loss

becomes noticeable on the AGB. Stars of 4 M⊙ or more show little difference in Fig. 5.6.

The envelope binding energies have similar differences in the same mass regions.

The question is whether the properties of the model with reduced mass due to the wind

are the same as those for a conservativemodel of that mass. In order to answer this question,

we have compared the models from the ‘wind grid’ to the basic, conservative models. As

the wind reduces the total mass of a model star, it usually reaches masses that are equal

to that of several models in the conservative grid. As this happens, we interpolate linearly

within the mass-losing model to find the exact moment where its mass equals the mass of

the conservative model. We then use the helium-core mass of the interpolated mass-losing

model to find the moment where the conservative model has the same core mass and we
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calculate its radius and envelope binding energy, again by linear interpolation. This way

we can compare the two models at the moment in evolution where they have the same total

mass and the same core mass. This comparison is done in Fig. 5.7. Figure 5.7a directly

compares the radii of the two sets of models, in Fig. 5.7b the ratio of the two radii is shown.

Of the data points in Fig. 5.7b 83% lie between 0.9 and 1.1 and 61% between 0.95 and

1.05. For the wind models with Crml = 0.2 these numbers are 99% and 97%, and for
the models with Crml = 0.5 they are 94% and 85% respectively. As can be expected, the
models that have a lower — and perhaps a more realistic — mass-loss rate compare better

to the conservative models. We see in Fig. 5.7a that many of the points that lie farther from

unity need only a small shift in core mass to give a perfect match. This shift is certainly less

than 0.05 M⊙, which is what we will adopt for the uncertainty of the white-dwarf masses in

Sect. 5.5. We conclude here that there is sufficient agreement between a model that reaches

a certain total mass because it suffers from mass loss and a conservative model of the same

mass. The agreement is particularly good for stars high up on the FGB or AGB, where the

density contrast between core and envelope is very large.

5.5 Second mass-transfer phase

For the formation of two white dwarfs in a close binary system, two phases of mass transfer

must happen. We will call the binary system before the first mass transfer the initial binary,

with masses and orbital periodM1i, M2i and Pi. If one considers mass loss due to stellar

wind before the first mass-transfer episode, these parameters are not necessarily equal to the

ZAMS parameters, especially for large ‘initial’ periods. The binary between the two mass-

transfer phases is referred to as the intermediate binary with M1m, M2m and Pm. After

the two mass-transfer episodes, we obtain the final binary with parametersM1f , M2f and

Pf , that should correspond to the values that are now observed and listed in Table 5.1. The

subscripts ‘1’ and ‘2’ are used for the initial primary and secondary as defined in Sect. 5.2.

In the first mass transfer, the primary star fills its Roche lobe and loses mass, that may

or may not be accreted by the secondary. This leads to the formation of the intermediate

binary, that consists of the first white dwarf and a secondary of unknownmass. In the second

mass-transfer phase, the secondary fills its Roche lobe and loses its envelope. The second

mass transfer results in the observed double white dwarf binaries that are listed in Table 5.1

and must account for significant orbital shrinkage. This is because the youngest white dwarf

must have been the core of its progenitor, the secondary in the intermediate binary. Stars

with cores between 0.3 and 0.7M⊙ usually have radii of several tens to several hundreds

of solar radii, and the orbital separation of the binaries they reside in must be even larger

than that. The orbital separation of the observed systems is typically only in the order of a

few solar radii (Table 5.1). Giant stars with large radii have deep convective envelopes and

when such a star fills its Roche lobe, the ensuing mass transfer will be unstable and occur

on a very short, dynamical timescale, especially if the donor is much more massive than its

companion. It is thought that the envelope of such a star can engulf its companion and this

event is referred to as a common envelope. The companion and the core of the donor orbit
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Figure 5.7: Comparison of a selection of grid models with Crml =1.0 with initial masses of
1.3, 1.6, 2.0, 2.5 and 3.2M⊙ to the basic models (Crml =0.0). Upper panel (a): Comparison
of the radius of the models with a stellar wind (solid lines) and the radius of a basic model

with the same mass and core mass (plusses). Lower panel (b): The fraction of the radius of

the wind modelRw over the radius of the basic modelRb with the same total and core mass.

Each data point corresponds to a point in the upper panel. Of the data points in the upper

panel, 7 out of 143 (5%) lie outside the plot boundaries in the lower panel. The dashed lines

show the region where agreement is better than 10%, where 83% of the data points lie. The

1.0M⊙ model was left out because there are only a few basic models with lower mass, the

higher-mass models were left out because they lose very little mass (see Fig. 5.5).
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inside the common envelope and drag forces will release energy from the orbit, causing the

orbit to shrink and the two degenerate stars to spiral in. The freed orbital energy will heat

the envelope and eventually expel it. This way, the hypothesis of the common envelope

with spiral-in can phenomenologically explain the formation of close double-white-dwarf

binaries.

5.5.1 The treatment of a spiral-in

In order to estimate the orbital separation of the post-common envelope system quantitat-

ively, it is often assumed that the orbital energy of the system is decreased by an amount

that is equal to the binding energy of the envelope of the donor star (Webbink 1984):

Ub,e = −αce

[

GM1fM2f

2af

−
GM1mM2m

2am

]

. (5.4)

The parameterαce is the common-envelopeparameter that expresses the efficiency by which

the orbital energy is deposited in the envelope. Intuitively one would expect that αce ≈ 1.
However, part of the liberated orbital energy might be radiated away from the envelope

during the process, without contributing to its expulsion, thereby lowering αce. Conversely,

if the common-envelope phase would last long enough that the donor star can produce a

significant amount of energy by nuclear fusion, or if energy is released by accretion on to

the white dwarf, this energy will support the expulsion and thus increase αce.

In the forward calculation of a spiral-in the final orbital separation af depends strongly

on the parameterαce, which must therefore be known. In this section we will try to establish

the binary systems that were the possible progenitors of the observed double white dwarfs

and we will therefore perform backward calculations. The advantage of this is that we start

as close as possible to the observations thus introducing as little uncertainty as possible.

The problem with this strategy is that we do not know the mass of the secondary progenitor

beforehand. We will have to consider this mass as a free parameter and assume a range

of possible values for it. The grid of single-star models of Sect. 5.4 provides us with the

total mass, core mass, radius and envelope binding energy at every moment of evolution,

for a range of total masses between 0.8 and 10M⊙. It is then not necessary to know the

common-envelope parameter, and we can even calculate the αce that is needed to shrink the

orbit of a model with a given mass to the observed period of the double white dwarf from

the binding energy. We make two assumptions about the evolution of the two stars during

the common envelope to perform these backward calculations:

1. the core mass of the donor does not change,

2. the mass of the companion does not change.

The first assumption will be valid if the timescale on which the common envelope takes

place is much shorter than the nuclear-evolution timescale of the giant donor. This is cer-

tainly true, since the mass transfer occurs on the dynamical timescale of the donor. The
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second assumption is supported firstly by the fact that the companion is a white dwarf, a

degenerate object that has a low Eddington accretion limit and is furthermore difficult to

hit directly by a mass stream from the donor. The white dwarf could accrete matter in the

Bondi-Hoyle fashion (Bondi & Hoyle 1944). This would not change the mass of the white

dwarf significantly but could release appreciable amounts of energy. Secondly, a common

envelope is established very shortly after the beginning of the mass transfer, so that the mass

stream disappears and the white dwarf is orbiting inside the fast-expanding envelope rather

than accreting mass from the donor. In the terminology used here, the second assumption

can be written asM1m = M1f .

From the two assumptions above it follows that the mass of the second white dwarf,

the one that is formed in the spiral-in, is equal to the helium-core mass of the donor at the

moment it fills its Roche lobe. There is therefore a unique moment in the evolution of a

given model star at which it could cause a common envelope with spiral-in and produce

a white dwarf of the proper mass. Recall from Fig. 5.1b that although the second dredge-

up reduces notably the helium-core mass of the more massive models in the grid, there is

no overlap in core mass in the phases where the star could fill its Roche lobe on the first

giant branch (solid lines) or asymptotic giant branch (dashed lines). The moment where the

model star could produce a white dwarf of the desired mass in a common envelope with

spiral-in is therefore defined by two conditions:

1. the helium-core mass of the model reaches the mass of the white dwarf,

2. the model star has its largest radius so far in its evolution.

The second restriction is necessary because stars can shrink appreciably during their evolu-

tion, as noted in Sect. 5.4.1. If the core of a model star obtains the desired mass at a point

in the evolution where the star is smaller than it has been at some point in the past, then the

star cannot fill its Roche lobe at the right moment to produce a white dwarf of the proper

mass and therefore this star cannot be the progenitor of the white dwarf. This way, each

model star has at most one moment in its evolution where it could fill its Roche lobe and

produce the observed double white dwarf. If such a moment does not exist, the model star

is rejected as a possible progenitor of the second white dwarf.

If the model star could be the progenitor of the youngest white dwarf in the observed

system, the computer model gives us the radius of the donor star, that must be equal to the

Roche-lobe radius. Under the assumption that the mass of the first white dwarf does not

change in the common envelope, the mass ratio of the two stars q2m ≡ M2m/M1m and

the Roche-lobe radius of the secondary star RRl2m give us the orbital separation before the

spiral-in am, where we use the fit by Eggleton (1983)

RRl2m = am

0.49 q
2/3
2m

0.6 q
2/3
2m + ln

(

1 + q
1/3
2m

) , 0 < q2m < ∞. (5.5)

Kepler’s law finally provides us with the orbital period Pm of the intermediate system. The

stellar model also gives the binding energy of the envelope of the donor Ub,e at the onset of
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the common envelope and we can use Eq. 5.4 to determine the common-envelope parameter

αce. We will use αce to judge the validity of the model star to be the progenitor of the second

white dwarf. There are several reasons why a numerical solution can be rejected. Firstly, the

proposed donor could be a massive star with a relatively small radius. Then am will be small

and it might happen that am < af
M2m

M2f

, so that αce < 0. This means that energy is needed
to change the orbit from am to af , or even that am < af and a spiral-in (if it can be called

that) to the desired orbit will not lead to expulsion of the common envelope. Secondly,

as mentioned above, αce is expected to be close, though not necessarily equal, to unity.

