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Abstract A binary in which a slightly evolved star starts mass transfer to a neutron star can

evolve towards ultra-short orbital periods under the influence of magnetic braking. This is

called magnetic capture. In Chapter 2 we showed that ultra-short periods are only reached

for an extremely small range of initial binary parameters, in particular orbital period and

donor mass. Our conclusion was based on one specific choice for the law of magnetic

braking, and for the loss of mass and angular momentum during mass transfer. In this

chapter we show that for less efficient magnetic braking it is impossible to evolve to ultra-

short periods, independent of the amount of mass and associated angular momentum lost

from the binary.
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3.1 Introduction

In Chapter 2 we examined the process of magnetic capture: a slightly evolved main-

sequence star in a binary that transfers mass to a neutron-star companion while the orbital

period shrinks to the ultra-short-period regime (less than about 40minutes). To facilitate

comparison with earlier work, we used the same law for magnetic braking, and the same

assumption about the loss of mass and angular momentum during mass transfer as Podsi-

adlowski et al. (2002). Specifically, we used the law for magnetic braking as postulated

by Verbunt & Zwaan (1981), with the extra requirement that a sufficiently large convective

zone is present near the surface of the star, and we assumed that half of the transferred mass

leaves the binary with the specific angular momentum of the neutron star. We concluded

that ultra-short periods are reached within the Hubble time only by binaries within very nar-

row ranges of initial orbital periods and donor masses. In this chapter we investigate how

this conclusion changes if we vary the assumptions on the strength of magnetic braking and

on the loss of mass and angular momentum from the system.

Section 3.2 briefly describes the stellar evolution code used and especially the laws for

magnetic braking and system mass loss that we implemented. We then show which grids

of models were calculated and how the statistical study was performed in Sect. 3.3. The

results are presented in Sect. 3.4 and discussed in Sect. 3.5. In Sect. 3.6 we summarise our

conclusions.

3.2 Binary evolution code

3.2.1 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally de-

veloped by Eggleton (1971, 1972) and with updated input physics as described in Pols et al.

(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complementedwith low-

temperature opacities from Alexander & Ferguson (1994). For more details, see Sect. 2.2.

3.2.2 Angular momentum losses

Loss of angular momentum is essential to shrink the orbit of a binary in which the less

massive star transfers mass to its more massive companion. We consider three sources of

angular momentum loss.

For short periods, gravitational radiation is a strong source of angular momentum loss.

We use the standard description

dJGR

dt
= −
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(Peters 1984).
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The second mechanism of angular momentum loss from the system is by non-

conservative mass transfer. We assume that only a fraction β of the transferred mass is
accreted by the neutron star. The remainder is lost from the system, carrying away a frac-

tion α of the specific orbital angular momentum of the neutron star:

dJML

dt
= −α (1 − β) a2

1 ω Ṁ2, (3.2)

where a1 is the orbital radius of the neutron star and ω is the angular velocity.
To keep the models simple, we applied no regular stellar wind to our models, so that

all mass loss from the system and associated angular momentum loss result from the non-

conservative mass transfer described above.

The third source of angular momentum loss in this study is magnetic braking. Verbunt

& Zwaan (1981) postulated a law for magnetic braking

dJMB

dt
= −3.8 × 10−30 η M R4 ω3 dyn cm, (3.3)

on the basis of the observations by Skumanich (1972) that the equatorial rotation velocity

ve of main-sequence G stars decreases with the age t of the star as ve ∝ t−0.5. In Chapter 2

we assumed η = 1, after Rappaport et al. (1983). More recent measurements of rotation
velocities of stars in the Hyades and Pleiades, however, show that M stars have a wide range

of rotation velocities that is preserved as they age (Terndrup et al. 2000). This indicates

that magnetic braking is less strong for low mass stars than assumed in Eq. 3.3 with η = 1.
Also, observational evidence indicates that coronal and chromospheric activity, and with it

magnetic braking, saturate to a maximum level at rotation periods less than about 3 days

(e.g. Vilhu 1982; Vilhu & Rucinski 1983). Verbunt (1984) showed that to explain a braking

with the strength of Eq. 3.3 for a solar-type star, the star must have a magnetic field in excess

of∼ 200G for a slow rotator, and in addition a stellar wind loss in excess of 5×10−10M⊙/yr

for a fast rotator (for which the corotation velocity of the wind matter is much higher than

the escape velocity – see also Mochnacki (1981)). A smaller field or less wind (for the fast

rotator) automatically leads to a lower braking.

