| Binary geometry | Mass transfer | Drives of MT | Common envelopes | Exercises |
|-----------------|---------------|--------------|------------------|-----------|
|                 |               |              |                  |           |

# Interacting binaries and binary evolution

Marc van der Sluys

Radboud University Nijmegen

March 8, 2021

## **Outline**

## **Binary geometry**

- Geometry of binary stars
- Roche potential
- Mass transfer 2
  - Conservative mass transfer
  - Stellar wind
  - Bealistic mass transfer
  - Eddinaton limit

## **Drives of MT**

- Intrinsic drives of mass transfer
- Extrinsic drives of mass transfer
  - Gravitational waves
  - Magnetic braking



- **Common envelopes**
- Energy balance
- Angular-momentum balance
- Darwin instability
- Post-CE stars

## **Exercises**

| Binary geometry | Mass transfer | Drives of MT | Common envelopes | Exercises |
|-----------------|---------------|--------------|------------------|-----------|
| Binary geometry |               |              |                  |           |



i = 1, 2 ="star"; (3 - i) = "other star".

## Masses:

$$egin{aligned} M_{
m T}&=M_1+M_2 & (1) \ q_i&=rac{M_i}{M_{(3-i)}} & (2) \ \mu&=rac{M_1M_2}{M_{
m T}} & (3) \end{aligned}$$

Centre of mass (rot. axis):  $r_{i} \equiv \frac{M_{(3-i)}}{M_{T}} a \qquad (4)$   $\frac{r_{1}}{M_{2}} = \frac{r_{2}}{M_{1}} = \frac{a}{M_{T}} \qquad (5)$ 

Kepler's law:  

$$\omega^{2} = \left(\frac{2\pi}{P}\right)^{2} = \frac{GM_{\rm T}}{a^{3}}, \quad (6)$$
where  $\vec{\omega} = \frac{\vec{r} \times \vec{v}}{r^{2}}$  is the angular frequency.

| Binary geometry<br>⊙●O | Mass transfer | Drives of MT | Common envelopes | Exercises |
|------------------------|---------------|--------------|------------------|-----------|
|                        |               |              |                  |           |

## **Roche lobes**



$$\Phi_{\rm Roche}(\vec{r}) = -\frac{GM_1}{|\vec{r} - \vec{r}_1|} - \frac{GM_2}{|\vec{r} - \vec{r}_2|} - \frac{1}{2} \left(\vec{\omega} \times \vec{r}\right)^2$$
(7)

(in a corotating frame).

L<sub>i</sub>: Lagrangian points

Roche-lobe radius (at which a spherical star has the same volume as its Roche lobe):

$$\frac{R_{\rm Rl,i}}{a} \approx \frac{2}{3^{4/3}} \left(\frac{M_i}{M_{\rm T}}\right)^{1/3},\tag{8}$$

accurate within 2% for  $q_i < 0.8$  (Paczyński, 1971).

$$\frac{\mathcal{R}_{\mathrm{Rl},i}}{a} \approx \frac{0.49 \, q_i^{2/3}}{0.6 \, q_i^{2/3} \,+\, \ln\left(1+q_i^{1/3}\right)} \approx \frac{0.44 \, q_i^{0.33}}{(1+q_i)^{0.2}}.$$
(9)

The first part is accurate within 1% for  $0 < q_i < \infty$  (Eggleton, 1983), the second is more convenient.

If  $R_* > R_{R_1}$ , Roche-lobe overflow (RLOF) occurs and mass transfer can ensue through  $L_1$ .

Note that  $L_1$  does generally *not* coincide with the centre of mass (rotation axis).

| Binary geometry<br>○O● | Mass transfer | Drives of MT | Common envelopes | Exercises |
|------------------------|---------------|--------------|------------------|-----------|
| Minimum and maxi       | mum periods   |              |                  |           |

From Eq. 8, minimum period w/o RLOF:

$$P_{\rm min} \propto 
ho^{-1/2}$$
 (10)

$$P_{\min} \sim 0.35 \sqrt{\left(rac{R}{R_{\odot}}
ight)^3 \left(rac{M}{M_{\odot}}
ight)^{-1} \left(rac{2}{1+q}
ight)^{0.2}} ext{ days}$$

$$\tag{11}$$

For two Suns ( $M = 1 M_{\odot}$ ; q = 1):

 $P_{\rm min} \sim 0.35 \, {\rm days} \ \sim 8.4 \, {\rm h}.$ 

Lowest-mass MS stars ( $M = 0.1 M_{\odot}$ ; q = 1):

$$P_{\rm min}\sim 8.4\,{\rm h}\,\sqrt{0.1^2}\sim 1\,{\rm h}.$$

Hence, binaries with  $P \lesssim 1$  h cannot contain two MS stars!

