
1/30

Binary geometry Mass transfer Drives of MT Common envelopes Exercises

Interacting binaries and binary evolution

Marc van der Sluys

Radboud University Nijmegen

March 8, 2021



2/30

Binary geometry Mass transfer Drives of MT Common envelopes Exercises

Outline

1 Binary geometry
Geometry of binary stars
Roche potential

2 Mass transfer
Conservative mass transfer
Stellar wind
Realistic mass transfer
Eddington limit

3 Drives of MT

Intrinsic drives of mass transfer
Extrinsic drives of mass transfer

Gravitational waves
Magnetic braking

4 Common envelopes
Energy balance
Angular-momentum balance
Darwin instability
Post-CE stars

5 Exercises



3/30

Binary geometry Mass transfer Drives of MT Common envelopes Exercises

Binary geometry

a

r1 r2

c.m.
 M2M1

i = 1, 2 = “star”;
(3− i) = “other star”.

Masses:

MT = M1 + M2 (1)

qi =
Mi

M(3−i)
(2)

µ =
M1M2

MT
(3)

Centre of mass (rot. axis):

ri ≡
M(3−i)

MT
a (4)

r1

M2
=

r2

M1
=

a
MT

(5)

Kepler’s law:

ω2 =

(
2π
P

)2

=
GMT

a3 , (6)

where ~ω =
~r × ~v

r 2 is the angular
frequency.
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Roche lobes

ΦRoche(~r) = − GM1

|~r −~r1|
− GM2

|~r −~r2|
− 1

2
(
~ω ×~r

)2 (7)

(in a corotating frame). Li : Lagrangian points

Roche-lobe radius (at which a spherical star has
the same volume as its Roche lobe):

RRl,i

a
≈ 2

34/3

(
Mi

MT

)1/3

, (8)

accurate within 2% for qi < 0.8 (Paczyński, 1971).

RRl,i

a
≈

0.49 q2/3
i

0.6 q2/3
i + ln

(
1 + q1/3

i

) ≈ 0.44 q0.33
i

(1 + qi )0.2 .

(9)
The first part is accurate within 1% for 0 < qi <∞
(Eggleton, 1983), the second is more convenient.

If R∗ > RRl, Roche-lobe overflow (RLOF) occurs
and mass transfer can ensue through L1.

Note that L1 does generally not coincide with the
centre of mass (rotation axis).
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Minimum and maximum periods

From Eq. 8, minimum period w/o RLOF:

Pmin ∝ ρ−1/2 (10)

Pmin ∼ 0.35

√(
R

R�

)3( M
M�

)−1( 2
1 + q

)0.2

days

(11)

For two Suns (M = 1 M�; q = 1):

Pmin ∼ 0.35 days ∼ 8.4 h.

Lowest-mass MS stars (M = 0.1 M�; q = 1):

Pmin ∼ 8.4 h
√

0.12 ∼ 1 h.

Hence, binaries with P . 1 h cannot contain two
MS stars!

From Eq. 8, maximum period for RLOF:

Pmax ∼ 0.35

√(
Rmax

R�

)3( M
M�

)−1( 2
1 + q

)0.2

days

(12)

For two Suns (M = 1 M�; q = 1; Rmax ∼ 200 R�):

Pmax ∼ 990 days (really : 1300 days − why?)

M/M� Pmin/day Pmax/day
1 0.35 1300
8 0.85 1300
16 1.1 3200
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Roche-lobe overflow → mass transfer

If Pmin < Porb < Pmax, then R∗ ≥ RRl at some point and Roche-lobe overflow will occur.

Mass transfer through the first Lagrangian point can strongly decrease the mass of the donor
star and increase that of the accretor.
Since the mass of a star is the most important parameter that determines its evolution, the
future evolution of the two stars is strongly influenced.

In addition, the orbit can change dramatically.

Mass transfer can stop when the donor star shrinks, or when the orbit widens.