However if the parameter is either much smaller or much larger than 1, we will consider the

spiral-in to be ‘physically unbelievable’. We arbitrarily chose the boundaries between which

αce must lie for a believable spiral-in to be a factor of ten either way: 0.1 ≤ αce ≤ 10. We
think that the actual value for αce should be more constrained than that because common-

envelope evolution is thought to last only a short time so that there is little time to generate

or radiate large amounts of energy, but keep the range as broad as it is to be certain that all

possible progenitor systems are considered in our sample.

5.5.2 Results of the spiral-in calculations

We will now apply the stellar models of Sect. 5.4.1 as described in the previous section to

calculate potential progenitors to the observed double white dwarfs as listed in Table 5.1.

As input parameters we took the values Pf = Porb and M2f = M2 from the table, and

assumed thatM1f ≡ M2/q2, where q2 is the observed mass ratio listed in Table 5.1. We

thus ignore for the moment any uncertainty in the observed masses. Figure 5.8 shows the

orbital periodPm as a function of the secondarymassM2m. Each symbol is a solution to the

spiral-in calculations and represents an intermediate binary system that consists of the first

white dwarf of massM1m =M1f , a companion of massM2m and an orbital period Pm. The

secondary of this system will fill its Roche lobe at the moment when its helium-core mass

is equal to the mass of the observed white dwarf M2f , and can thus produce the observed

double-white-dwarf system with a common-envelope parameter that lies between 0.1 and

10.

The solutions for each system in Fig. 5.8 seem to lie on curves that roughly run from

long orbital periods for low-mass donors to short periods for higher-mass secondaries. This

is to be expected, partially because higher-mass stars have smaller radii at a certain core

mass than stars of lower mass (see Fig. 5.1) and thus fill their Roche lobes at shorter orbital

periods, but mainly because the orbital period of a Roche-lobe filling star falls off approx-

imately with the square root of its mass. The Figure also shows gaps between the solutions,

for instance for WD0957–666 and WD1704+481a, between progenitor masses M2m of

about 2 and 2.5 M⊙. These gaps arise because the low-mass donors on the left side of the

gap ignite helium degenerately when the core mass is 0.47 M⊙, after which the star shrinks,

whereas for stars with masses close to 2 M⊙ helium ignition is non-degenerate and occurs

at lower core masses, reaching a minimum for stars with a mass of 2.05 M⊙, where helium

ignition occurs when the helium-core mass amounts to 0.33 M⊙ (see Fig. 5.1). Thus, for
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Figure 5.8: Results of the spiral-in calculations, each individual symbol is a solution of

the calculations and thus represents one pre-CE binary. The figure shows the logarithm of

the orbital period of the intermediate binary Pm as a function of the secondary massM2m.

Different symbols represent different observed systems, as explained in the legend. System

1704a is the system listed in Table 5.1, 1704b is the same system, but with the reverse

mass ratio. For solutions with M2m < 2.5 M⊙, only every third solution is plotted for

clarity. AroundM2m =1.2 and log Pm =2.8 the symbols of WD0135–052, WD0136+768
and WD 1204+450 overlap due to the fact that they have similar white-dwarf masses. For

comparisonwe show the lines of the solutions for (top to bottom)WD0136+768,WD0957–

666 and WD1101+364 taken from Nelemans et al. (2000), as described in the text.

white dwarfs with masses between 0.33 and 0.47 M⊙ there is a range of masses between

about 1.5 and 3 M⊙ for which the progenitor has just ignited helium in the core, and thus

shrunk, when it reaches the desired helium-core mass.

The dip and gap in Fig. 5.8 for WD1101+364 (with M2f ≈ 0.29M⊙) aroundM2m =
1.8 M⊙ can be attributed to the first dredge-up that occurs for low-mass stars (M < 2.2 M⊙)

early on the first giant branch. Stars with these low masses shrink slightly due to this dredge-

up that occurs at core masses between about 0.2 and 0.33 M⊙, the higher core masses for

the more massive stars (see Fig. 5.1a). Stars at the low-mass (M2m) side of the gap obtain

the desired core mass just after the dredge-up, are relatively small and fill their Roche lobes

at short periods. Stars with masses that lie in the gap reach that core mass while shrinking

and cannot fill their Roche lobes for that reason. Stars at the high-mass end of the gap fill

their Roche lobes just before the dredge-up so that this happens when they are relatively
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large and therefore this happens at longer orbital periods.

For comparison we display as solid lines in Fig. 5.8 the results for the white-dwarf sys-

tems WD 0136+768, WD 0957–666 and WD1101+364 (from top to bottom), as found by

Nelemans et al. (2000) and shown in their Fig. 1. The differences between their and our

results stem in part from the fact that the values for the observed masses have been updated

by observations since their paper was published. To compensate for this we include dashed

lines for the two systems for which this is the case. The dashed lines were calculated with

their method but the values for the observed masses as listed in this chapter. By compar-

ing the lines to the symbols for the same systems, we see that they lie in the same region

of the plot and in the first order approach they give about the same results. However, the

slopes in the two sets of results are clearly different. This can be attributed to the fact that

Nelemans et al. (2000) used a power law to describe the radius of a star as a function of its

core mass only. The change in orbital period with mass in their calculations is the result

of changing the total mass in Kepler’s law. Furthermore, they assumed that all stars with

masses between 0.8 and 2.3 M⊙ have a solution, whereas we find limits and gaps, partially

due to the fact that we take into account the fact that stars shrink and partially because in

Fig. 5.8 only solutions with a restricted αce are allowed. On the other hand, we allow stars

more massive than 2.3 M⊙ as possible progenitors.

In Fig. 5.9, we display the common-envelope parameter αce for a selection of the solu-

tions with 0.1 ≤ αce ≤ 10 as a function of the unknown intermediate secondary mass
M2m. Each of the plot symbols has a corresponding symbol in Fig. 5.8. To produce these

two figures, we have so far implicitly assumed that the masses of the two components are

exact, so that there is at most one acceptable solution for each progenitor mass. This is

of course unrealistic and it might keep us from finding an acceptable solution. At this

stage we therefore introduce an uncertainty on the values forM2 in Table 5.1 and takeM2f

= M2 − 0.05 M⊙, M2 − 0.04 M⊙, . . . , M2 + 0.05 M⊙. Meanwhile we assume that the

mass ratio and orbital period have negligible observational error, because these errors are

much smaller than those on the masses, and obtain the mass for the first white dwarf from

M1f = M2f/q2. Thus we have 11 pairs of values forM1f andM2f for each observed sys-

tem, which we use as input for our spiral-in calculations. The results are shown in Fig. 5.10.

If we compare Fig. 5.8 and Fig. 5.10, we see that the wider range in input masses results

in a wider range of solutions, similar to those we found in Fig. 5.8, but extended in orbital

period. This can be understood intuitively, since lowering the white-dwarf mass demands a

lower helium-core mass in the progenitor and thus a less evolved progenitor with a smaller

radius at the onset of Roche-lobe overflow. Conversely, higher white-dwarf masses need

more evolved progenitors that fill their Roche lobes at longer orbital periods. The introduc-

tion of this uncertainty clearly results in a larger and more realistic set of solutions for the

spiral-in calculations and therefore should be taken into account.

Each system in Fig. 5.10 is a possible progenitor of one of the ten observed double white

dwarfs listed in Table 5.1. We now turn to the question whether and how these intermediate

systems can be produced.
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Figure 5.9: The logarithm of the common-envelope parameter αce for the solutions of the

spiral-in calculations shown in Fig. 5.8. Different symbols represent different observed sys-

tems. ForM2m < 2.5 M⊙ every third solution is plotted only.

5.6 First mass-transfer phase

The solutions of the spiral-in calculations we found in the previous section are in our no-

menclature intermediate binaries, that consist of one white dwarf and a non-degenerate

companion. In this section we will look for an initial binary that consists of two zero-age

main-sequence (ZAMS) stars of which the primary evolves, fills its Roche lobe, loses its hy-

drogen envelope, possibly transfers it to the secondary, so that one of the intermediate binar-

ies of Fig. 5.10 is produced. The nature of this first mass transfer is a priori unknown. In the

following subsections we will consider (1) stable and conservative mass transfer that will

result in expansion of the orbit in most cases, (2) a common envelope with spiral-in based

on energy balance (see Eq. 5.4) that usually gives rise to appreciable orbital shrinkage and

(3) envelope ejection due to dynamically unstable mass loss based on angular-momentum

balance, as introduced by Paczyński & Ziółkowski (1967) and already used by Nelemans

et al. (2000) for the same purpose, which can take place without much change in the orbital

period.
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Figure 5.10: Results of the spiral-in calculations. This figure is similar to Fig. 5.8 and shows

the orbital period of the pre-CE system as a function of the secondary mass. The solutions

for each system are plotted in a separate panel, as labelled in the upper-right corner. All

solutions with acceptable αce are plotted. The number of solutions for each system is shown

in the lower-right corner. We assumed an uncertainty inM2f of 0.05 M⊙ and calculatedM1f

using q2.

5.6.1 Conservative mass transfer

In this section we will find out which of the spiral-in solutions of Fig. 5.10 may be pro-

duced by stable, conservative mass transfer. We use the binary evolution code described in

Sect. 5.3. For simplicity, we ignore stellar wind and the effect of stellar spin on the structure

of the star. Because we assume conservative evolution, the total mass of the binary is con-

stant, so thatM1i + M2i = M1m + M2m, where the last two quantities are known. Also,

we ignore angular momentum exchange between spin and orbit by tidal forces, so that the

orbital angular momentum is conserved. This implies that

Pm

Pi

=

(

M1i M2i

M1m M2m

)3

. (5.6)

Because of the large number of possible intermediate systems we will first remove all
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such systems for which it can a priori be shown that they cannot be produced by conservative

mass transfer. These systems have orbital periods that are either too short or too long to be

formed this way. We can find a lower limit to the intermediate period as a function of

secondary massM2m using the fact that the total mass of the initial system must be equal

to the sum of the mass of the observed white dwarfM1 andM2m. We distributed this mass

equally over two ZAMS stars and set the Roche-lobe radii equal to the two ZAMS radii. By

substituting the initial and desired masses in Eq. 5.6 we find a lower limit to the period of

the intermediate binary, which we will call Pmin.