From Eq. 8, maximum period for RLOF:

$$P_{\max} \sim 0.35 \sqrt{\left(rac{R_{\max}}{R_{\odot}}
ight)^3 \left(rac{M}{M_{\odot}}
ight)^{-1}} \left(rac{2}{1+q}
ight)^{0.2} \mathrm{days}$$
(12)

For two Suns ( $M=1~M_{\odot}$ ; q=1;  $R_{
m max}\sim 200~R_{\odot}$ ):

 $P_{\rm max} \sim 990 \, {\rm days} ~({\rm really: 1300 \, days} - {\rm why?})$ 

| $M/M_{\odot}$ | $P_{\rm min}$ /day | P <sub>max</sub> /day |
|---------------|--------------------|-----------------------|
| 1             | 0.35               | 1300                  |
| 8             | 0.85               | 1300                  |
| 16            | 1.1                | 3200                  |

| Binary geometry |                               | Drives of MT | Common envelopes | Exercises |
|-----------------|-------------------------------|--------------|------------------|-----------|
|                 | 0000000                       |              |                  |           |
| Roche-lobe ov   | erflow $ ightarrow$ mass trai | nsfer        |                  |           |

- If  $P_{\min} < P_{orb} < P_{\max}$ , then  $R_* \ge R_{RI}$  at some point and Roche-lobe overflow will occur.
- Mass transfer through the first Lagrangian point can strongly decrease the mass of the **donor star** and increase that of the **accretor**.
- Since the mass of a star is the most important parameter that determines its evolution, the future **evolution** of the two stars is **strongly influenced**.
- In addition, the orbit can change dramatically.
- Mass transfer can stop when the donor star shrinks, or when the orbit widens.

#### Key points that determine how mass transfer proceeds:

- how does  $R_{\rm d}$  change?  $\zeta_*$
- how does  $R_{
  m Rl}$  change?  $\zeta_{
  m Rl}$
- what happens to the internal structure of the donor?
- what happens to the transferred mass (accreted, expelled)?
- what happens to the accretor  $(M \rightarrow \text{structure} \rightarrow R)$ ?

 Binary geometry
 Mass transfer
 Drives of MT
 Common envelopes
 Exercises

 000
 00000000
 00000000
 00000000
 00

## Mass transfer and angular momentum

Orbital angular momentum for binary component *i* in a circular orbit:

$$J_i = |\vec{J}_i| = M_i \left| \vec{r}_i \times \vec{v}_i \right| = M_i r_i v_i = M_i r_i^2 \omega$$
(13)

$$J_{\rm orb} = J_1 + J_2 = \mu a^2 \omega = M_1 M_2 \left(\frac{Ga}{M_{\rm T}}\right)^{1/2} = G^{2/3} \frac{M_1 M_2}{M_{\rm T}^{1/3}} \left(\frac{P}{2\pi}\right)^{1/3}$$
(14)

$$\frac{J_i}{J_{\text{orb}}} = \frac{M_i r_i^2 \omega}{\mu a^2 \omega} = \frac{M_{(3-i)}}{M_{\text{T}}}$$
(15)

$$\frac{\dot{\dot{J}}}{J} = \frac{\dot{\dot{M}}_{1}}{M_{1}} + \frac{\dot{\dot{M}}_{2}}{M_{2}} - \frac{1}{2}\frac{\dot{\dot{M}}_{T}}{M_{T}} + \frac{1}{2}\frac{\dot{a}}{a}$$
(16)
$$= \frac{\dot{\dot{M}}_{1}}{M_{1}} + \frac{\dot{\dot{M}}_{2}}{M_{2}} - \frac{1}{3}\frac{\dot{\dot{M}}_{T}}{M_{T}} + \frac{1}{3}\frac{\dot{P}}{P}$$
(17)

Logarithmic derivative:

$$x \equiv a y^b \quad \rightarrow \quad \frac{\dot{x}}{x} = b \frac{\dot{y}}{y} \tag{18}$$

| Binary geometry          | Mass transfer<br>○○● <b>○○</b> ○○○ | Drives of MT | Common envelopes | Exercises |
|--------------------------|------------------------------------|--------------|------------------|-----------|
| <b>Conservative mass</b> | transfer                           |              |                  |           |

Simplest case: conservative mass transfer:

Eq. 16 with 
$$\dot{J} = 0$$
;  $\dot{M}_{\rm T} = 0 \rightarrow \dot{M}_{\rm a} = -\dot{M}_{\rm d}$ :

$$\frac{\dot{a}}{a} = 2 \dot{M}_{\rm d} \frac{M_{\rm d} - M_{\rm a}}{M_{\rm d} M_{\rm a}} = 2 \frac{\dot{M}_{\rm d}}{M_{\rm d}} (q_{\rm d} - 1)$$
 (19)

## Note:

• Since *J*<sub>orb</sub> is constant:

$$J_{\rm orb}(a_{\rm min}) = J_{\rm orb}(M_{\rm d} = M_{\rm a}) = \frac{M_{\rm T}^2}{4} \left(\frac{Ga_{\rm min}}{M_{\rm T}}\right)^2 \quad \rightarrow \quad \frac{a}{a_{\rm min}} = \left(\frac{M_{\rm T}^2}{4M_{\rm d}M_{\rm a}}\right)^2 \tag{20}$$

• For which masses is *a*<sub>min</sub> reached?

| Binary geometry |              | Drives of MT | Common envelopes | Exercises |
|-----------------|--------------|--------------|------------------|-----------|
|                 | 0000000      |              |                  |           |
| Conservative m  | ass transfer |              |                  |           |

## Note:

• If 
$$M_{
m d} > M_{
m a} ~ 
ightarrow \dot{M}_{
m d} < 0 ~ 
ightarrow \dot{a} < 0 ~ 
ightarrow$$
 orbit shrinks

• If 
$$M_{
m d}=M_{
m a}$$
  $ightarrow$   $\dot{a}=0$   $ightarrow$   $a=a_{
m min}$ 



| Binary geometry |          | Drives of MT | Common envelopes | Exercises |
|-----------------|----------|--------------|------------------|-----------|
|                 | 00000000 |              |                  |           |
|                 |          |              |                  |           |

## **Conservative mass transfer**



| Binary geometry | Mass transfer<br>000000●00 | Drives of MT | Common envelopes | Exercises |
|-----------------|----------------------------|--------------|------------------|-----------|
| Stellar wind    |                            |              |                  |           |

#### Case 2: isotropic (fast) stellar wind from star 1 only:

Using Eq. 16 and  $\dot{J} = \dot{J}_1 \neq 0$ ;  $\dot{M}_T = \dot{M}_1$ ;  $\dot{M}_2 = 0$ :

$$\frac{\dot{a}}{a} = 2\frac{\dot{J}}{J} - 2\frac{\dot{M}_{\rm T}}{M_{\rm 1}} + \frac{\dot{M}_{\rm T}}{M_{\rm T}}$$
(21)

Each gram of matter is lost with the specific AM of star 1 and using Eq. 15:

$$h_1 \equiv \frac{J_1}{M_1} = J_{\rm orb} \frac{M_2}{M_1 M_{\rm T}},$$
 (22)

so that  $\dot{J}_1 = h_1 \dot{M}_1$ , and

$$\left(\frac{\dot{J}}{J_{\text{orb}}}\right)_{\text{wind}} = \frac{M_2}{M_{\text{T}}}\frac{\dot{M}_{\text{T}}}{M_1} = \frac{1}{q_1}\frac{\dot{M}_{\text{T}}}{M_{\text{T}}},$$

$$\frac{\dot{a}}{a} = 2\left(\frac{\dot{J}}{J_{\text{orb}}}\right)_{\text{wind}} - \frac{M_1 + 2M_2}{M_1}\frac{\dot{M}_{\text{T}}}{M_{\text{T}}} = -\frac{\dot{M}_{\text{T}}}{M_{\text{T}}},$$

$$(23)$$

$$a \propto M_{\text{T}}^{-1}.$$

$$(25)$$

Note that it does not matter *which* star loses the material.

| Binary geometry      | Mass transfer<br>000000000 | Drives of MT | Common envelopes | Exercises |
|----------------------|----------------------------|--------------|------------------|-----------|
| Realistic mass trans | sfer                       |              |                  |           |

• Onset of MT \*1 
$$\rightarrow$$
 \*2:  $t = 0$ ,  $R_* = R_{RI}$   
•  $t = t + \Delta t$ ,  $\dot{M}_1 < 0 \rightarrow M_1 \downarrow$  and  
• orbit:  $q \downarrow \rightarrow$  (assume  $\dot{M}_2$ ,  $\dot{M}_T$ ,  $\dot{J}$ )  $\rightarrow \Delta q$ ,  $\Delta a \rightarrow \Delta R_{RI}$   
• star: stellar structure  $\rightarrow \Delta R_*$   
• Result:

$$\mathbf{P}_{*,\mathrm{new}} = \mathbf{R}_* + \Delta \mathbf{R}_*, \ \mathbf{R}_{\mathrm{Rl},\mathrm{new}} = \mathbf{R}_{\mathrm{Rl}} + \Delta \mathbf{R}_{\mathrm{Rl}} \rightarrow \dot{\mathbf{M}}_1$$