Key points that determine how mass transfer proceeds:

how does Rd change? — ζ∗

how does RRl change? — ζRl

what happens to the internal structure of the donor?

what happens to the transferred mass (accreted, expelled)?

what happens to the accretor (M → structure→ R)?
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Mass transfer and angular momentum

Orbital angular momentum for binary component i in a circular orbit:

Ji = |~Ji | = Mi
∣∣~ri × ~vi

∣∣ = Mi rivi = Mi r 2
i ω (13)

Jorb = J1 + J2 = µa2ω = M1M2

(
Ga
MT

)1/2

= G2/3 M1M2

M1/3
T

(
P
2π

)1/3

(14)

Ji

Jorb
=

Mi r 2
i ω

µ a2 ω
=

M(3−i)

MT
(15)

J̇
J

=
Ṁ1

M1
+

Ṁ2

M2
− 1

2
ṀT

MT
+

1
2

ȧ
a

(16)

=
Ṁ1

M1
+

Ṁ2

M2
− 1

3
ṀT

MT
+

1
3

Ṗ
P

(17)

Logarithmic derivative:

x ≡ a yb → ẋ
x

= b
ẏ
y

(18)
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Conservative mass transfer

Simplest case: conservative mass transfer:

Eq. 16 with J̇ = 0; ṀT = 0→ Ṁa = −Ṁd:

ȧ
a

= 2 Ṁd
Md −Ma

MdMa
= 2

Ṁd

Md
(qd − 1) (19)

Note:

Since Jorb is constant:

Jorb(amin) = Jorb(Md = Ma) =
M2

T

4

(
Gamin

MT

)2

→ a
amin

=

(
M2

T

4MdMa

)2

(20)

For which masses is amin reached?



9/30

Binary geometry Mass transfer Drives of MT Common envelopes Exercises

Conservative mass transfer

Note:

If Md > Ma → Ṁd < 0 → ȧ < 0 → orbit shrinks

If Md = Ma → ȧ = 0 → a = amin

⋆

M
donor

 = M
accretor

a
orb

 = a
min

M
donor

a
o
rb
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Conservative mass transfer

Eggleton code + BinSim, R. Hynes, LSU

conservative_mt.mp4
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Stellar wind

Case 2: isotropic (fast) stellar wind from star 1 only:

Using Eq. 16 and J̇ = J̇1 6= 0; ṀT = Ṁ1; Ṁ2 = 0:

ȧ
a

= 2
J̇
J
− 2

ṀT

M1
+

ṀT

MT
(21)

Each gram of matter is lost with the specific AM of star 1 and using Eq. 15:

h1 ≡
J1

M1
= Jorb

M2

M1 MT
, (22)

so that J̇1 = h1 Ṁ1, and (
J̇

Jorb

)
wind

=
M2

MT

ṀT

M1
=

1
q1

ṀT

MT
, (23)

ȧ
a

= 2

(
J̇

Jorb

)
wind

−
M1 + 2M2

M1

ṀT

MT
= −

ṀT

MT
, (24)

a ∝ M−1
T . (25)

Note that it does
not matter which
star loses the
material.
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Realistic mass transfer

1 Onset of MT ∗1→ ∗2: t = 0, R∗ = RRl

2 t = t + ∆t , Ṁ1 < 0 → M1 ↓ and
1 orbit: q ↓ → (assume Ṁ2, ṀT, J̇) → ∆q,∆a → ∆RRl
2 star: stellar structure → ∆R∗

3 Result:
1 R∗,new = R∗ + ∆R∗, RRl,new = RRl + ∆RRl → Ṁ1

In general:

Ṁ = f (R∗ − RRl)

Important: Ṙ∗(Ṁ∗) compared to ṘRl(ȧ, Ṁ1, Ṁ2):
Ṙ∗ > ṘRl → Ṁ ↑
Ṙ∗ < ṘRl → Ṁ ↓

Ṙ∗ > ṘRl → Ṁ ↑ +Ṙ∗ > ṘRl → unstable MT
Ṙ∗ < ṘRl → Ṁ ↓ +Ṙ∗ < ṘRl → MT will stop
Ṁ ↑↓ → Ṙ∗, ṘRl ↑↓ → Ṁ ↓↑ → equilibrium: MT ∼
constant

Non-conservative mass transfer:

A fraction β of the transferred matter is
accreted, the rest is expelled with a
fraction α of the specific AM of the
accretor:(

J̇
J

)
MT

= −α(1− β)
Md

Ma

Ṁd

MT
. (26)

Stability of mass transfer:

ζ ≡
(

d log R
d log M

)
(27)

Note that d log M < 0 for the donor star!
MT is stable (in fact, Ṁ does not grow) if

ζd ≥ ζRl(q, β). (28)

e.g. Hjellming & Webbink (1987); Soberman et al. (1997)
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Eddington limit