Many theoretical descriptions of angular momentum loss due to a magnetized wind

can be found in the literature (among others Kawaler 1988; Stepien 1995; Eggleton &

Kiseleva-Eggleton 2002; Ivanova & Taam 2003). These prescriptions depend on properties

of the star (for instance wind mass loss rate, magnetic field strength, corona temperature)

that are poorly known from observations for main-sequence stars and even less for evolving

stars. These angular momentum prescriptions vary in strength and dependence on the stellar

parameters. We have selected two different semi-empirical prescriptions to investigate the

effect of reduced braking on the mechanism of magnetic capture. In Sect. 3.5 we will show

that these two different implementations of magnetic braking dominate the evolution of the

binary in two completely different phases of their life.

First, we retain the functional dependence of the braking on stellar mass and radius

given by Eq. 3.3, but arbitrarily reduce the strength by taking η = 0.25 (reduced braking)
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and η = 0 (no braking). Second, we use a new law for magnetic braking, derived on
the basis of the ranges of rotation velocities in the Hyades and Pleiades, which includes

saturation at a critical angular rotation velocity ωcrit (Sills et al. 2000):

dJMB

dt
= −K

(

R

R⊙

)0.5 (

M

M⊙

)−0.5

ω3, ω ≤ ωcrit

dJMB

dt
= −K

(

R

R⊙

)0.5 (

M

M⊙

)−0.5

ω ω2

crit, ω > ωcrit (3.4)

From Andronov et al. (2003) we take the valueK = 2.7× 1047 g cm2 s that reproduces

the angular velocity of the Sun at the age of the Sun. Krishnamurthi et al. (1997) require

a mass-dependent value for ωcrit and they scale this quantity inversely with the turnover

timescale for the convective envelope τto of the star at an age of 200Myr:

ωcrit = ωcrit,⊙
τto,⊙

τto

(3.5)

They use a fixed value for ωcrit, because they consider main-sequence stars and the value of

τto does not change much during this evolution period. However, we consider donor stars in

a binary system that change substantially during their evolution and hence use the instantan-

eous value for τto. This convective turnover timescale is determined by the evolution code

by integrating the inverse velocity of convective cells, as given by the mixing-length theory

(Böhm-Vitense 1958), over the radial extent of the convective envelope. We further use a

value of ωcrit,⊙ = 2.9× 10−5Hz, equivalent to Pcrit,⊙ = 2.5 d (Sills et al. 2000 find that a
value forωcrit,⊙ of around 10 times the current solar angular velocity is needed to reproduce

observational data of young clusters with a rigidly rotating model), and τto,⊙ = 13.8 d, the
value that the evolution code gives for a 1.0 M⊙ star at the age of 4.6Gyr.

In both prescriptions (Eqs. 3.3 and 3.4) we follow Podsiadlowski et al. (2002) and reduce

the magnetic braking by an ad hoc term

exp(1 − 0.02/qconv) if qconv < 0.02, (3.6)

where qconv is the fractional mass of the convective envelope. In this way we account

for the fact that stars with a small or no convective mantle do not have a strong magnetic

field and will therefore experience little or no magnetic braking. Notice that Eq. 3.5 alone

predicts that stars with higher mass have a higher ωcrit, because they have a higher surface

temperature, hence a smaller convective mantle and a shorter τto. The application of the

term in Eq. 3.6 prevents that these stars experience unrealistically strong magnetic braking.

3.3 Creating theoretical period distributions

3.3.1 Binary models

Using the binary evolution code described in Sect. 3.2, with the non-saturated magnetic-

braking law of Eq. 3.3 we calculated grids of models for Z=0.01, the metallicity of the
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globular cluster NGC6624, and Y=0.26. We choose initial masses between 0.7 and 1.5M⊙

with steps of 0.1M⊙. For each mass we calculated models with initial periods (Pi) between

0.5 and 2.5 days with steps of 0.5 d for all masses and dropped the lower limit for the initial

period where necessary, down to 0.25 d. Around the bifurcation period between converging

and diverging systems, where the shortest orbital periods occur, we narrow the steps in Pi
to 0.05 or sometimes even 0.02 d.