An upper limit to the intermediate period Pm can also be obtained. In order to do this,

we note that the maximum orbital period after conservative mass transfer for a given binary

mass is obtained for an optimum initial mass ratio q2i,opt = 0.62 (Nelemans et al. 2000).
We can therefore calculate the massesM1i,opt andM2i,opt of the initial binary that evolves

to that maximum intermediate period by distributing the total system mass (M1 + M2m)

according to the mass ratio q2i,opt. The optimum initial period is the maximum period at

which stable mass transfer can still occur in a binary with massesM1i,opt andM2i,opt. This

is the orbital period at which the donor star fills its Roche lobe just before it reaches the

base of the giant branch (BGB). We use the conditions by Hurley et al. (2000) who define

this point as the moment where the mass of the convective envelopeMCE exceeds a certain

fraction of the total mass of the hydrogen envelopeME for the first time:

MCE = 2
5

ME, M1i,opt ≤ 1.995 M⊙,
MCE = 1

3
ME, M1i,opt > 1.995 M⊙,

(5.7)

forZ = 0.02. We then find from our grid of Sect. 5.4 the two single-star models with masses
that bracketM1i,opt and interpolate within these models to find the radii of these stars where

the condition of Eq. 5.7 is fulfilled for the first time. Subsequently, we interpolate again

between these two bracketing models to find the radius of the star with the desired mass at

the base of the giant branch (RBGB). By assuming that this radius is equal to the Roche-lobe

radius and using Eq. 5.5, the initial masses and period that lead to the maximum intermediate

period are known and we can use Eq. 5.6 to find this upper limit to the intermediate period,

which we will call Pmax, as a function of the secondary mass. All intermediate systems

that result from our spiral-in calculations and have longer orbital periods than Pmax cannot

result from conservative mass transfer.

The lower and upper limits for the orbital period between which a conservative solution

must lie for WD0957–666 are shown in Fig. 5.11 together with the intermediate systems

found from the spiral-in calculations. Black dots represent solutions that lie between the

limits and could match the outcome of a conservative model, grey dots lie outside these

limits and cannot be created by conservative mass transfer. There is a slight difference

between the dashed lines and the division between filled and open symbols in the Figure,

because the spiral-in solutions are shown with the uncertainty in the masses described in the

previous section, whereas the period limits are only shown for the measuredM2 and q2 (see

Table 5.1) for clarity.

After selecting the spiral-in solutions that lie between these period limits for all el-

even systems, we find that such solutions exist for only six of the observed binaries, as
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Figure 5.11: Results of the spiral-in calculations for WD0957–666 with period limits for

a conservative first mass transfer. This figure contains the same data as the third panel in

Fig. 5.10 (symbols) plus the period limits Pmin and Pmax (dashed lines). The solutions that

lie between these limits are shown in black, the others in grey. See the main text for details.

shown in Fig. 5.12. We tried to model these intermediate systems with the binary evolu-

tion code described in Sect. 5.3. Because of the large number of allowed spiral-in solutions

for WD0957–666 and WD1101+364, we decided to model about half of the solutions for

these two systems and all of the solutions for the other four. Because we assume that during

this part of the evolution mass and orbital angular momentum are conserved, the only free

parameter is the initial mass ratio q1i ≡ M1i/M2i. For each of the spiral-in solutions we

selected, we chose five different values for q1i, evenly spread in the logarithm: 1.1, 1.3, 1.7,

2.0 and 2.5. The total number of conservative models that we calculated is 570, of which

270 resulted in a double white dwarf. The majority of the rest either experienced dynamical

mass transfer or evolved into a contact system. A few models were discarded because of

numerical problems. The results of the calculations for the conservative first mass transfer

are compared to the solutions of the spiral-in calculations in Fig. 5.13.

The systems that result from our conservative models generally have longer orbital peri-

ods than the intermediate systems that we are looking for. This means that stable mass

transfer in the models continues beyond the point where the desired masses and orbital

period are reached. The result is thatM1m is too small and thatM2m and Pm are too large.

The reason that mass transfer continues is that the donor star is not yet sufficiently evolved:
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Figure 5.12: Results of the spiral-in calculations with period limits for conservative mass

transfer as in Fig. 5.11, but for all systems. The number in the upper left corner of each

panel is the number of systems that lie between the period limits.

the helium core is still small and there is sufficient envelope mass to keep the Roche lobe

filled. White dwarfs of higher mass would result from larger values of q1i. This way, the

initial primary is more massive and the initial period is longer, so that the star fills its Roche

lobe at a slightly later stage in evolution. Both effects increase the mass of the resulting

white dwarf. However, if once chooses the initial mass ratio too high, the system evolves

into a contact binary or, for even higher q1i, mass transfer becomes dynamically unstable.

In both cases the required intermediate system will not be produced. These effects put an

upper limit to the initial mass ratio for which mass transfer is still stable, and thus an upper

limit to the white-dwarf mass that can be produced with stable mass transfer for a given sys-

tem mass. Our calculations show that conservative models with an initial mass ratio of 2.5

produce no double white dwarfs. Apparently this value of q1i is beyond the upper limit. The

solutions in Fig. 5.14 with a final mass ratio close to or in agreement with the observations

come predominantly from the models with initial mass ratios of 1.7 and 2.0.

Because small deviations in the masses and orbital period of the intermediate systems

can still lead to acceptable double white dwarfs, we monitor the evolution of these systems

to the point where the secondary fills its Roche lobe and determine the mass of the second
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Figure 5.13: Results of the spiral-in calculations (grey symbols), obtained as in Fig. 5.11,

and the solutions of calculations of conservative evolution (black symbols). Only the six

systems shown have spiral-in solutions within the period limits (see Fig. 5.12). The numbers

in the lower left and lower right corners are the numbers of plotted spiral-in solutions and

conservative solutions respectively.

white dwarf M2f from the helium-core mass of the secondary at that point. Because the

secondary in the intermediate binary is slightly too massive in most cases, it is smaller at a

given core mass (see Fig. 5.1) so that the mass of the secondwhite dwarf becomes larger than

desired. Combined with an undermassive first white dwarf this results in a too large mass

ratio q2f . This is shown in Fig. 5.14, where the values for q2f for our conservative models

are compared to the observations. The Figure also shows the difference in age of the system

between the moment where the second white dwarf was formed and the moment when

the first white dwarf was formed (∆τ ). This difference should be similar to the observed
difference in cooling age between the two components of the binary (see Table 5.1). The

vertical dotted lines show this observed cooling-age difference with an uncertainty of 50%.

Figure 5.14 shows that of the six systems presented, only two have a mass ratio within

the observed range, although values for the other systemsmay be close. We see that the mass

ratios of the solutions for most of the systems are divided in two groups and the difference

in mass ratio can amount to a factor of 2 between them. The division arises because in most
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Figure 5.14: The mass ratio of model double white dwarfs formed by a conservative first

mass transfer and a common envelope with spiral-in, against the age difference between

the two components. The dashed horizontal lines show the observed range of possible

mass ratios as shown in Table 5.1. The dotted vertical lines are the estimated cooling-age

differences±50% (see Table 5.1).

models the common envelope is supposed to occur on the short giant branch of stars that are

more massive than 2 M⊙. If the secondary is slightly smaller and the orbital period slightly

longer than it should be, the star can ignite helium in its core and start shrinking before it has

expanded sufficiently to fill its Roche lobe. When this star expands again after core helium

exhaustion, it has a much more massive helium core and produces a much more massive

white dwarf than desired (see Fig. 5.1). Thus, a small offset in the parameters of the model

after the first mass-transfer phase can result in large differences after the spiral-in. Of the

270 stable models shown in Fig. 5.14, 126 (47%) are in the group with lower mass ratios

(q2f ∼
< 1.7).

The modelled mass ratios for the systemsWD0957–666 andWD1101+364 are close to

the observed values, and we find that this is especially true for the models on the low-mass

end of the range in observed white-dwarf masses we used. This can be understood, because

the maximum mass of a white dwarf that can be created with conservative mass transfer is

set by the total mass in the system. The system mass is determined by the spiral-in calcu-

lations in Sect. 5.5.2, where we find that the total mass that is available to create these two

systems lies between about 2 and 3.5 M⊙. This system mass is simply insufficient to create

white dwarfs with the observed masses. If we would extend the uncertainty in the observed

masses to allow lower white-dwarf masses, it seems likely that we could explain these two

double white dwarfs with a conservative mass-transfer phase followed by a common en-
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velope with spiral-in. The same could possibly be achieved with stable, non-conservative

mass transfer. Losing mass from the system stabilises the mass transfer, so that it can still

be stable for slightly longer initial periods, and allows higher initial primary masses. Both

effects result in higher white-dwarf masses.

All 126 stable solutions in the lower group of mass ratios (q2f ∼
< 1.7) have αce > 1

and 83 (66%) have αce < 5. If we become more demanding and insist that αce should be

less than 2, we are left with 14 solutions, all for WD0957–666. These solutions all have

αce > 1.6. If we additionally demand that the age difference of these models be less than
50% from the observed cooling-age difference, only 6 solutions are left with age differences

roughly between 190 and 410Myr, αce > 1.8 and 1.32 ≤ q2f ≤ 1.44.

We conclude that although the evolutionary channel of conservative mass transfer fol-

lowed by a spiral-in can explain some of the observed systems, evolution along this channel

cannot produce all observed double white dwarfs. We must therefore reject this formation

channel as the single mechanism to create the white-dwarf binaries. The reason that this

mechanism fails to explain some of the observed white dwarfs is that the observed masses

for the first white dwarfs in these systems are too high to be explained by conservative mass

transfer in a binary with the total mass that is set by the spiral-in calculations. Allowing for

mass loss from the system during mass transfer could result in better matches for this mech-

anism. However it is clear from Fig. 5.12 that this will certainly not work for at least 5 of the

10 observed systems because their orbital periods are too large. We will need to consider

other mechanisms in addition to stable mass transfer to produce the observed white-dwarf

primaries for these systems.