## In general:

• 
$$\dot{M} = f(R_* - R_{\rm Rl})$$

• Important:  $\dot{R}_*(\dot{M}_*)$  compared to  $\dot{R}_{Rl}(\dot{a}, \dot{M}_1, \dot{M}_2)$ :

• 
$$\dot{R}_* > \dot{R}_{
m Rl} \rightarrow \dot{M} \uparrow$$

$$\dot{R}_* < \dot{R}_{\rm Rl} \rightarrow \dot{M} \downarrow$$

• 
$$\dot{R}_* > \dot{R}_{
m Rl} \rightarrow \dot{M} \uparrow + \dot{R}_* > \dot{R}_{
m Rl} \rightarrow$$
 unstable MT

• 
$$\dot{R}_* < \dot{R}_{
m Rl} \rightarrow \dot{M} \downarrow + \dot{R}_* < \dot{R}_{
m Rl} \rightarrow$$
 MT will stop

• 
$$\dot{M} \uparrow \downarrow \rightarrow \dot{R}_*, \dot{R}_{Rl} \uparrow \downarrow \rightarrow \dot{M} \downarrow \uparrow \rightarrow \text{ equilibrium: MT} \sim \text{constant}$$

#### Non-conservative mass transfer:

A fraction  $\beta$  of the transferred matter is accreted, the rest is expelled with a fraction  $\alpha$  of the specific AM of the *accretor*.

$$\left(\frac{\dot{J}}{J}\right)_{\mathrm{MT}} = -lpha(\mathbf{1}-eta)\frac{M_{\mathrm{d}}}{M_{\mathrm{a}}}\frac{\dot{M}_{\mathrm{d}}}{M_{\mathrm{T}}}.$$
 (26)

#### Stability of mass transfer:

 $\zeta \equiv \left(\frac{d\log R}{d\log M}\right) \tag{27}$ 

Note that  $d \log M < 0$  for the donor star! MT is stable (in fact,  $\dot{M}$  does not grow) if

$$\zeta_{\rm d} \geq \zeta_{\rm Rl}(\boldsymbol{q}, \beta).$$
 (28)

e.g. Hjellming & Webbink (1987); Soberman et al. (1997)

| Binary geometry | Mass transfer<br>0000000● | Drives of MT | Common envelopes | Exercises |
|-----------------|---------------------------|--------------|------------------|-----------|
| Eddington limit |                           |              |                  |           |

Accretion onto a compact object (NS, BH) generates radiation. If the accretion luminosity  $L_{acc}$  becomes sufficiently high, it may prevent further accretion. Hence, there is a maximum accretion rate for an accretor, known as the *Eddington limit* ( $\dot{M}_{edd}$ ).

Assume that the accreted matter consists of "particles" with a proton mass  $m_p$  and the Thomson cross section of electrons  $\sigma_T$ . If the luminosity force cancels out gravity on such a particle:

$$F_{\rm L} = F_{\rm g} \rightarrow \frac{L}{c} \frac{\sigma_{\rm T}}{4\pi r^2} = \frac{G M_* m_{\rm p}}{r^2}.$$
 (29)

The *Eddington luminosity* ( $L_{edd}$ ) is defined as:

$$L_{\rm edd} = \frac{4\pi c \, G \, m_{\rm p}}{\sigma_{\rm T}} \, M_* \approx 3.3 \times 10^4 \left(\frac{M_*}{M_{\odot}}\right) \, L_{\odot}. \tag{30}$$

The *Eddington accretion limit* ( $\dot{M}_{edd}$ ) can be found from  $L_{edd} = L_{acc} = \frac{GM_*\dot{M}}{R_*}$ :

$$\dot{M}_{\rm edd} = \frac{4\pi c \, m_{\rm p}}{\sigma_{\rm T}} \, R_* \approx 1.5 \times 10^{-8} \left(\frac{R_*}{10 \, \rm km}\right) \, M_{\odot} \, \rm yr^{-1}.$$
 (31)

Drives of mass transfer

The mass-transfer rate depends on the change of the radius of the donor, and on the change in orbit.

Classification of the drives of mass transfer:

**Intrinsic drive:** *R*<sub>\*</sub> changes due to a change of stellar structure caused by stellar evolution.

**Extrinsic drive:** the binary orbit changes (shrinks) due to loss of angular momentum:  $J \rightarrow a \rightarrow R_{RI}$ .