Another series of models was calculated with a similar grid of initial masses and periods,

but with the magnetic-braking law of Eq. 3.4 that includes saturation of the magnetic field

strength at high angular velocities.

3.3.2 Statistics

In order to create a theoretical period distribution for a population of stars, we proceed as

described in Sect. 2.4. First, we draw a random initial period (Pi) and calculate the time-

period track for this Pi by interpolation from the two bracketing calculated tracks. Second,

we pick a random moment in time and interpolate within the obtained time-period track to

get the orbital period of the system at that moment in time. The system is accepted if mass

transfer is occurring and the period derivative is negative. The details of this interpolation

are described in Sect. 2.4.1. We do this 106 times for each mass to produce a theoretical

orbital-period distribution for a given initial mass and given ranges in log Pi and time.

To simulate the period distribution for a population of stars with an initial mass distri-

bution, we add the distributions of different masses. In Sect. 2.4.2 we show that the result

depends very little on the weighting, so that we simulate a flat distribution in initial mass.

3.4 Results

3.4.1 Reduced magnetic braking

We have calculated three grids of models as described in Sect. 3.3.1 with the non-saturated

magnetic-braking law given by Eq. 3.3. We have given the three grids different braking

strengths by changing the value for η. We used the values η = 1.0 (as in Chapter 2), η =
0.25 and η = 0.0. For the last set, there is no magnetic braking and the angular momentum
loss comes predominantly from gravitational radiation. For all models in these grids, half of

the transferred mass is ejected from the system with the specific angular momentum of the

neutron star, i.e. we used α = 1 and β = 0.5 in Eq. 3.2. Figure 3.1 shows time-period tracks
for models from the three grids with selected initial orbital periods andMi = 1.1 M⊙.

The figure shows clearly that initially similar models evolve in different ways, but only

after mass transfer has started. This is because a low-metallicity main-sequence 1.1M⊙

star has a high surface temperature, hence a small convective envelope (qconv ≈ 10−3) and

therefore effectively no magnetic braking at that stage (see Eq. 3.6). After mass transfer

starts, the surface temperatures drop and the differences in magnetic braking strength be-

come apparent. It is obvious that a model that experiences weaker magnetic braking may
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Figure 3.1: Time-period tracks for Z = 0.01, Mi = 1.1M⊙ with Pi = 0.6 d, Pi = 0.8 d,

and Pi = 1.0 d. Each model is shown for three different values of η: 0.0 (solid lines), 0.25
(dashed lines) and 1.0 (dotted lines). The symbols mark special points in the evolution:

+ marks the start of Roche-lobe overflow (RLOF), × the minimum period, △ the end of
RLOF and O marks the end of the calculation. The four dash-dotted horizontal lines show

the orbital periods of the closest observed LMXBs in globular clusters: 11.4 and 20.6, and

in the galactic disk: 41 and 50 minutes.

diverge where a similar model with stronger braking converges, and that models with weak

magnetic braking converge slower than models with strong magnetic braking.

For each grid of models we produce a statistical sample as explained in Sect. 3.3.2. The

results are period distributions for three populations of stars with initial masses between 0.7

and 1.5M⊙ and ages between 10 and 13Gyr. The distributions are compared in Fig. 3.2.

The most striking difference in the period distributions for the three values of η is the
shortest orbital period produced in the magnetic capture model. In models with reduced

magnetic braking the orbits do not converge to ultra-short periods before the Hubble time,

and the cut-off at the low-period end of the distribution accordingly lies at a higher period.

This is also the reason why there are more systems with orbital periods of around 0.1 d for

η = 0.0 than for η = 1.0; the missing models with stronger braking have already converged
to lower orbital periods, or beyond the period minimum.
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Figure 3.2: Period distributions for the magnetic capture model for η = 0.0 (solid lines),
0.25 (dashed lines) and 1.0 (dotted lines). It is clear that the cut-off for lower orbital periods

strongly depends on the strength of the magnetic braking. The vertical axis displays the

logarithm of the probability that an X-ray binary with a certain orbital period is found. The

four vertical dash-dotted lines show the same observed orbital periods as the horizontal

lines in Fig. 3.1. The probability is computed by distributing the accepted periods into bins

of width ∆log P = 0.011 and dividing the number in each bin by the total number of
systems.

