Binary stars

X-ray binaries

Common envelopes

Gravitational waves

The evolution of single and binary stars: From X-rays to gravitational waves

Marc van der Sluys

NASA Summer School, Northwestern University, Evanston, IL, USA

July 2, 2009

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational waves
Outline				
● Ma ● Sin	e stars in-sequence sta gle-star evolutio	ars		

3

Binary stars

- Binaries
- Conservative and non-conservative evolution
- X-ray binaries
 - Observations
 - Magnetic braking
 - Population synthesis
- **Common envelopes**
- Observed double white dwarfs
- Common-envelope evolution
- Gravitational waves
 - LIGO
 - Binary inspirals
 - MCMC

	Binary stars	X-ray binaries	Common envelopes	Gravitational waves
0000000				

Hipparcos catalogue

http://www.rssd.esa.int/index.php?project=HIPPARCOS

• 48 495 stars

•
$$\frac{\Delta d}{d} < 20\%$$

•
$$\Delta(B-V) < 0.1 \,\mathrm{m}$$

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ → □ → つ Q

0000000 00000 000		
	00000000 00	

Main-sequence stars

Properties of single stars with solar metallicity halfway the main sequence ($X_c = 0.35$):

М	age	R	L	Ts	T _c	Number density
(M_{\odot})	(Myr)	(R_{\odot})	(L_{\odot})	(K)	(MK)	(w.r.t. 1 <i>M</i> ⊙)
0.5	52 600	0.50	0.05	3860	9.8	7.07
0.8	11600	0.79	0.38	5100	13.4	2.34
1.0	4900	1.01	1.05	5810	15.9	1.00
1.5	1660	1.95	6.75	6660	20.9	0.131
2.0	582	2.23	20.4	8230	22.5	0.0232
2.5	405	2.80	57.8	9530	24.1	9.59×10^{-3}
3.0	246	3.09	120	10800	25.2	3.80×10^{-3}
5.0	70.6	4.19	895	15400	28.6	3.27×10^{-4}
10.0	12.7	5.74	8590	23 100	32.8	1.16×10 ⁻⁵
20.0	5.18	8.78	67 900	31 300	37.0	9.3×10^{-6}
50.0	2.41	15.9	527 000	39 000	41.4	5×10 ⁻⁷

æ 👘

・ロン ・四 と ・ ヨ と ・ ヨ と

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Evolution of a $1 M_{\odot}$ star

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Evolution of a $10 M_{\odot}$ star

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

HRD for stars between 0.8 M_{\odot} and 100 M_{\odot}

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Onion structure for massive stars

00000000

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Burning stages of a $10 M_{\odot}$ star

Stage	Net reactions	T (K)	au
Hydrogen burning	$\textbf{H} \rightarrow \textbf{He}$	$>7\! imes\!10^{6}$	10 Myr
Helium burning	$ extsf{He} ightarrow extsf{C,O}$	> 2 $ imes$ 10 ⁸	1 Myr
Carbon burning	C ightarrow Ne,Mg	$> 8 \times 10^{8}$	1 kyr
Neon burning	Ne ightarrow O,Mg	$> 1.5 \! imes \! 10^{9}$	1 month
Oxygen burning	$O\toSi,S$	> 2 $ imes$ 10 ⁹	2 years
Silicon burning	$\text{Si} \rightarrow \text{Fe,Ni}$	> 3.3 $ imes$ 10 ⁹	3 days

æ.

Relation between ZAMS mass and remnant mass

Binary stars ●0000 X-ray binaries

Common envelopes

Gravitational waves

Albireo

Single stars	Binary stars o●ooo	X-ray binaries	Common envelopes	Gravitational waves		
Desite takes						

$$\frac{R_{\rm Rl,i}}{a} \approx \frac{2}{3^{4/3}} \left(\frac{M_{(3-i)}}{M_{\rm T}}\right)^{1/3}$$

accurate within 1% (?) for $q_i < 0.8$ (Paczyński, 1971).

$$\frac{{{{\it R}_{{\rm Rl},{\rm i}}}}}{a} \approx \frac{{0.49\,{q_i^{2/3}}}}{{0.6\,{q_i^{2/3}}} + \ln \left({1 + {q_i^{1/3}}} \right)}$$

accurate within 1% for 0 $< q_i < \infty$

(Eggleton, 1983).

ヘロト 人間 とくほとくほとう

æ.