#### **Complication:**

- $\dot{M}_*$  is a function of  $\dot{R}_*, \dot{R}_{\rm R1}$
- 2  $\dot{R}_*, \dot{R}_{\rm RI}$  are functions of  $\dot{M}_*!$

## Intrinsic drives of mass transfer

Mass transfer can take place on three timescales:

- Nuclear-evolution timescale
- 2 Thermal timescale
- Oynamical timescale

The applicable timescale depends on the structure and evolutionary phase of the donor star.

Reminder:  

$$\zeta \equiv \left(\frac{d \log R}{d \log M}\right)$$

#### MT on the nuclear-evolution timescale:

- $\dot{R}_*$  due to nuclear evolution of the donor star
  - star is in thermal and hydrostatic equilibrium:

$$\zeta_{\rm d,th} > \zeta_{\rm RI}(q,\beta=\beta_{\rm nuc})$$
 (32)

- $R_* \uparrow, \dot{M}$  such that  $\dot{a}, \dot{R}_{\rm RI}$  ensure that  $R_{\rm RI}$  follows  $R_*$
- MS timescale:

$$au_{
m nuc,MS} \sim {0.1 \, M_* \over L_*} pprox 10^{10} \, {
m yr} \, \left({M_* \over M_\odot}
ight)^{-2,\,-3}$$
 (33)

HG, GB timescale: 
$$au_{
m nuc,GB} \sim 0.01 - 0.1 au_{
m nuc,MS}$$

$$\dot{M} \sim rac{M_*}{ au_{
m nuc}}$$
 (34)

|                                                               |                                                                                                                                                                                                                     | 0000000                                                  |                                                                                     |                             |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|
| Intrinsic drives                                              | s of mass transfer                                                                                                                                                                                                  |                                                          |                                                                                     |                             |
| MT on the ther                                                | mal timescale:                                                                                                                                                                                                      |                                                          | 1                                                                                   |                             |
| <ul> <li>Donor is in<br/>equilibrium</li> </ul>               | hydrostatic equilibrium, by<br>$\zeta_{ m d,th} < \zeta_{ m Rl}(\boldsymbol{q}, eta = \zeta_{ m d,ad} > \zeta_{ m Rl}(\boldsymbol{q}, eta = \zeta_{ m d}, eta = \zeta_{ m Rl}(\boldsymbol{q}, eta = \zeta_{ m Rl})$ | but not in thermal $eta_{ m nuc}$ ) $eta_{ m th}$ )      | MT on the dynamical times<br>Donor is not in hydrostat<br>equilibrium:              | cale:<br>ic                 |
| <ul> <li>Thermal eq</li> <li>Hydrostatic timescale</li> </ul> | uilibrium reached after $	au$<br>equilibrium sets in at a r                                                                                                                                                         | $_{ m KH}\sim rac{GM_{*}^{2}}{R_{*}L_{*}}$ much shorter | $\zeta_{ m d,ad} < \zeta_{ m RI}(m{q},m{eta} = m{very}$ short timescale (yek kyrs?) | $eta_{	ext{th}}$ )<br>ars – |

• Hence, it is possible that (*e.g.* in the HG, on the GB):

Mass transfer

• 
$$\dot{R}_* < \dot{R}_{
m Rl}$$
 for  $t < au_{
m KH}$ , but

•  $\dot{R}_* > \dot{R}_{
m Rl}$  for  $t \gtrsim au_{
m KH}$ 

Binary geometry

- hence,  $\dot{M} \downarrow$  first, but  $\dot{M} \uparrow$  after  $\tau_{\rm KH}$ 
  - $ightarrow \dot{M}$  driven by  $au_{
    m KH}$ :

$$\dot{M} \sim \frac{M_*}{\tau_{\rm KH}} \gg \dot{M}_{
m nuc}$$
 (35)

# kyrs?) • if $\dot{R}_* > \dot{R}_{\rm Rl}$ , the MT is dynamically unstable

• this results in **runaway mass** transfer (common envelope?)