5.6.2 Unstable mass transfer

In this section we try to explain the formation of the first white dwarf in the intermediate

systems shown in Fig. 5.10 by unstable mass transfer. Mass transfer occurs on the dynam-

ical timescale if the donor is evolved and has a deep convective envelope. There are two

prescriptions that predict the change in orbital period in such an event. The first is a clas-

sical common envelope with a spiral-in, based on energy conservation as we have used in

Sect. 5.5. The second prescription was introduced by Nelemans et al. (2000) and further

explored by Nelemans & Tout (2005) and uses angular-momentum balance to calculate the

change in orbital period. Where the first prescription results in a strong orbital shrinkage

(spiral-in) for all systems, in the second mechanism this is not necessarily the case so that

the orbital period may hardly change while the envelope of the donor star is lost.

In both scenarios we are looking for an initial binary of which the components have

masses M1i and M2i. The primary will evolve fastest, fill its Roche lobe and eject its

envelope due to dynamically unstable mass loss, so that its core becomes exposed and forms

a white dwarf with mass M1m. We assume that the mass of the secondary star does not

change during this process, so that M2i = M2m. We use the model stars from Sect. 5.4.1

as the possible progenitors for the first white dwarf. The orbital period before the envelope

ejection is again determined by setting the radius of the model star equal to the Roche-lobe
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radius and applying Eq. 5.5, where the subscripts ‘m’ must be replaced by ‘i’.

Because we demand that M1i > M2i, the original secondary can be any but the most

massive star from our grid and the total number of possible binaries in our grid is
∑198

n=1 n =
19701 for each system we want to model. The total number of systems that we try to model
is 121: the 11 observed systems (the 10 from Table 5.1 plus the system WD1704+481b)

times 11 different assumptions for the masses of the observed stars (between ±0.05 M⊙

from the observed value). We have thus tried slightly less than 2.4 million initial binaries

to find acceptable progenitors to these systems. All these possible progenitor systems have

been filtered by the following criteria, in addition to the ones already mentioned in Sect. 5.5:

1. the radius of the star is larger than the radius at the base of the giant branch R >
RBGB, which point is defined by Eq. 5.7,

2. the mass ratio is larger than the critical mass ratio for dynamical mass transfer q >
qcrit as defined by Eq. 57 of Hurley et al. (2002). Together with the previous criterium,

this ensures that the mass transfer can be considered to proceed on the dynamical

timescale,

3. the time since the ZAMS after which the first white dwarf is created τ1 is less than

the same for the second white dwarf (τ2) and, additionally, τ2 < 13Gyr.

After we filter the approximately 2.4million possible progenitor systems with the cri-

teria above, about 204,000 systems are left in the sample (8.5%) for which two subsequent

envelope-ejection scenarios could result in the desired masses, provided that we can some-

how explain the change in orbital period that is needed to obtain the observed periods. For

each of the two prescriptions for dynamical mass loss we will see whether this sample con-

tains physically acceptable solutions in the sections that follow.

Classical common envelope with spiral-in

The treatment of a classical common envelope with spiral-in based on energy conservation

has been described in detail in Sect. 5.5 and therefore need not be reiterated here. In the

calculations described above, Eq. 5.4 provides us with the parameterαce1 for the first spiral-

in. In order to use Eq. 5.4 the subscripts ‘m’ must be replaced by ‘i’ and the subscripts ‘f’ by

‘m’. The values of the common-envelope parameter for the first spiral-in must be physically

acceptable and we demand that 0.1≤αce1≤10. When we apply this criterion to the results
of our calculations, only 25 possible progenitors out of the 204,000 binaries in our sample

survive. All 25 survivors are solutions for WD0135–052 and have αce1 ∼
> 2.5.

We find that of the systems that pass the criterion in the second spiral-in and have 0.1≤
αce2≤10, most (99%) need a negativeαce1 in order to satisfy Eq. 5.4, so that we reject them.

We can clearly conclude that the scenario of two subsequent classical common envelopes

with spiral-in can be rejected as the formation mechanism for any of the observed double

white dwarfs. This confirms the conclusions of Nelemans et al. (2000) and Nelemans &

Tout (2005), based on the value of the productαce λenv, where λenv is the envelope-structure

parameter defined in Eq. 5.2.
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Envelope ejection with angular-momentum balance

The idea to determine the change in orbital period in a common envelope from balance of

angular momentum originates from Paczyński & Ziółkowski (1967). In Nelemans et al.

(2000) and Nelemans & Tout (2005) the mechanism was used to model observed double

white dwarfs. The principle is similar to that of a classical common envelope, here with

an efficiency parameter that we will call γ in the general case. In this section we will use
three slightly different prescriptions for mass loss with angular-momentum balance requir-

ing three different definitions of γ. For all three mechanisms the mass loss of the donor is
dynamically unstable and its envelope is ejected from the system. Because not all of these

mechanisms necessarily involve an envelope that engulfs both stars, we shall refer to them

as envelope ejection or dynamical mass loss rather than common-envelope evolution. The

first mechanism is that defined by Nelemans et al. (2000), where a common envelope is

established first, after which the mass is lost from its surface. The mass thus carries the

average angular momentum of the system and we will call the parameter for this mechan-

ism γs. In the second mechanism the mass is first transferred and then re-emitted with the

specific angular momentum of the accretor. We will designate γa for this mechanism. In

the third mechanism the mass is lost directly from the donor in an isotropic wind and the

corresponding parameter is γd. We will call the companion to the donor star ‘accretor’, even

if no matter is actually accreted.

The prescription for dynamical mass loss with the specific angular momentum of the

system as the mechanism for the first mass-transfer phase, using this and earlier subscript

conventions, is:
Ji − Jm

Ji

= γs1

M1i − M1m

M1i + M2i

, (5.8)

where J is the total orbital angular momentum (Nelemans et al. 2000). Our demands for a
physically acceptable solution to explain the observed binaries is now 0.1≤γs1≤10 for the
first envelope ejection and 0.1≤ αce2 ≤ 10 for the second. From the set of about 204,000
solutions we found above, almost 150,000 (72%) meet these demands and nearly 134,000

solutions (66%) have values for γs1 between 0.5 and 2, in which all observed systems are

represented.

We tried to constrain the ranges for γs1 and αce2 as much as possible, thereby keeping at

least one solution for each observed system. We can write these ranges as (γ0−
∆γ
2

, γ0+
∆γ
2

)

and (α0 −
∆α
2

, α0 + ∆α
2

), where γ0 and α0 are the central values and ∆γ and ∆α are the
widths of each range. We independently varied γ0 and α0 and for each pair we took the

smallest values of ∆γ and ∆α for which there is at least one solution for each observed
system that lies within both ranges. The set of smallest ranges thus obtained is considered

to be the best range for γs1 and αce2 that can explain all systems. Because it is harder to

trifle with the angular-momentumbudget than with that of energy, we kept the relative width

of the range for γs1 twice as small as that for αce2 (2
∆γ
γ0

= ∆α
α0
). Our calculations show that

changing this factor merely redistributes the widths over the two ranges without affecting

the central values much and thus precisely which factor we use seems to be unimportant for

the result. We find that the set of narrowest ranges that contain a solution for each system is
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1.45≤γs1≤1.58 and 0.61≤αce2≤0.72. These results are plotted in Fig. 5.15.
We can alternatively treat the second envelope ejection with the angular-momentum

prescription as well, where we need to introduce a factor γs2 by replacing all subscripts ‘m’

by ‘f’ and all subscripts ‘i’ by ‘m’ in Eq. 5.8. Again we search for the narrowest ranges

of γs1 and γs2 that contain at least one solution per observed system. We now force the

relative widths of the two ranges to be equal. The best solution is then 1.16 ≤ γs1 ≤ 1.22
and 1.62≤γs2≤1.69.
In both prescriptions above (γs1αce2 and γs1γs2) we find that the values for γ lie signi-

ficantly above unity. This is in accordance with the findings of Nelemans et al. (2000) and

Nelemans & Tout (2005), but slightly discomforting because there is no obvious physical

mechanism that can transfer this extra angular momentum to the gas of the envelope. We

will therefore rewrite Eq. 5.8 for the case where the mass is lost with the specific angular

momentum of one of the stars in the binary, so that we can expect that γ ≈ 1. In order to do
this we use the equations derived by Soberman et al. (1997) in their Section 2.1. We ignore

the finite sizes of the star by putting Aw = 1 and assume that no matter is accreted, so that
αw + βw = 1 and ǫw = 0, where we introduced the subscript ‘w’ to avoid confusion with
αce. Their Eq. 24 then gives (replacing their notation by ours):

Jm

Ji

=

(

qm

qi

)αw 1 + qi

1 + qm

, (5.9)

where we will consider the cases where αw = 0 (hence βw = 1), describing isotropic re-
emission by the accretor, and αw = 1 for an isotropic wind from the donor. Their q is
defined asmdonor/maccretor. We can now rewrite Eq. 5.8 for these two cases:

Ji − Jm

Ji

= γa1

M1i − M1m

M1m + M2m

(αw = 0), (5.10)

Ji − Jm

Ji

= γd1

M1i − M1m

M1m + M2m

M2i

M1i

(αw = 1). (5.11)

By comparing Eq. 5.8 to Eq. 5.10, we can directly see that for an envelope ejection with

given masses and angular momenta, γa < γs must hold in order to keep it satisfying the

equation. For Eq. 5.11, this is not necessarily true for a first envelope ejection but the effect

is even stronger for all second envelope ejections considered in this chapter. The results of

the analysis described above, but now for the modified definitions of γ, for the γα and γγ
scenarios, each with αw = 0 (isotropic re-emission) and αw = 1 (donor wind) are shown
in Table 5.2 and compared to the previous results.