3.4.2 Saturated magnetic braking

We have calculated one grid of models described in Sect. 3.3.1 with the saturated magnetic-

braking law given by Eq. 3.4. In this prescription the magnetic field saturates at a certain

critical angular velocityωcrit, that depends on the convective turnover timescale of the donor

star, as shown in Eq. 3.5. At an angular velocity higher than ωcrit, the magnetic braking

scales linearly with ω rather than cubically. As the typical initial critical spin period is a
few days, this is long compared to the initial orbital and – since the spins and orbits of our

models are generally synchronised – spin period, and therefore replacing the prescription of

Eq. 3.3 by that of Eq. 3.4 can be expected to have an effect similar to lowering the strength

of the magnetic braking, as we did in Sect. 3.4.1. Because we will see in Sect. 3.4.3 that the

shortest orbital periods are reached for models with conservative mass transfer, all models

in this grid have β = 1.0 in Eq. 3.2.
Figure 3.3 compares the tracks of 1.1M⊙ models from this grid with tracks taken from
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Figure 3.3: Time-period tracks for Z = 0.01,Mi = 1.1M⊙ with Pi = 0.38 d (the shortest

possible Pi for this model), Pi = 0.45 d, Pi = 0.56 d, and Pi = 0.60 d. Each model is shown

for a magnetic braking law according to Eq. 3.4 (Sat. MB, solid lines) and no magnetic

braking, but gravitational waves only (GW only, dashed lines). The symbols and horizontal

dash-dotted lines are as in Fig. 3.1. Note that the time axis extends far beyond the Hubble

time.

Sect. 3.4.3 with conservative mass transfer and without magnetic braking, i.e. β = 1.0 and
η = 0.0. We see similar differences between the two sets of models as seen in Fig. 3.1, but
the magnetic braking is clearly too weak to evolve the systems to less than 75min within

the Hubble time.

We performed statistics on the model as described in Sect. 3.3.2; the result is displayed

in Fig. 3.4 and compared to the period distribution for a grid of models with β = 1.0 and
η = 0.0.

3.4.3 The influence of mass loss

In Chapter 2 we have assumed that half of the transferred mass in our models is lost by

the accretor and leaves the system with the specific angular momentum of the accretor. To

see what influence this assumption has on the results of our study, we calculated a number

of models with conservative mass transfer, so that β = 1.0 in Eq. 3.2. We calculated two
sets of conservative models, one set without magnetic braking (η = 0 in Eq. 3.3) and one
set with full braking (η = 1). The time-period tracks of selected models are compared to
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Figure 3.4: Period distribution for the magnetic capture model using the magnetic braking

law described in Eq. 3.4 (Sat. MB, solid line) compared to the period distribution for models

without braking, but with gravitational waves only (GW only, dashed line). The four vertical

dash-dotted lines show the same observed orbital periods as the horizontal lines in Fig. 3.1.

The probability is calculated in the same way as in Fig. 3.2.

previous models with β = 0.5 in Figs. 3.5 and 3.6.

Figure 3.5 shows that the time-period tracks of models with gravitational waves as the

dominant angular momentum loss source are changed noticeably by a change in β. Con-
verging models reach their minimum period much earlier for conservative models than for

non-conservative models. The reason for this is that mass loss from the binary according to

Eq. 3.2 leads to a widening of the binary for the value of α we use. However, even for the
shortest possible initial period (0.38 d), and therefore the earliest possible period minimum

for these systems, the time of the minimum shifts from 19.9Gyr to 14.7Gyr with a period of

78min. The conclusion is that this effect makes no difference to the number or distribution

of ultra-compact binaries.

For models with magnetic braking, the differences between the two sets of models is

much smaller, as shown in Fig. 3.6. The reason for this is that the orbital evolution is com-

pletely dominated by the strong magnetic braking, so that changes in less important terms,

like the amount of mass loss from the system and the associated angular momentum loss, are

of very little influence. The models with full magnetic braking can produce ultra-compact

binaries within the Hubble time; the distribution of ultra-short periods in these models is
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Figure 3.5: Time-period tracks for Z = 0.01,Mi = 1.1M⊙ with Pi = 0.38 d (the shortest

possible Pi), Pi = 0.45 d and Pi = 0.50 d. Each model is shown for two different values of

β (β = 0.5, solid lines and β = 1.0, dashed lines) and has no magnetic braking (η = 0.0).
The symbols and horizontal dash-dotted lines are as in Fig. 3.1.

slightly affected by a change in β (see Fig. 3.6), but not enough to change the overall con-
clusion of Chapter 2.