Common envelopes

Evercises





| Binary geometry | Mass transfer | Drives of MT | Common envelopes | Exercises |
|-----------------|---------------|--------------|------------------|-----------|
|                 |               |              |                  |           |

## Extrinsic drives of mass transfer

## Gravitational waves:

- Angular-momentum is removed from the binary orbit
- O The orbit shrinks
- The donor star overfills its Roche lobe (more than before)

## Extrinsic drivers of MT:

- Emission of gravitational waves (GWs)
- 2 Magnetic braking

$$\left(\frac{\dot{J}}{J}\right)_{\rm GW} = -\frac{32}{5} \frac{G^3}{c^5} \frac{M_1 M_2 M_{\rm T}}{a^4} \times f(e)$$
(36)

(Peters, 1964)

For a detached binary:

$$\tau_{\rm GW} \equiv \left| \frac{J}{J} \right|_{\rm GW} \approx 380 \,\,{\rm Gyr} \,\, \frac{(1+q)^2}{q} \left( \frac{M_{\rm T}}{M_{\odot}} \right)^{-5/3} \left( \frac{P}{\rm day} \right)^{8/3}, \tag{37}$$
$$t_{\rm contact} = \frac{\tau_{\rm GW}}{2}. \tag{38}$$

Why not MS+MS binary?

#### GWs as MT driver: WD donor

- Assume  $R_* \propto M_*^{-1/3} \rightarrow \frac{\dot{R}}{R} = -\frac{1}{3} \frac{\dot{M}}{M}$  (not exactly true!)
- 2 Lower-mass WD fills RL (why?)
- Solution MT from low-mass to high-mass  $\rightarrow q < 1, q \downarrow \rightarrow a \uparrow$
- Smaller  $q \rightarrow \dot{R}_* < \dot{R}_{R1} \rightarrow MT$  stops
- Hence, MT is driven by GW, and

$$\dot{M} \propto rac{M_{
m d}}{ au_{
m GW}} = rac{M_{
m d}^2 M_{
m a} M_{
m T}}{a^4}$$
 (39)

## Example 1: AM CVn stars (H-poor CVs):

• AM CVn stars evolve to large a / long P

• 
$$M_{\rm d} M_{\rm a} \downarrow, a \uparrow \rightarrow \tau_{\rm GW} \uparrow \uparrow \rightarrow \dot{M} \downarrow$$

•  $\rightarrow$  evolution starts rapidly (high  $|\dot{M}|, |\dot{a}|)$ , but slows down exponentially with time

## Example 2: 0.3+0.6 *M*<sub>☉</sub> MS+WD (CV):

- RLOF of 0.3*M*<sub>☉</sub> MS
- $\dot{M} \rightarrow q \downarrow, a \uparrow, R_{\mathrm{Rl}} \uparrow + R_* \downarrow \text{(since } R_* \propto M_*\text{)}$
- MT stops unless external  $\dot{J}$  is present

• 
$$\dot{M} \sim \frac{M_{\rm d}}{\tau_{\rm GW}}$$
;  $M_{\rm d}, M_{\rm a} \downarrow, a \downarrow \rightarrow \tau_{\rm GW} \sim \downarrow, M_{\rm d} \sim \downarrow$   
 $\rightarrow \dot{M} \sim \text{constant}$ 



#### Example 2 (cont.): observed CVs:

- short  $P (\lesssim 2 \text{ hr})$ :  $\dot{M}_{obs} \sim 10^{-10} M_{\odot}/\text{yr}$ ;  $\dot{M}_{GW} \sim 10^{-10} M_{\odot}/\text{yr} \sqrt{10^{-10} M_{\odot}/\text{yr}}$
- but: long *P* ( $\gtrsim$  3 hr):  $\dot{M}_{\rm obs} \sim 10^{-8} M_{\odot}/{
  m yr}$  X
- + LMXBs (NS+MS):  $\dot{M}_{\rm obs} \sim 10^{-8} \, M_{\odot}/{
  m yr}$  X
- Hence: additional *J*-mechanism needed!

#### Magnetic braking

- Rotating stars can have magnetic fields
- Evolved stars can have strong winds
- Stellar wind follows magnetic-field lines
- Star loses angular momentum efficiently
- Tidal coupling causes orbit to shrink in case of a binary



## Magnetic braking:

- Observed in single stars in clusters, field
- In binaries, tides cause corotation  $\rightarrow \dot{J}_{MB} = \dot{J}_{orb}$

$$\dot{J}_{\rm MB} pprox -3.8 imes 10^{-30} \, M_* \, R_*^4 \, \omega^3 \, {
m dyn \ cm.}$$
 (40)

(Verbunt & Zwaan, 1981)

- Reasaonable values for  $\dot{J}_{\rm MB}$  give  $\dot{M} \sim 10^{-8} \, M_{\odot} {\rm yr} ~ \sqrt{}$
- However, is  $J_{MB}$  observed in slowly rotating single stars applicable to short-period binaries?