We see that the values for γ change drastically, as may be expected. The fact that the
values for αce change slightly has to do with the fact that we now select different solutions

to the calculations than before. Numerically, the fifth solution in the table seems the most

attractive: γd1 ≈ 1.0 and αce2 ≈ 0.6. Although the value for αce2 is lower than unity, it

may not be unrealistic that 40% of the freed orbital energy is emitted by radiation. This is

the scenario where the mass is lost in an isotropic wind by the donor in the first dynamical
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Figure 5.15: Solutions for the double dynamical mass-loss scenario for each system. Each

dot represents one system that evolves through an episode of dynamical mass loss with

γs1 and then a common envelope with spiral-in with αce2 to form one of the observed

white dwarfs. Upper panel: (a): the value for log γs1 for the first envelope ejection for all

solutions with 0.1 ≤ γs1 ≤ 10 and 0.1 ≤ αce2 ≤ 10. Solutions with 0.61 ≤ αce2 ≤ 0.72
(the dashed lines in (b)) are plotted as large dots, the rest as small ones. Lower panel: (b):

the value for log αce2 for the second envelope ejection for the same set of solutions. Here,

the large dots have 1.45 ≤ γs1 ≤ 1.58 (the dashed lines in (a)). The smallest set with at
least one solution for each system is the intersection of these two sets (the large dots that

lie between the dashed lines). The vertical position of each dot within its line shows the

deviation from the observed secondary massM2: M2f = M2−0.05 M⊙ for the lower dots,

M2f = M2 + 0.05 M⊙ for the upper. The Figure is made after Nelemans & Tout (2005).
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Prescription γ1 γ0,1 γ2/αce2 γ0,2/α0,2

γs1αce2 1.45–1.58 1.52 α : 0.61–0.72 α : 0.66
γs1γs2 1.16–1.22 1.19 γ : 1.62–1.69 γ : 1.65
γa1αce2 0.81–0.94 0.88 α : 0.50–0.68 α : 0.59
γa1γa2 0.50–0.52 0.51 γ : 0.68–0.70 γ : 0.69
γd1αce2 0.92–1.08 1.00 α : 0.47–0.64 α : 0.56
γd1γd2 0.91–1.07 0.99 γ : 2.55–3.02 γ : 2.78

Table 5.2: Narrowest ranges for γ and αce that contain at least one solution to the envelope-

ejection scenario per observed system and their central values. The six different prescrip-

tions are explained in the main text.

mass-loss episode and the second mass loss is a canonical common envelope with spiral-in.

We also see that the best solutions with a second envelope ejection based on the angular-

momentum prescription obtained with this method has values for γ that lie much farther
from unity than the γ-values for the γα-scenarios.

5.6.3 Formation by multiple mechanisms

So far, we assumed that all ten observed double white dwarfs were formed by one and the

same mechanism. Although somemechanisms are clearly better in explaining the formation

of all the observed systems than others, none of them is completely satisfactory, mainly

because the parameters γ or αce are far from the desired values. Furthermore, there is no

reason why the ten systems should all have been formed by the same mechanism in nature

if there are several options available. We therefore slightly change our strategy here by

assuming that different envelope-ejection prescriptions, described in Sect. 5.6.2, can play a

role in the formation of the observed systems.

For the dynamical mass loss, we now demand that γ and αce are close to unity. Because

angular momentum should be better conserved than energy, we accept solutions with 0.95<
γ < 1.05 and 0.90 < αce < 1.10, except for the mechanism described by Eq. 5.8, for which
Nelemans & Tout (2005) show that all systems can be explained with 1.50 < γ < 1.75,
which we reduce to 1.54 < γ < 1.71 to give it the same relative width. For each observed
system and each mechanism, we look whether there is at least one solution with a envelope-

ejection parameter within these ranges. The results are shown as the first symbol in each

entry of Table 5.3. The plus signs show which mechanism can explain the mass ratio of

an observed double white dwarf. The table shows that although none of the mechanisms

can explain all observed systems within the chosen ranges of γ and αce, the second-last

column shows that a combination of these mechanisms can. The table also indicates that

mechanisms containing only γs and none of the other γ’s cannot explain all systems. The
same is true for γa and γd. If we expand the chosen ranges for γ and αce with a factor of

two, our calculations show that the mechanisms γsγs and γdγa can explain the mass ratios

of all systems. Expanding the allowed ranges in this way more than quadruples the total
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System 1: 2: 3: 4: 5: 6: Opt. Best

γsαce γsγs γaαce γaγa γdαce γdγa res. mech.

0135 −/− +/∼ −/− −/− +/∼ +/− +/∼ 2,5

0136 +/+ +/+ +/∼ −/− +/+ −/− +/+ 1,2,5

0957 +/+ +/+ +/+ +/+ +/+ +/∼ +/+ 1–5

1101 +/∼ +/− +/∼ +/− −/− −/− +/∼ 1,3

1115 +/∼ +/∼ +/+ +/∼ +/+ −/− +/+ 3,5

1204 −/− −/− −/− −/− +/− +/− +/− 5,6

1349 +/+ +/+ +/+ −/− +/+ −/− +/+ 1,2,3,5

1414 −/− −/− −/− −/− −/− +/+ +/+ 6

1704a +/− +/− −/− +/− −/− +/− +/− 1,2,4,6

1704b +/− +/− +/− +/− +/− +/− +/− 1–6

2209 −/− +/+ −/− +/+ −/− +/∼ +/+ 2,4

Table 5.3: Comparison of the different mechanisms used to reconstruct the observed double

white dwarfs. The symbols+,∼ and−mean that the model solutions are in good, moderate
or bad agreement with the observations. The first of the two symbols in each column is

based on the mass ratio only and the second includes the age difference. The method for

obtaining the first symbol in each entry is described in Sect. 5.6.3, that for the second symbol

in Sect. 5.6.4. The symbols in the headers of the columns labelled 1–6 are explained in the

main text. The columns for γaγd and γdγd were left out because they do not contain any

solutions. The last two columns show the optimum result and the mechanisms that give this

result (1–6).

number of solutions from 7866 to 36 867.

5.6.4 Constraining the age difference

The large number of solutions found in the previous section allows us to increase the number

of selection criteria that we use to qualify a solution as physically acceptable. We now

include the age difference of the components in our model systems and demand that it is

comparable to the observed cooling-age difference for that system. The age difference in

our models is the difference in age at which each of the components fills its Roche lobe and

causes dynamical mass loss.

Table 5.4 lists the number of model solutions for each mechanism and each system. The

columns labelled 1–6 are the same as those in Table 5.3. The first number in each of these

columns is the number of solutions that is found within the same ranges for γ and αce as

we used in Table 5.3. This means that a minus sign in that table corresponds to a zero in

Table 5.4. Behind the entries with a positive number of solutions the range of age difference

that these solutions span is shown. Again, the columns for γaγd and γdγd are not displayed,

because they do not contain any solutions for any system. We have to expand the γ-ranges
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to 0.25–1.75 in order to get the first solution for just a single system with one of these two

mechanisms. All mechanisms that are listed in Table 5.4 provide a solution for more than

one observed system, and each observed system has at least one mechanism that provides

it with a solution. The number of solutions per combination of mechanism and observed

system ranges from zero to several hundreds and the age differences of the accepted models

lie between 36Myr and more than 12Gyr.

We will use Table 5.4 to compare the age differences of the models to the observed val-

ues and use this comparison to judge the ‘quality’ of the model solutions. We will assume

that if the age difference in the model lies within 50% of the measured cooling-age differ-

ence (the range in the second column of Table 5.4) that this is a good agreement which we

will assign the symbol ‘+’. If the difference is larger than that, but smaller than a factor of
five we will call it ‘close’ and assign a ‘∼’. Cases where the nearest solution has an age

difference that is more than a factor of five from the observed value is considered ‘bad’ and

assigned the symbol ‘−’. If we do this for all cases, we obtain the second symbol for each

entry in Table 5.3, which we can use to directly compare the quality of the solutions for each

mechanism and each observed system.

We find that these results are robust, in the sense that if we expand the ranges for γ
and αce with a factor of two, the optimum result does not change, although there are more

mechanisms contributing to this result, i.e. the column ‘opt. result’ remains unchanged,

while the number of labels in the last column increases. The same is even true if we expand

the ranges for αce with a factor of ten instead of two. If we use a factor of 2 in stead of 5

for the upper limit of a ‘close solution’, we need to expand the ranges for γ and αce with

a factor of 2.6 to get tildes at the same places in the column ‘optimum result’ as shown in

Table 5.3.

We conclude that our models can form double white dwarfs with the observed masses

and orbital periods if we invoke multiple formation mechanisms. Our calculations show

that if we double the allowed ranges for γ and αce with respect to those used in Tables 5.3

and 5.4, it is even possible to form all observed systems with mechanisms γsγs only or γdγa

only. If we demand in addition that the age differences of the model systems lie within 50%

of the observed value, we can still explain the formation of most observed systems, while

for some double white dwarfs this becomes difficult. This is the case with WD0135–052,

WD1204+450, WD1704+481b and to a lesser extent WD1101+364. These four systems

can usually either be explained with an acceptable age difference but a value for γ that is
off, or an acceptable γ and an age difference that lies (sometimes much) more that 50%
from the observed value.

5.6.5 Description of the individual solutions

The goal of this research is, of course, to find out whether we can somehow explain the

formation of the observed double white dwarfs. If this is the case, we hope to learn firstly

which mechanisms govern this formation and secondly what the progenitor systems are that

evolve to the observed white-dwarf binaries. Although we do not find one mechanism that
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can explain all observed systems in a satisfying way, we present here the evolution of some

of the best solutions among our calculations. We list the five main parameters that describe

the evolutionary scenario of a solution (two initial masses, the initial period and the two

envelope-ejection parameters) and two minor ones (the actual final masses that the models

give) in a table. Because we present solutions for six different formation mechanisms and

eleven observed systems that may have more than one ‘best’ solution this table is quite large.

This is particularly the case because we want to remove the arbitrarily chosen boundaries

that we have used so far to qualify a solution. We therefore list at least one solution per

mechanism per system, independent of how far its parameters lie from the preferred values.

We chose to present the complete table as Table 5.6 in Sect. 5.9 and give an excerpt of it in

Table 5.5. In this way, the reader may verify how particular models do or do not work.

We manually picked the ‘best’ solutions for a given combination of formation mechan-

ism and observed system, in the sense that the solution has a γ close to unity (or, in case of
γs, close to 1.63), an αce close to the range of 0.5–1.0 and an age difference that is close

to the observed value. In the cases where there are different solutions that each excel in a

different one of these three properties, we may present more than one solution. If there are

several solutions that are similar on these grounds, we prefer those with lower initial masses.