Accretion onto a compact object (NS, BH) generates radiation. If the accretion luminosity Lacc

becomes sufficiently high, it may prevent further accretion. Hence, there is a maximum accretion
rate for an accretor, known as the Eddington limit (Ṁedd).
Assume that the accreted matter consists of “particles” with a proton mass mp and the Thomson
cross section of electrons σT. If the luminosity force cancels out gravity on such a particle:

FL = Fg →
L
c
σT

4πr 2 =
G M∗mp

r 2 . (29)

The Eddington luminosity (Ledd) is defined as:

Ledd =
4πc G mp

σT
M∗ ≈ 3.3× 104

(
M∗

M�

)
L�. (30)

The Eddington accretion limit (Ṁedd) can be found from Ledd = Lacc =
G M∗Ṁ

R∗
:

Ṁedd =
4πc mp

σT
R∗ ≈ 1.5× 10−8

(
R∗

10 km

)
M� yr−1. (31)
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Drives of mass transfer

The mass-transfer rate depends on the change of the radius
of the donor, and on the change in orbit.

Classification of the drives of mass transfer:

Intrinsic drive: R∗ changes due to a change of stellar
structure caused by stellar evolution.

Extrinsic drive: the binary orbit changes (shrinks) due to
loss of angular momentum: J̇ → ȧ → ṘRl.

Complication:

1 Ṁ∗ is a function of
Ṙ∗, ṘRl

2 Ṙ∗, ṘRl are functions of
Ṁ∗!
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Intrinsic drives of mass transfer

Mass transfer can take place on
three timescales:

1 Nuclear-evolution timescale
2 Thermal timescale
3 Dynamical timescale

The applicable timescale depends on
the structure and evolutionary phase of
the donor star.

Reminder:

ζ ≡
(

d log R
d log M

)

MT on the nuclear-evolution timescale:

Ṙ∗ due to nuclear evolution of the donor star
star is in thermal and hydrostatic equilibrium:

ζd,th > ζRl(q, β = βnuc) (32)

R∗ ↑, Ṁ such that ȧ, ṘRl ensure that RRl follows R∗

MS timescale:

τnuc,MS ∼
0.1 M∗

L∗
≈ 1010 yr

(
M∗

M�

)−2,−3

(33)

HG, GB timescale: τnuc,GB ∼ 0.01− 0.1τnuc,MS

Ṁ ∼ M∗

τnuc
(34)
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Intrinsic drives of mass transfer

MT on the thermal timescale:

Donor is in hydrostatic equilibrium, but not in thermal
equilibrium:

ζd,th < ζRl(q, β = βnuc)

ζd,ad > ζRl(q, β = βth)

Thermal equilibrium reached after τKH ∼
G M2

∗

R∗ L∗

Hydrostatic equilibrium sets in at a much shorter
timescale
Hence, it is possible that (e.g. in the HG, on the GB):

Ṙ∗ < ṘRl for t < τKH, but
Ṙ∗ > ṘRl for t & τKH

hence, Ṁ ↓ first, but Ṁ ↑ after τKH

→ Ṁ driven by τKH:

Ṁ ∼ M∗

τKH
� Ṁnuc (35)

MT on the dynamical timescale:

Donor is not in hydrostatic
equilibrium:

ζd,ad < ζRl(q, β = βth)

very short timescale (years –
kyrs?)

if Ṙ∗ > ṘRl, the MT is dynamically
unstable
this results in runaway mass
transfer (common envelope?)



17/30

Binary geometry Mass transfer Drives of MT Common envelopes Exercises

Intrinsic drives of mass transfer

MT thermally stable?
ζd,th ≥ ζRl(q, β = βnuc)?

Y

Nuclear-timescale MT
Ṁa = −βnucṀd

N

MT dynamically stable?
ζd,ad ≥ ζRl(q, β = βth)?