## Saturating magnetic braking:

$$egin{aligned} \dot{J}_{\mathrm{MB}} &= -\mathcal{K}\left(rac{R}{R_{\odot}}
ight)^{rac{1}{2}}\left(rac{M}{M_{\odot}}
ight)^{-rac{1}{2}}\omega^{3}, & \omega \leq \omega_{\mathrm{crit}} \ &= -\mathcal{K}\left(rac{R}{R_{\odot}}
ight)^{rac{1}{2}}\left(rac{M}{M_{\odot}}
ight)^{-rac{1}{2}}\omega\,\omega_{\mathrm{crit}}^{2}, \ \omega > \omega_{\mathrm{crit}} \end{aligned}$$

(Sills et al., 2000)

 Seems to give better agreement with observations for ultrashort periods

| Binary geometry | Mass transfer | Drives of MT |                  | Exercises |
|-----------------|---------------|--------------|------------------|-----------|
|                 |               |              | • <b>00</b> 0000 |           |
|                 |               |              |                  |           |

## **Observed double-lined double white dwarfs**

| System       | Porb  | <b>a</b> orb  | <b>M</b> 1    | <b>M</b> 2    | $q_2$                             | $\Delta \tau$    |
|--------------|-------|---------------|---------------|---------------|-----------------------------------|------------------|
|              | (d)   | $(R_{\odot})$ | ( <i>M</i> ⊙) | ( <i>M</i> ⊙) | $(M_2/M_1)$                       | (Myr)            |
|              |       |               |               |               |                                   |                  |
| WD 0135–052  | 1.556 | 5.63          | $0.52\pm0.05$ | $0.47\pm0.05$ | $0.90\pm0.04$                     | 350              |
| WD 0136+768  | 1.407 | 4.99          | 0.37          | 0.47          | $1.26\pm0.03$                     | 450              |
| WD 0957–666  | 0.061 | 0.58          | 0.32          | 0.37          | $1.13\pm0.02$                     | 325              |
| WD 1101+364  | 0.145 | 0.99          | 0.33          | 0.29          | $0.87\pm0.03$                     | 215              |
| PG 1115+116  | 30.09 | 46.9          | 0.7           | 0.7           | $0.84\pm0.21$                     | 160              |
|              |       |               |               |               |                                   |                  |
| WD 1204+450  | 1.603 | 5.74          | 0.52          | 0.46          | $\textbf{0.87} \pm \textbf{0.03}$ | 80               |
| WD 1349+144  | 2.209 | 6.59          | 0.44          | 0.44          | $1.26\pm0.05$                     | _                |
| HE 1414–0848 | 0.518 | 2.93          | $0.55\pm0.03$ | $0.71\pm0.03$ | $1.28\pm0.03$                     | 200              |
| WD 1704+481a | 0.145 | 1.14          | $0.56\pm0.07$ | $0.39\pm0.05$ | $0.70\pm0.03$                     | -20 <sup>a</sup> |
| HE 2209–1444 | 0.277 | 1.88          | $0.58\pm0.08$ | $0.58\pm0.03$ | $1.00\pm0.12$                     | 500              |

<sup>a</sup> Unclear which white dwarf is older

See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.

## **Common envelopes (CEs)**



## **Reason CEs are needed:**

- Average orbital separation:  $\sim 7 R_{\odot}$
- Typical progenitor: giant:
  - $M_{\rm c} \gtrsim 0.3 M_{\odot}$
  - $R_* \sim 100 R_{\odot}$
  - $a \sim 250 R_{\odot}$  (for  $2 \times 1 M_{\odot}$ )
- Hence, large  $\Delta J_{\rm orb}$ ,  $\Delta a$  is required
- Idea: giant donor, dynamical MT, donor envelope expands rapidly, engulfs companion: Common Envelope (Paczvński, 1976)
- Inside the CE, the donor core and companion spiral in through friction, heating up and expelling the CE
- Fast: M<sub>c</sub> does not grow during CE
- Fast: no accretion by companion during CE

| Binary geometry | Mass transfer | Drives of MT |        | Exercises |
|-----------------|---------------|--------------|--------|-----------|
|                 |               |              | 000000 |           |
|                 |               |              |        |           |

## Common envelope cartoon



## Classical common envelope: energy balance

## Change in orbital separation due to CE:

• Equate the binding energy of the giant's envelope to the change in orbital energy:

$$E_{\text{bind,env}} = \alpha_{\text{CE}} \left[ \frac{G M_{1,f} M_2}{2 a_f} - \frac{G M_{1,i} M_2}{2 a_i} \right] \quad (41)$$

(Paczyński, 1976; Webbink, 1984)