We then leave it to the reader to judge whether these solutions are acceptable. The values for

q2f and Pf are identical to the value listed in Table 5.1 and therefore not shown in Table 5.5.

The intermediate masses are also left out of the table, because no matter is accreted dur-

ing the dynamical mass loss and thus M1m = M1f and M2m = M2i in our models. The

numbering of the solutions in the excerpted table is the same as in the complete version.

We tabulate 120 solutions in total. The initial binaries have primary masses between

1.09M⊙ and 5.42M⊙, though there are only two solutions withM1i > 4 M⊙. Of the 120

solutions, 50% have an initial primary mass less than 2M⊙ and 87% of the primaries are

less massive than 3M⊙. Thus, the models suggest that the double white dwarfs are formed

by low-mass stars, as may be required to explain the observed numbers of these binaries.

Of the initial systems, 90% have orbital periods between 10 and 1000 days. All proposed

solutions undergo a first envelope ejection described by angular-momentumbalance of some

sort, which allows the orbital period to increase during such a mass-transfer phase. In 61%

of the selected solutions this is the case, and for 45% of the solutions the intermediate orbital

period is twice or more as long as the initial period. Of the 120 solutions listed, 51% have

initial mass ratios q1i > 1.07 while only 17% have q1i > 1.2. A bit worrying may be that
for 24% of the solutions, q1i < 1.03. It could be that these initial systems evolve into a
double common envelope, where the two white dwarfs are formed simultaneously and the

second white dwarf is undermassive. On the other hand, because the orbital period increases

in most of the first envelope ejections, the outcome of such a common envelope is uncertain.

One should treat these solutions with some scepticism.

We now briefly discuss the solutions for each observed system that are listed in the

excerpted Table 5.5. For WD0135–052 it is difficult to get both γ’s close to the preferred
values. In solution 5, γa1 is off while αce2 is acceptable, solution 8 has a γa1 not too far

from unity but γa2 is off and for solution 9 the reverse is the case. The three solutions have
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acceptable age differences. The solutions 17 and 22 for WD0136+768 and 28 and 30 for

WD0957–666 have values close to desired for both envelope-ejection parameters and the

∆τ . Solution 38 is by far the best solution for WD1101+364, though γa1 is not very close

to unity. Solutions 50 and 54 for PG 1115+116 have envelope-ejection parameters close

to the desired values and acceptable ∆τ ’s, though the initial masses are high. This is in
accordance with the fact that these stars are required to form white dwarfs with masses as

high as 0.7M⊙. Solution 55 shows that one has to accept a large value for γd1 in order to

find a solution with significantly smaller initial masses.

Solutions 58 and 65 are the only two for WD1204+450 from the complete table that

have age differences within 50% of the observed value, and still the envelope-ejection para-

meters are far from the desired values. There seems to be no convincing solution for this

system in our models. For WD1349+144 the cooling ages are not known, although the

similar Balmer spectra of the two components (Karl et al. 2003a) seem to suggest that ∆τ
is small. Solution 74 (which is the same as solutions 66, 69 and 70 in the complete table but

with a different definition of γ) has a small age difference of 64Myr but also a disturbingly
small initial mass ratio of 1.01. Since the orbital period is supposed to increase with more

than 200% during the first dynamical mass-loss episode, it is uncertain how this initial sys-

tem would evolve. Solution 68 has a larger initial mass ratio, but also a larger age difference.

The complete table shows solutions forWD 1349+144 with values for∆τ of about 64, 140,
230, 370 and 450Myr, so that they span a large range within which the actual age difference

is likely to lie. For HE 1414–0848 we find an acceptable solution for almost all mechan-

isms and 4 out of the 8 solutions listed in the complete table refer to the same solution with

different values for the envelope-ejection parameters for the different mechanisms. Since

the observed age difference of WD1704+481a is −20Myr, we have introduced a system
with the reversed mass ratio (WD1704+481b) and hence an age difference of +20Myr.
Interestingly enough, the solutions with closest age difference for WD1704+481b have

∆τ ∼>180Myr, a factor of nine or more than observed, as is the case for solution 103. How-
ever, for WD1704+481a we find solutions with good envelope-ejection parameters and an

age difference of around 50Myr, like solution 92, and with parameters that are more off, but

with an age difference of only 2Myr as in solution 98. The system WD1704+481a seems

therefore better explained by our models than the system with the reverse mass ratio. Be-

cause the observed cooling-age difference is only in the order of a few per cent of the total

age of the system (see Table 5.1), a change of 10% in the determined cooling age of one of

the two components is sufficient to alter the age difference from −20Myr to +50Myr. For
HE2209–1444, we present solutions 114 and 115, that have envelope-ejection parameters

close to the desired values and an age difference that agrees very well with the observed

cooling-age difference.

Summarising, we find that for the ten observed systems, two can only be explained

with values for γ that differ appreciably from the desired values (WD0135–052 (31%) and
WD1204+450 (20%)). For two systems the values of the envelope-ejection parameters

and age difference may not be too convincing, partially due to uncertainties in the observa-

tions (WD1101+364 (γ = 1.17) and WD1704+481(a) (∆τ = 52Myr)) and the other six
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systems (WD0136+768,WD0957–666, PG1115+116,WD1349+144, HE 1414–0848 and

HE2209–1444) can be well explained (∆γ ≤ 5%, ∆(∆τ) ≤ 50%) by one or more of the
described mechanisms, although several of these mechanisms are needed to account for all

six observed systems.

5.7 Discussion

5.7.1 Comparison to other work

In this chapter we investigate the formation scenarios for double white dwarfs first put for-

ward by Nelemans et al. (2000). Their paper is based on three double white dwarfs and we

expanded this to the set of ten that has been observed so far. Rather than using analytical

approximations, we used a stellar evolution code to do most of the calculations. One of

the advantages of this is that we calculate the binding energy of the donor star at the onset

of a common envelope, so that we can directly calculate the common-envelope parameter

αce without the need of the envelope-structure parameter λenv, that turns out to be far from

constant during the evolution of a star (see Fig. 5.4). This allows us to demand physically

acceptable values for αce.

The use of an evolution code instead of analytical expressions obviously gives more

accurate values for instance for the core-mass–radius relation. Our main conclusions are

nevertheless the same as that of Nelemans et al. (2000), even though they are based on a

larger sample of observed binaries: stable, conservative mass transfer followed by a com-

mon envelope with spiral-in based on energy balance cannot explain the formation of the

observed systems, and neither can the αceαce scenario of two such spiral-ins. We therefore

arrive at the same conclusion, that a third mass-transfer mechanism is needed to explain the

first mass-transfer phase of these systems and we use their envelope-ejection prescription,

based on angular-momentum conservation (Eq. 5.8).

Nelemans & Tout (2005) use more advanced fits to stellar models, but still need the

envelope-structure parameter λenv so that it is difficult to interpret the values they find for

the product αce λenv. They use the same ten observed double-lined white dwarfs as we do,

next to a number of single-lined systems. They also conclude that a γ-envelope ejection
is needed for the first mass transfer and find, like Nelemans et al. (2000), that all observed

systems can be explained by 1.50 < γs < 1.75, for both mass-transfer phases. Alternatively
the second mass-transfer episode can be reconstructed with 0 < αce λenv < 4. However,
Nelemans & Tout (2005) do not discuss the coupling of the two solution sets for the two

phases, e.g. it is not described how many of the solutions with 1.50 < γs1 < 1.75 have
γs2 in the same range. We introduced slightly different definitions for the γ-algorithm in
Eqs. 5.10 and 5.11, so that we can demand that γ is in the order of unity. We find indeed
that we can explain the observed masses and periods with γa, γd ∼ 1.0.
We add to the treatment by Nelemans et al. (2000) and Nelemans & Tout (2005) in de-

manding that, in addition to the masses and orbital period, the age difference of our models

must be comparable to the observed value. It turns out that this puts a strong constraint on



120 Chapter 5

the selection of model solutions for all three definitions of γ. However, we can still explain
most systems, although we need mass loss described by both γa and γd to do so.

The description for dynamical mass loss with the specific angular momentum of the

donor star (Eq.5.11) is similar to the scenario of a tidally-enhanced stellar wind (Tout &

Eggleton 1988b,a). In this scenario the mass loss from a (sub)giant due to stellar wind

increases up to a factor of 150 with respect to Reimers’ empirical law (Reimers 1975) when

the star is close to filling its Roche lobe. Tout & Eggleton (1988b) postulate the enhanced

wind to explain for instance observed pre-Algol systems such as ZHer. In this binary the

more evolved star is less massive than its main-sequence companion by 10%, while only

filling about half of its Roche lobe.

Han (1998) uses this tidally-enhanced stellar wind in his research on the formation of

double degenerates and concludes, among others, that his models that include this enhanced

stellar wind give a better explanation of the observed double-degenerate binaries than mod-

els that do not include it. The enhanced mass loss makes subsequent mass transfer due to

Roche-lobe overflow dynamically more stable. Envelope ejection due to dynamical mass

loss is then more often prevented and binaries evolve to longer orbital periods before the

second mass transfer, which is then more likely to produce a CO white dwarf. Thus, the

enhanced-wind scenario increases the ratio of CO-helium double white dwarfs to helium-

helium binaries.

Envelope ejection described by Eq.5.11 is essentially the same as the limiting case in

which most or all of the envelope is lost due to an enhanced wind. Tout & Eggleton (1988b)

show that the tidally-enhanced wind can indeed prevent Roche-lobe overflow altogether

because the envelope is completely lost by the wind and the core becomes exposed. Without

an enhancedwind, this happens for binaries with an initial mass ratio of 2 or less only if they

have initial periods of more than 1000 days. When the tidally-enhanced wind is included,

core exposure without Roche-lobe overflow occurs for these binaries with initial periods as

short as 10–30days.