3.5 Discussion

It is clear that the magnetic capture scenario to create ultra-compact binaries depends very

strongly on the strength of the magnetic braking used. By simply scaling down the Ver-

bunt & Zwaan (1981) prescription for magnetic braking, the results are, as can be expected

intuitively,

• The bifurcation period between converging and diverging systems decreases, which

means that only models with a lower initial orbital period will converge.

• The rate at which a system converges is lower, so that minimum periods are reached

at a later time. This can imply that ultra-compact periods occur only after a Hubble

time.
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Figure 3.6: Time-period tracks for Z = 0.01,Mi = 1.1M⊙ with Pi = 0.6 d, Pi = 0.8 d, Pi

= 0.9 d, and Pi = 1.0 d. Each model is shown for two different values of β (β = 0.5, solid
lines and β = 1.0, dashed lines) and has full magnetic braking (η = 1.0). The symbols and
horizontal dash-dotted lines are as in Fig. 3.1.

• Because reaching the minimum period takes much longer, a small offset in the initial

period has much more impact on the evolution of the system. Because of this, the

initial period range that leads to ultra-compact systems for a certain initial mass is

much smaller and thus the chances of actually producing an ultra-compact system

decrease.

If we use a slightly more sophisticated, saturated magnetic braking law, the results are

qualitatively similar to decreasing the magnetic braking strength. Because of the different

dependencies of the two different magnetic braking laws on the mass and radius of the

star in Eqs. 3.3 and 3.4, the two prescriptions take effect at completely different parts of the

evolution. To illustrate this, we picked three models with an initial mass of 1 M⊙ that evolve

to the same minimum period (28min) at about the same mass (0.06–0.07 M⊙). The three

models have different magnetic braking laws implemented and are given different initial

periods to reach the desired Pmin: the first model uses braking according to Eq. 3.3 and

Pi = 1.485 d so that the period minimum is reached after 11.7Gyr. The second model
loses angular momentum according to the saturated magnetic braking law in Eq. 3.4. It

has Pi = 1.109d and needs 20.1Gyr. The third model has no magnetic braking but only
gravitational waves to lose angular momentum. It needs the shortest initial period (0.4998d)
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and longest evolution time (42Gyr) to reach the desired minimum period.

The three models are compared in Fig. 3.7. The data are shown as a function of the

total mass of the donor, starting with the onset of Roche-lobe overflow. Fig. 3.7a displays

the orbital evolution of the three models. Due to loss of angular momentum, the orbital

periods at the start of mass transfer are already significantly shorter than the periods Pi

at the ZAMS. The model with the magnetic braking law of Eq. 3.3 has the longest orbital

period at the onset of RLOF, but shrinks fast and coincides with the model without magnetic

braking in the end. The dashed line of the model with the saturated magnetic braking from

Eq. 3.4 intersects the solid line twice before the period minimum, indicating that braking

starts out weaker, but ends stronger than the canonical magnetic braking of Eq. 3.3. This is

clearly seen in Fig. 3.7b, where for each model two competing time scales are plotted: the

time scale in which the mass transfer from the less massive to the more massive component

would expand the orbit if it were the only process going on, and the timescale in which

angular momentum loss (the sum of gravitational radiation and magnetic braking) would

shrink the orbit if nothing else would happen. In order to obtain the timescale at which

the orbital period changes (τP ) due to angular momentum loss (J̇), we use the fact that
the total angular momentum of a binary scales with the cubed root of the orbital period

(Jorb ∝ P
1/3

orb
) and thus

τP =
Porb

Ṗorb

=
Porb

dP
dJ J̇orb

=
Jorb

3 J̇orb

. (3.7)

To calculate τP due to angular momentum loss we substitute for J̇orb in Eq. 3.7 the sum

of the angular momentum losses due to gravitational radiation and magnetic braking. The

period derivative due to conservative mass transfer from star 1 to star 2, assuming no angular

momentum loss, is given by:

Ṗorb = 3Porb

M1 − M2

M1 M2

Ṁ1 (3.8)

which can be substituted into Eq. 3.7 to get τP . Depending on which of the two timescales

is shorter, the orbit will expand or shrink. At the period minimum, the two lines for each

model intersect. The figure shows that the timescales for the model with the canonical mag-

netic braking and the model with gravitational radiation only coincide around the period

minimum. This happens because at these short orbital periods the models with canonical

braking have very weak magnetic braking due to their small masses and radii (see Eq. 3.3)

and therefore gravitational wave emission dominates the orbital evolution. It can be clearly

seen in the figure that the timescales for the model with saturated magnetic braking are al-

most two orders of magnitude shorter than for the two other models and the orbital evolution

is driven by the strong magnetic braking. Figure 3.7c shows the true period derivatives of

the three models, which could have been inferred from the difference between the lines in

Fig. 3.7b. It shows clearly that the orbit changes fastest for the model with canonical mag-

netic braking in the first part of the evolution, but faster for the model with the saturated

magnetic braking law when the donor mass drops below about 0.2M⊙. Interestingly, the
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model with saturated magnetic braking is in the saturated regime during all of the evolu-

tion, so that the difference in strength comes from the different dependence on the mass

and radius of the donor. The deep dips in Fig. 3.7c are the period minima where Ṗ changes
sign. Figure 3.7 illustrates that the two magnetic braking prescriptions that we use work at

completely different phases of the evolution of the model. The canonical braking model

of Eq. 3.3 acts mainly in the first part of the mass transfer phase, well before the period

minimum, up to the point where the orbital period has decreased enough for gravitational

radiation to take over as the main angular momentum loss mechanism and evolve the orbit

to the ultra-short period regime. The saturated magnetic braking prescription of Eq. 3.4 is

only slightly stronger than the gravitational radiation in the first part of the evolution, but

becomes orders of magnitude stronger at shorter orbital periods and evolves to the ultra-

compact binary state without any significant contribution in the angular momentum loss

from gravitational radiation. Despite these large differences, there is little influence on the

outcome of our statistical study. We therefore conclude that our study is independent of the

the details of the magnetic braking, and that the use of other theoretical or semi-empirical

laws mentioned in Sect. 3.2 will lead to similar results.

3.6 Conclusions

In Chapter 2 we showed that for magnetic braking according to Verbunt & Zwaan (1981)

the formation of ultra-short-period binaries via magnetic capture is possible, albeit very

improbable, within the Hubble time. In this chapter we find that for less strong magnetic

braking, in better agreement with recent observations of single stars, the formation of ultra-

short-period binaries via magnetic capture is even less efficient. Specifically, for magnetic

braking reduced to 25% of the standard prescription (according to Eq. 3.3), the shortest

possible period is 23min; for saturated magnetic braking (according to Eq. 3.4) the shortest

possible period is essentially the same as without magnetic braking, about 70min.

Loss of mass and associated angular momentum from the binary in general widens the

orbit and thereby delays the formation of ultra-compact binaries. However, this effect is

only noticeable in the absence of magnetic braking.

An attractive feature of the magnetic capture model is its ability to explain the negative

period derivative of the 11-minute binary in the globular cluster NGC6624 (Van der Klis

et al. 1993b; Chou & Grindlay 2001). Since we find that for a more realistic magnetic

braking law it is impossible to create ultra-compact binaries via magnetic capture at all, it

becomes less likely that the negative period derivative is intrinsic. Van der Klis et al. (1993a)

show that an apparent negative period derivative can be the result of acceleration of the bin-

ary in the cluster potential. According to measurements with the HST the projected position

of the binary is very close to the cluster centre, which makes a significant contribution of

gravitational acceleration to the observed period derivative more likely (King et al. 1993).
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Figure 3.7: Upper panel (a): The logarithm of the orbital period. The line styles show

the different models: with magnetic braking according to Eq. 3.3 (V&Z MB, solid line),

with magnetic braking according to Eq. 3.4 (Sat. MB, dashed line) and without magnetic

braking (GW only, dotted line). Middle panel (b): The logarithm of the timescales of orbital

shrinkage due to angular momentum loss (AM loss, thick lines) and orbital expansion due

to the mass transfer (Mtr, thin lines). The line styles represent the different models as in

(a). Lower panel (c): The logarithm of (the absolute value of) the orbital period derivative

in dimensionless units. The line styles are as in (a).