- $\alpha_{\rm CE}$  is the efficiency factor (0 <  $\alpha_{\rm CE} \leq$  1)
- The envelope binding energy is often parameterised:  $E_{\rm bind,env} \approx \frac{G M_{\rm env} M_{*}}{\lambda B_{*}}$
- Result depends on exact definition of  $M_c, M_{env}$
- Result depends on energy sources taken into account
  - *e.g.* recombination energy, nuclear energy star

#### Success of CEs:

- Often  $a_{\rm f} \ll a_{\rm i}$ , as needed
- Works well to explain e.g. WD-MS binaries

## However, for DWDs:

- Expect CE1: large  $a_i \rightarrow \text{large } R_* \rightarrow \text{large } M_c$  $\rightarrow \text{massive WD} (M_1)$
- Expect CE2: smaller  $a_i \rightarrow$  smaller  $R_* \rightarrow$  smaller  $M_c \rightarrow$  low-mass WD ( $M_2$ )
- Hence, expect  $M_1 > M_2$
- But: observe  $M_1 \sim M_2$
- Apparently,  $a_i \sim a_f$  in first MT phase no CE! X
- CE works well for second MT phase  $\checkmark$

| Binary geometry | Mass transfer   | Drives of MT | Common envelopes<br>○○○○●○○ | Exercises |
|-----------------|-----------------|--------------|-----------------------------|-----------|
| Common envelope | with AM balance |              |                             |           |

#### Envelope ejection with AM conservation:

- Idea: at onset of CE1, the AM is typically large, and the companion is massive
- $\bullet\,$  Hence, the companion could spin up the envelope  $\,\rightarrow\,$  no more friction
- Hence, no E balance, not necessarily a spiral-in
- Also, AM is harder to create or destroy than E

$$\frac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma \frac{M_{\rm 1,i} - M_{\rm 1,f}}{M_{\rm tot,i}}$$
(42)

Nelemans et al. (2000)

- $\gamma \sim$  1.5 is the average specific AM of the binary
- For  $q \sim 1$ ,  $\frac{\Delta M}{M}$  relatively small  $\rightarrow \Delta J$  small  $\rightarrow$  little orbital shrinkage
- For q < 1,  $\frac{\Delta M}{M}$  large  $\rightarrow \Delta J$  large  $\rightarrow$  more orbital shrinkage
- This seems to explain the masses and mass ratios of the 10 observed double-lined DWDs (but not their age differences)

- However, why should  $\gamma = 1.5$  (or any other value)? little physical significance
- Much discussion about sensitivity of exact γ on outcome

| Binary geometry    | Mass transfer | Drives of MT |         | Exercises |
|--------------------|---------------|--------------|---------|-----------|
|                    |               |              | 0000000 |           |
| Dorwin instability |               |              |         |           |

#### Darwin instability

#### AM catastrophe:

#### lf

- one of the binary companions has a large spin AM,
- the star is tidally locked to the orbit, and
- the star expands (due to evolution),

#### then

- the rotation of the expanding star slows down,
- tidal locking speeds up the star's spin and drains AM from the orbit,
- the orbit shrinks, tides become stronger,
- a stable orbit is impossible, and the stars will merge.

This happens when

$$J_* \ge \frac{1}{3} J_{\rm orb} \tag{43}$$

(Darwin 1879)

| Binary geometry | Mass transfer | Drives of MT |        | Exercises |
|-----------------|---------------|--------------|--------|-----------|
| 000             | 0000000       | 0000000      | 000000 | 00        |
| Post-CE stars   |               |              |        |           |

## After the CE:

- If  $R_{\text{Rl,acc}} < R_{\text{a}}$ : merger
- If  $|E_{bind,env}| > E_{orb}$ : merger
- Else: binary survives CE: post-CE (compact) binary

| Binary geometry | Mass transfer | Drives of MT | Common envelopes | Exercises<br>●O |
|-----------------|---------------|--------------|------------------|-----------------|
| Exercises       |               |              |                  |                 |

To get started, derive Equations 4, 6 (for a circular orbit) and 10.

Prove Equation 18 and derive Equations 16 and 21.

For more depth, derive Equations 11, 14, 19, 20, 25, 26, 31, 38 and 43.

You can use the corresponding subsections in Appendix A of *Binary evolution in a nutshell* for guidance.

| Binary geometry | Mass transfer | Drives of MT | Common envelopes | Exercises |
|-----------------|---------------|--------------|------------------|-----------|
| Online material |               |              |                  |           |

http://www.astro.ru.nl/~sluys/

Teaching  $\rightarrow$  Compact binaries 2021

These slides;

② Document *Binary evolution in a nutshell* with more details, derivations and references.