5.7.2 Alternative formation scenario for massive white dwarfs

In the present research we have assumed that after envelope ejection occurs, the core of

the Roche-lobe filling giant becomes a helium or CO white dwarf with no further evolution

other than cooling. However, helium cores that are more massive than 0.33 M⊙ are not

degenerate and those more massive than about 0.5 M⊙ will burn most of the helium in their

cores and produce a CO core. If exposed, they are in effect helium stars. For helium stars

less massive than about 0.75 M⊙ the radius hardly changes during the helium (shell) burn-

ing, but stars more massive than that experience a giant phase. This is shown in Fig. 5.16a,

where the radius of a selection of helium-star models is plotted as a function of the CO-core

mass. For the more massive models in the Figure, the stars expand from the order of a few

tenths of a solar radius to a few hundred solar radii. Thus, helium stars with a core mass

MCO ∼
> 0.7 M⊙ may and those with MCO ∼

> 0.8 M⊙ must become giants and could fill

their Roche lobes as a consequence. The black dots in Fig. 5.16a indicate the maximum
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Figure 5.16: Upper panel (a): The radius of a helium star as a function of its CO-core

mass, for a selection of 15 models with total masses between 0.41 and 1.43 M⊙. The dots

show where the maximum radii are obtained and are used for the lower panel. The dashed

line is the Roche-lobe radius for the intermediate primary of PG 1115+116 according to our

solution 54. Lower panel (b): The maximum radius of a low-mass helium star as a function

of its total mass, for a selection of 33 models with masses between 0.33 and 1.4 M⊙. The

dots are the data points, the solid line connects them to guide the eye.
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radius for a certain helium-star model and if we plot the maximum radii of these and other

models as a function of the total mass of the star, we obtain Fig. 5.16b. This Figure shows

that a helium star more massive than about 0.83 M⊙ must evolve through a giant phase (see

e.g. Paczyński 1971; Habets 1986).

There are two double white dwarfs in the observed sample that have M2 > 0.6 M⊙,

PG 1115+116 (both components) and HE1414–0848 (the secondary). The evolutionary

scenarios in Table 5.5 suggest that all these stars emerge from the envelope ejection with a

CO core, except solution 54 for PG 1115+116, where the 5.42M⊙ primary progenitor pro-

duces a 0.89M⊙ helium core before helium ignites. The Roche-lobe radius of the 0.89M⊙

helium star in the intermediate binary is 187R⊙ according to this solution and shown as the

dashed line in Fig. 5.16.

The Figure shows that the mass and Roche-lobe radius of this star are in the proper

range to fit the helium-giant scenario. We show a small numerical example to illustrate this

scenario. The dot in Fig. 5.16a atMCO=0.88M⊙ and R = 171 R⊙, just below the dashed

line, is the point where the model of 0.93M⊙ from our grid of helium-star models reaches

its largest radius. The star thus has an envelope mass of only 0.05M⊙ and with a mass ratio

of almost 4, mass transfer would be stable (Eq. 57 of Hurley et al. (2002)). If we assume

that this star would be the primary of solution 54 in Table 5.5 and that 0.04M⊙ would be

transferred conservatively, the orbital period after the mass transfer would be 1115 d, so that

the period would not change drastically and the ensuing second envelope ejection would be

similar to the one found in solution 54. If the mass were lost in a wind, which could be

triggered by the fact that the star expands, but for which the Roche lobe need not be filled,

the orbital period would change less than 2% to 1031 d. It seems that a complete, detailed

model could be found to explain this system along these lines.

Both components in HE 1414–0848 are DA white dwarfs (Napiwotzki et al. 2002), as

is the secondary of PG 1115+116. The hydrogen in the spectra of these stars suggests that

the surface layer that formed after the envelope was ejected is still present. However, the

primary in PG 1115+116 is a DB white dwarf. As Maxted et al. (2002a) point out, the giant

phase of a helium star could be the explanation for this and the scenario sketched above

might indeed describe the formation of this system.

5.8 Conclusions

We investigated several formation scenarios for the observed ten double white dwarfs listed

in Table 5.1 and present the best models in Table 5.5. We draw four main conclusions:

• The scenario where the first mass-transfer phase is stable and conservative, followed

by a common envelope with spiral-in based on energy conservation (see Eq. 5.4) can-

not explain the observed masses and periods of all double white dwarfs.

• The scenario with envelope ejection based on angular-momentum conservation fol-

lowed by ejection of the second envelope with either energy or angular-momentum

balance can explain the observed masses and orbital periods very well.
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• Including the age difference as a quality criterion for model solutions produces strong

restrictions to the selection of solutions and makes it much more difficult to find

acceptable solutions.

• By taking into account the possibilities that mass is lost either from the donor or from

the accretor, we show that the formation of the close double white dwarfs can be

explained if the mass carries the specific angular momentum of one of the two binary

members.

Acknowledgements We thank P.P. Eggleton for making his binary evolution code avail-
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5.9 Appendix: Table of model solutions

Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD0135–052

1 γsαce 2.02 0.87 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42

2 γsαce 0.81 0.61 899 157. 2.17 2.11 1.63 1.29 33.22 3.20 372.5 0.51 0.46

3 γsγs 1.88 1.62 610 74. 1.36 2.55 2.06 1.24 300.5 3.56 110.9 0.58 0.52

4 γsγs 2.00 1.74 523 49. 3.29 1.51 1.44 1.05 503.9 3.08 268.9 0.47 0.42

5 γaαce 1.31 0.87 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42

6 γaαce 1.29 0.86 523 49. 3.29 1.51 1.44 1.05 503.9 3.08 268.9 0.47 0.42

7 γaαce 1.28 0.85 667 91. 3.43 1.51 1.42 1.07 503.3 3.04 272.3 0.47 0.42

8 γaγa 1.15 0.66 524 50. 1.36 2.46 2.06 1.20 429.8 3.56 110.9 0.58 0.52

9 γaγa 1.40 0.99 454 30. 5.37 1.28 1.25 1.03 596.6 2.68 313.7 0.47 0.42

10 γaγa 1.29 0.81 523 49. 3.29 1.51 1.44 1.05 503.9 3.08 268.9 0.47 0.42

11 γaγa 1.31 0.80 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42

12 γdαce 1.36 0.89 261 25. 3.02 1.51 1.48 1.03 505.1 3.16 260.8 0.47 0.42

13 γdγa 1.40 0.89 341 2.6 4.07 1.38 1.35 1.03 553.8 2.89 288.6 0.47 0.42

14 γdγa 1.00 0.98 2067 491. 3.43 2.06 1.42 1.45 155.3 2.72 490.6 0.52 0.47

Table 5.6: Selected model solutions for the double envelope-ejection scenario. This is the

full table with 120 entries of which Table 5.5 is an excerpt. The first eight columns show the

number of the entry, the double white dwarf that the model is a solution to, the mechanism

used, the two envelope-ejection parameters, the age difference of the two components in the

model (∆τ ) in Myr, the relative difference between the observed and model age difference,

defined as∆∆τ ≡
∣

∣

∣

∆τmod−∆τobs

∆τobs

∣

∣

∣
in %, the time of the formation of the double white dwarf

since the ZAMS (τ2) in Gyr. The last eight columns list binary parameters: the initial

(ZAMS) masses, mass ratio and orbital period, the intermediate mass ratio and period and

the final masses. See Sect. 5.6.5 for more details. (continued on the next pages)
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Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD0136+768