Y

Thermal-timescale MT
Ṁa = −βthṀd

N

Dynamical-timescale MT
Common envelope
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Extrinsic drives of mass transfer

Extrinsic drives of MT:
1 Angular-momentum is removed

from the binary orbit
2 The orbit shrinks
3 The donor star overfills its Roche

lobe (more than before)

Extrinsic drivers of MT:
1 Emission of gravitational waves

(GWs)
2 Magnetic braking

Gravitational waves:(
J̇
J

)
GW

= −32
5

G3

c5

M1M2MT

a4 × f (e) (36)

(Peters, 1964)

For a detached binary:

τGW ≡
∣∣∣∣JJ̇
∣∣∣∣

GW

≈ 380 Gyr
(1 + q)2

q

(
MT

M�

)−5/3( P
day

)8/3

,

(37)

tcontact =
τGW

8
. (38)

Examples: q = 1, tcontact = 1010 yr:
0.6+0.6 M� DWD Pmax ≈ 0.37 day (∼ 9 h)
1.4+1.4 M� BNS Pmax ≈ 0.63 day (∼ 15 h)

10+10 M� BBH Pmax ≈ 2.1 day

Why not MS+MS binary?
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Extrinsic drives of mass transfer

GWs as MT driver: WD donor

1 Assume R∗ ∝ M−1/3
∗ → Ṙ

R = − 1
3

Ṁ
M (not

exactly true!)
2 Lower-mass WD fills RL (why?)
3 MT from low-mass to high-mass
→ q < 1, q ↓ → a ↑

4 Smaller q → Ṙ∗ < ṘRl → MT stops
5 But: J̇GW < 0 → a ↓ → RRl ↓ → RLOF
→ MT

6 Hence, MT is driven by GW, and

Ṁ ∝ Md

τGW
=

M2
d Ma MT

a4 (39)

Example 1: AM CVn stars (H-poor CVs):

AM CVn stars evolve to large a / long P

Md Ma ↓, a ↑ → τGW ↑↑ → Ṁ ↓
→ evolution starts rapidly (high |Ṁ|, |ȧ|), but
slows down exponentially with time

Example 2: 0.3+0.6 M� MS+WD (CV):

RLOF of 0.3M� MS

Ṁ → q ↓, a ↑,RRl ↑ + R∗ ↓ (since R∗ ∝ M∗)

MT stops unless external J̇ is present

Ṁ ∼ Md
τGW

; Md,Ma ↓, a ↓ → τGW ∼↓,Md ∼↓
→ Ṁ ∼ constant
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Extrinsic drives of mass transfer

Example 2 (cont.): observed CVs:

short P (. 2 hr): Ṁobs ∼ 10−10 M�/yr;
ṀGW ∼ 10−10 M�/yr X
but: long P (& 3 hr): Ṁobs ∼ 10−8 M�/yr x
+ LMXBs (NS+MS): Ṁobs ∼ 10−8 M�/yr x
Hence: additional J̇-mechanism needed!

Magnetic braking

Rotating stars can have magnetic fields

Evolved stars can have strong winds

Stellar wind follows magnetic-field lines

Star loses angular momentum efficiently

Tidal coupling causes orbit to shrink in case
of a binary



21/30

Binary geometry Mass transfer Drives of MT Common envelopes Exercises

Extrinsic drives of mass transfer

Magnetic braking:

Observed in single stars in clusters, field

In binaries, tides cause corotation
→ J̇MB = J̇orb

J̇MB ≈ −3.8× 10−30 M∗ R4
∗ ω

3 dyn cm. (40)

(Verbunt & Zwaan, 1981)

Reasaonable values for J̇MB give
Ṁ ∼ 10−8 M�yr X
However, is J̇MB observed in slowly rotating
single stars applicable to short-period
binaries?

Saturating magnetic braking:

J̇MB = −K
(

R
R�

) 1
2
(

M
M�

)− 1
2

ω3, ω ≤ ωcrit

= −K
(

R
R�

) 1
2
(

M
M�

)− 1
2

ω ω2
crit, ω > ωcrit

(Sills et al., 2000)

Seems to give better agreement with
observations for ultrashort periods
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Observed double-lined double white dwarfs

System Porb aorb M1 M2 q2 ∆τ
(d) (R�) (M�) (M�) (M2/M1) (Myr)

WD 0135–052 1.556 5.63 0.52 ± 0.05 0.47 ± 0.05 0.90 ± 0.04 350
WD 0136+768 1.407 4.99 0.37 0.47 1.26 ± 0.03 450
WD 0957–666 0.061 0.58 0.32 0.37 1.13 ± 0.02 325
WD 1101+364 0.145 0.99 0.33 0.29 0.87 ± 0.03 215
PG 1115+116 30.09 46.9 0.7 0.7 0.84 ± 0.21 160