15 γsαce 1.48 1.01 449 0.2 3.73 1.44 1.38 1.04 72.27 4.16 265.9 0.33 0.42

16 γsγs 1.53 1.53 300 33. 2.68 1.59 1.53 1.04 64.22 4.60 235.6 0.33 0.42

17 γsγs 1.51 1.61 450 0.0 2.39 1.70 1.59 1.07 106.1 4.36 371.4 0.37 0.46

18 γaαce 0.91 0.99 317 30. 3.90 1.40 1.37 1.03 74.07 4.11 269.8 0.33 0.42

19 γaγa 0.92 0.99 321 29. 5.24 1.28 1.27 1.01 171.1 3.39 532.9 0.37 0.47

20 γaγa 0.90 1.01 460 2.2 5.37 1.28 1.25 1.03 170.9 3.35 540.8 0.37 0.47

21 γdαce 0.93 0.99 317 30. 3.90 1.40 1.37 1.03 74.07 4.11 269.8 0.33 0.42

22 γdαce 0.95 1.00 299 34. 2.68 1.59 1.53 1.04 75.88 4.50 269.5 0.34 0.43

23 γdγa 0.94 0.95 599 33. 4.67 1.35 1.30 1.04 162.5 3.48 517.9 0.37 0.47

24 γdγa 0.93 0.99 574 28. 5.24 1.30 1.27 1.03 168.8 3.39 532.9 0.37 0.47

WD0957–666

25 γsαce 1.74 1.00 341 4.8 1.16 2.25 2.00 1.12 15.22 6.66 28.52 0.30 0.34

26 γsαce 1.62 1.00 427 31. 1.16 2.34 2.00 1.17 8.110 6.66 28.52 0.30 0.34

27 γsγs 1.67 1.62 328 0.9 7.77 1.14 1.13 1.01 27.78 3.99 56.90 0.28 0.32

28 γaαce 1.02 0.97 321 1.2 1.65 1.90 1.79 1.07 20.15 6.31 27.07 0.28 0.32

29 γaγa 1.04 1.00 309 4.9 9.19 1.09 1.07 1.01 100.2 3.19 195.1 0.34 0.38

30 γdαce 1.00 1.00 427 31. 1.16 2.34 2.00 1.17 8.110 6.66 28.52 0.30 0.34

31 γdαce 1.06 1.00 341 4.8 1.16 2.25 2.00 1.12 15.22 6.66 28.52 0.30 0.34

32 γdαce 1.02 0.71 334 2.8 2.25 1.70 1.61 1.05 13.89 5.70 35.74 0.28 0.32

33 γdγa 1.05 1.00 309 4.9 9.19 1.09 1.07 1.01 100.2 3.19 195.1 0.34 0.38

WD1101+364

34 γsαce 1.95 0.89 487 126. 1.71 1.98 1.76 1.12 122.8 4.51 48.24 0.39 0.34

35 γsαce 2.08 1.00 208 3.3 2.38 1.63 1.59 1.03 118.7 4.33 39.18 0.37 0.32

36 γsγs 1.81 1.30 312 45. 0.80 2.72 2.28 1.20 44.86 5.82 30.61 0.39 0.34

37 γsγs 2.13 1.61 216 0.5 4.51 1.33 1.32 1.01 183.1 3.47 62.90 0.38 0.33

38 γaαce 1.17 0.96 308 43. 1.57 1.95 1.81 1.08 127.1 4.63 45.28 0.39 0.34

39 γaγa 1.40 0.74 208 3.3 6.12 1.22 1.20 1.01 164.1 3.27 55.68 0.37 0.32

40 γdαce 1.33 1.00 137 36. 3.27 1.46 1.44 1.01 112.2 4.04 35.90 0.36 0.31

41 γdαce 1.26 1.01 256 19. 1.52 1.95 1.83 1.07 127.2 4.69 43.20 0.39 0.34

42 γdαce 1.41 1.00 317 47. 8.09 1.13 1.12 1.01 91.07 3.35 28.96 0.33 0.29

43 γdγa 1.51 0.95 299 39. 9.18 1.09 1.07 1.01 265.0 2.74 96.55 0.39 0.34

44 γdγa 1.39 0.71 227 5.6 4.29 1.35 1.33 1.01 217.1 3.41 76.52 0.39 0.34

PG1115+116

45 γsαce 1.79 1.00 239 49. 0.50 3.70 2.94 1.26 1693. 3.58 980.4 0.82 0.69

46 γsαce 1.95 1.00 203 27. 0.73 2.90 2.59 1.12 2088. 3.24 1017. 0.80 0.67

47 γsαce 1.90 1.00 165 2.9 0.50 3.38 2.94 1.15 1960. 3.58 980.4 0.82 0.69

48 γsγs 1.79 1.62 198 24. 0.42 3.94 3.13 1.26 2127. 3.56 1240. 0.88 0.74

49 γsγs 1.93 1.62 156 2.4 0.54 3.21 2.87 1.12 2075. 3.49 1020. 0.82 0.69

50 γaαce 1.01 1.00 239 49. 0.50 3.70 2.94 1.26 1693. 3.58 980.4 0.82 0.69

51 γaαce 1.18 1.00 228 42. 0.73 2.94 2.59 1.14 2057. 3.24 1017. 0.80 0.67

52 γaγa 1.39 1.00 150 6.2 1.16 2.31 2.19 1.05 3581. 2.49 1952. 0.88 0.74

53 γaγa 1.00 0.62 230 44. 0.47 3.84 3.02 1.27 1945. 3.52 1162. 0.86 0.72

54 γdαce 0.97 0.93 240 50. 0.32 5.42 3.42 1.58 201.2 3.84 1012. 0.89 0.75

55 γdγa 1.45 1.00 214 34. 1.11 2.40 2.22 1.08 3567. 2.49 2032. 0.89 0.75

56 γdγa 1.00 0.54 235 47. 0.32 5.28 3.42 1.54 190.8 3.89 758.6 0.88 0.74

Table 5.6: Selected model solutions for the double envelope-ejection scenario (continued)
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Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD1204+450

57 γsαce 2.15 0.83 136 70. 5.37 1.27 1.25 1.01 630.3 2.65 274.3 0.47 0.41

58 γsγs 1.83 1.30 71 11. 0.25 3.94 3.47 1.14 69.23 5.92 56.81 0.59 0.51

59 γaαce 1.45 0.87 138 72. 4.66 1.32 1.30 1.01 606.6 2.76 263.4 0.47 0.41

60 γaγa 0.63 0.65 225 181. 1.58 2.06 1.81 1.14 32.89 3.58 256.2 0.51 0.44

61 γaγa 0.78 0.72 491 514. 1.85 2.06 1.72 1.20 86.06 3.33 312.4 0.52 0.45

62 γdαce 0.72 0.96 225 181. 1.58 2.06 1.81 1.14 32.89 3.58 256.2 0.51 0.44

63 γdαce 1.47 0.87 138 72. 4.66 1.32 1.30 1.01 606.6 2.76 263.4 0.47 0.41

64 γdγa 1.49 0.97 136 70. 5.37 1.27 1.25 1.01 630.3 2.65 274.3 0.47 0.41

65 γdγa 1.10 0.34 74 7.8 0.26 3.89 3.42 1.14 38.82 5.96 51.85 0.57 0.50

WD1349+144

66 γsαce 1.56 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46

67 γsαce 1.45 1.01 461 0.0 4.52 1.35 1.32 1.03 105.9 3.77 364.5 0.35 0.44

68 γsγs 1.51 1.63 426 0.0 2.68 1.61 1.53 1.05 115.0 4.20 385.7 0.37 0.46

69 γsγs 1.56 1.60 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46

70 γaαce 0.96 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46

71 γaαce 0.91 1.01 229 0.0 4.52 1.33 1.32 1.01 107.4 3.77 364.5 0.35 0.44

72 γaγa 0.91 1.00 143 0.0 5.37 1.27 1.25 1.01 173.1 3.35 540.8 0.37 0.47

73 γaγa 0.90 1.00 460 0.0 5.37 1.28 1.25 1.03 170.9 3.35 540.8 0.37 0.47

74 γdαce 0.97 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46

75 γdαce 0.92 0.99 147 0.0 4.67 1.32 1.30 1.01 108.7 3.72 369.7 0.35 0.44

76 γdγa 0.93 0.94 368 0.0 4.67 1.33 1.30 1.03 164.7 3.48 517.9 0.37 0.47

77 γdγa 0.92 1.00 460 0.0 5.37 1.28 1.25 1.03 170.9 3.35 540.8 0.37 0.47

78 γdγa 0.92 1.00 143 0.0 5.37 1.27 1.25 1.01 173.1 3.35 540.8 0.37 0.47

HE1414–0848

79 γsαce 1.52 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66

80 γsγs 1.46 1.79 119 40. 0.90 2.52 2.40 1.05 467.4 4.09 1720. 0.59 0.75

81 γsγs 1.52 1.45 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66

82 γaαce 0.83 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66

83 γaγa 0.91 0.99 177 12. 1.33 2.19 2.08 1.05 712.2 3.51 2170. 0.59 0.76

84 γdαce 0.95 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66

85 γdγa 0.95 0.99 219 9.5 1.33 2.22 2.08 1.07 701.3 3.51 2170. 0.59 0.76

86 γdγa 0.96 0.98 170 15. 1.28 2.22 2.11 1.05 702.1 3.55 2134. 0.59 0.76

WD1704+481a

87 γsαce 1.67 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36

88 γsαce 1.88 0.62 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37

89 γsαce 2.05 0.43 7 135. 1.36 2.03 1.90 1.07 252.8 3.51 96.02 0.54 0.38

90 γsγs 1.67 1.52 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36

91 γsγs 1.88 1.50 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37

92 γaαce 1.01 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36

93 γaαce 1.13 0.62 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37

94 γaγa 1.01 0.55 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36

95 γdαce 1.11 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36

96 γdαce 1.24 0.62 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37

97 γdαce 1.37 0.34 2 110. 1.48 1.93 1.86 1.04 294.5 3.33 120.2 0.56 0.39

98 γdγa 1.37 0.63 2 110. 1.48 1.93 1.86 1.04 294.5 3.33 120.2 0.56 0.39

Table 5.6: Selected model solutions for the double envelope-ejection scenario (continued)



126 Chapter 5

Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD1704+481b

99 γsαce 1.65 0.53 292 1360. 0.73 2.83 2.59 1.09 47.21 6.37 161.8 0.41 0.58

100 γsαce 1.74 0.76 285 1326. 0.75 2.76 2.55 1.08 49.12 6.40 107.3 0.40 0.57

101 γsγs 1.64 1.87 182 810. 2.23 1.68 1.65 1.01 212.1 4.08 478.6 0.41 0.58

102 γaαce 0.96 1.05 465 2223. 1.00 2.62 2.31 1.14 44.02 6.10 63.28 0.38 0.54

103 γaγa 0.98 0.99 199 895. 2.59 1.59 1.57 1.01 256.0 3.81 664.0 0.41 0.59

104 γaγa 0.94 0.97 181 805. 2.23 1.68 1.65 1.01 284.0 3.88 892.6 0.43 0.61

105 γdαce 1.03 0.15 182 810. 2.23 1.68 1.65 1.01 212.1 4.08 478.6 0.41 0.58

106 γdαce 1.00 0.76 332 1562. 0.75 2.87 2.55 1.12 33.29 6.40 107.3 0.40 0.57

107 γdγa 0.95 0.97 181 805. 2.23 1.68 1.65 1.01 284.0 3.88 892.6 0.43 0.61

108 γdγa 1.00 0.99 199 895. 2.59 1.59 1.57 1.01 256.0 3.81 664.0 0.41 0.59

HE2209–1444

109 γsαce 1.69 0.54 517 3.3 1.45 2.37 1.95 1.21 148.5 3.55 168.2 0.55 0.55

110 γsαce 1.56 0.88 552 10. 0.75 3.79 2.55 1.49 87.01 4.48 113.8 0.57 0.57

111 γsγs 1.62 1.64 262 48. 1.20 2.37 2.16 1.09 150.0 3.93 304.6 0.55 0.55

112 γsγs 1.63 1.73 510 2.1 1.24 2.59 2.14 1.21 403.6 3.62 596.1 0.59 0.59

113 γaαce 1.19 0.90 42 92. 1.20 2.19 2.16 1.01 121.7 4.08 97.10 0.53 0.53

114 γaαce 0.98 0.54 517 3.3 1.45 2.37 1.95 1.21 148.5 3.55 168.2 0.55 0.55

115 γaγa 1.00 1.00 612 22. 1.65 2.28 1.86 1.23 968.0 2.95 1061. 0.63 0.63

116 γaγa 1.08 1.00 499 0.2 1.87 2.06 1.76 1.17 809.5 2.94 777.6 0.60 0.60

117 γdαce 1.06 0.53 347 31. 1.35 2.31 2.03 1.14 80.61 3.76 169.5 0.54 0.54

118 γdαce 1.12 0.88 559 12. 0.75 3.84 2.55 1.50 71.51 4.48 113.8 0.57 0.57

119 γdγa 1.15 0.86 744 49. 1.35 2.76 2.03 1.36 556.8 3.27 881.7 0.62 0.62

120 γdγa 1.00 0.81 731 46. 1.48 2.55 1.93 1.32 135.6 3.38 437.5 0.57 0.57

Table 5.6: Selected model solutions for the double envelope-ejection scenario (continued)