WD 1204+450 1.603 5.74 0.52 0.46 0.87 ± 0.03 80
WD 1349+144 2.209 6.59 0.44 0.44 1.26 ± 0.05 —
HE 1414–0848 0.518 2.93 0.55 ± 0.03 0.71 ± 0.03 1.28 ± 0.03 200
WD 1704+481a 0.145 1.14 0.56 ± 0.07 0.39 ± 0.05 0.70 ± 0.03 -20a

HE 2209–1444 0.277 1.88 0.58 ± 0.08 0.58 ± 0.03 1.00 ± 0.12 500

a Unclear which white dwarf is older

See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.
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Common envelopes (CEs)

Reason CEs are needed:

Average orbital separation: ∼ 7 R�

Typical progenitor: giant:
Mc ∼> 0.3 M�
R∗ ∼ 100 R�
a ∼ 250 R� (for 2× 1 M�)

Hence, large ∆Jorb,∆a is required

Idea: giant donor, dynamical MT, donor envelope
expands rapidly, engulfs companion: Common
Envelope (Paczyński, 1976)

Inside the CE, the donor core and companion spiral in
through friction, heating up and expelling the CE

Fast: Mc does not grow during CE

Fast: no accretion by companion during CE
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Common envelope cartoon
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Classical common envelope: energy balance

Change in orbital separation due to CE:

Equate the binding energy of the giant’s
envelope to the change in orbital energy:

Ebind,env = αCE

[
G M1,f M2

2 af
− G M1,i M2

2 ai

]
(41)

(Paczyński, 1976; Webbink, 1984)

αCE is the efficiency factor (0 < αCE ≤ 1)

The envelope binding energy is often

parameterised: Ebind,env ≈
G Menv M∗

λR∗

Result depends on exact definition of Mc,Menv

Result depends on energy sources taken into
account

e.g. recombination energy, nuclear energy
star

Success of CEs:

Often af � ai, as needed

Works well to explain e.g. WD-MS binaries

However, for DWDs:

Expect CE1: large ai → large R∗ → large Mc

→ massive WD (M1)

Expect CE2: smaller ai → smaller R∗ →
smaller Mc → low-mass WD (M2)

Hence, expect M1 > M2

But: observe M1 ∼ M2

Apparently, ai ∼ af in first MT phase — no
CE! x
CE works well for second MT phase X
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Common envelope with AM balance

Envelope ejection with AM conservation:

Idea: at onset of CE1, the AM is typically large, and the companion is
massive

Hence, the companion could spin up the envelope → no more friction

Hence, no E balance, not necessarily a spiral-in

Also, AM is harder to create or destroy than E

Ji − Jf

Ji
= γ

M1,i − M1,f

Mtot,i
(42)

Nelemans et al. (2000)

γ ∼ 1.5 is the average specific AM of the binary

For q ∼ 1, ∆M
M relatively small → ∆J small → little orbital shrinkage

For q < 1, ∆M
M large → ∆J large → more orbital shrinkage

This seems to explain the masses and mass ratios of the 10 observed
double-lined DWDs (but not their age differences)

However, why
should γ = 1.5 (or
any other value)? —
little physical
significance

Much discussion
about sensitivity of
exact γ on outcome
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Darwin instability

AM catastrophe:

If
1 one of the binary companions has a large spin AM,
2 the star is tidally locked to the orbit, and
3 the star expands (due to evolution),

then
1 the rotation of the expanding star slows down,
2 tidal locking speeds up the star’s spin and drains AM from the orbit,
3 the orbit shrinks, tides become stronger,
4 a stable orbit is impossible, and the stars will merge.

This happens when

J∗ ≥
1
3

Jorb (43)

(Darwin 1879)
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Post-CE stars

After the CE:

If RRl,acc < Ra: merger

If |Ebind,env| > Eorb: merger

Else: binary survives CE: post-CE (compact) binary
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Exercises

To get started, derive Equations 4, 6 (for a circular orbit) and 10.

Prove Equation 18 and derive Equations 16 and 21.

For more depth, derive Equations 11, 14, 19, 20, 25, 26, 31, 38 and 43.

You can use the corresponding subsections in Appendix A of Binary evolution in a nutshell for
guidance.
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Online material

http://www.astro.ru.nl/˜sluys/

Teaching→ Compact binaries 2021

1 These slides;
2 Document Binary evolution in a nutshell with more details, derivations and references.

http://www.astro.ru.nl/~sluys/
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