Conservative mass transfer

Angular momentum for binary component *i* in a circular orbit:

$$J_{i} = |\vec{J}_{i}| = M_{i} |\vec{v}_{i} \times \vec{a}_{i}| = M_{i} v_{i} a_{i} = M_{i} a_{i}^{2} \omega$$
$$J = J_{1} + J_{2} = \mu a^{2} \omega = G^{2/3} \frac{M_{1} M_{2}}{M_{T}^{1/3}} \left(\frac{P}{2\pi}\right)^{1/3}$$
$$\frac{\dot{J}}{J} = \frac{\dot{M}_{1}}{M_{1}} + \frac{\dot{M}_{2}}{M_{2}} - \frac{1}{3} \frac{\dot{M}_{T}}{M_{T}} + \frac{1}{3} \frac{\dot{P}}{P}$$

Conservative: $\dot{J} = 0$, $\dot{M}_{\rm T} = 0$:

$$\frac{\dot{P}}{P} = 3 \, \dot{M}_1 \frac{M_2 - M_1}{M_1 M_2}$$

Binary stars 000€0 X-ray binaries

Common envelopes

Gravitational waves

Conservative mass transfer

Mass and angular-momentum loss

Non-conservative mass transfer (lose fraction β of transferred mass):

$$\left(\frac{\dot{J}}{J}\right)_{\rm MT} = -\alpha(1-\beta)\frac{M_i}{M_{(3-i)}}\frac{\dot{M}_i}{M_{\rm T}},$$

Gravitational waves (Peters, 1964):

$$\left(\frac{\dot{J}}{J}\right)_{\rm GW} = -\frac{32}{5} \frac{G^{5/3}}{c^5} \left(\frac{2\pi}{P}\right)^{8/3} \frac{M_1 M_2}{M_{\rm T}^{1/3}}$$

Magnetic braking, e.g. Verbunt & Zwaan, 1981:

$$\left(\frac{dJ}{dt}\right)_{\rm MB} = -3.8 \times 10^{-30} MR^4 \omega^3 \, \rm dyn \, cm$$

Magnetic braking, e.g. Sills et al., 2000:

$$\begin{pmatrix} \frac{dJ}{dt} \end{pmatrix}_{\rm MB} = -K \left(\frac{R}{R_{\odot}} \right)^{1/2} \left(\frac{M}{M_{\odot}} \right)^{-1/2} \omega^{3}, \quad \omega \leq \omega_{\rm crit}$$
$$= -K \left(\frac{R}{R_{\odot}} \right)^{1/2} \left(\frac{M}{M_{\odot}} \right)^{-1/2} \omega \omega_{\rm crit}^{2}, \quad \omega > \omega_{\rm crit}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Binary stars

K-ray binaries

Common envelopes

Gravitational waves

Low-mass X-ray binaries

Mechanism

- Low-mass star transfers mass to neutron star or black hole
- Gravitational acceleration causes X-rays:

$$L_{\rm x} pprox rac{GM_{
m ns}}{R_{
m ns}} \dot{M}_{
m tr}$$

 Optical radiation comes from reprocessed X-rays in accretion disk

BinSim

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

N

The X-ray sky

X-ray binaries

- Bright X-ray sources: in galactic plane, concentrated towards galactic centre
- 13 bright X-ray sources in globular clusters
- Binaries with *P*_{orb} ≲ 60 min are called *ultra-compact*

Ariel V X-ray map of the sky

XRBs are over-abundant in GCs:

- 1 in 10⁹ stars in galaxy is XRB
- 1 in 10⁶ stars in globular clusters is XRB

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

M 15/NGC 7078 - HST

Binary stars

X-ray binaries o●ooooooooo Common envelopes

Gravitational waves

Direct period measurement

Period for M15-X2

Dieball et al.:

- FUV study (less crowding)
- Magnitude modulation: 0.06m
- > 3000 cycles
- Period: 22.6 min.

Magnitude modulation

▲口▶▲圖▶▲圖▶▲圖▶ 圖 の文(で)

N

Binary stars

X-ray binaries 00●00000000 Common envelopes

Gravitational waves

Indirect period indication

Optical vs. X-ray flux

- Optical flux from reprocessed X-rays in disk
- Scales with X-ray flux and size of disk
- Hence, $f_{
 m opt}/f_{
 m X} \propto R_{
 m disk} \propto a_{
 m orb}$

Van Paradijs & McClintock, 1994

RN

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

NORTHWESTERN

ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

X-ray sources in globular clusters

Known peri	od informatio	on					
Cluster	Position	Porb		Indirec	t indication		
			low $f_{\rm opt}/f_{\rm x}$	burst max.	X-spect.		
NGC 1851	0512-40	?	U	U	U		
NGC 6440	1745–20	8.7 hr			N		
NGC 6441	1746–37	5.7 hr		Ν	N		
NGC 6624	1820–30	11.4 min	U	U	U		
NGC 6652	1836–33	?	U	U	U		
NGC 6712	1850–09	21/13 min	U	U	U		
NGC 7078	2127+12b	17.1 hr			- 1		
NGC 7078	2127+12a	22.6 min	—	U	- 1		
Terzan 1	1732–30	?			- 1		
Terzan 2	1724–31	?		U	N		
Terzan 5	1745–25	?			U		
Terzan 6	1751–31	12.4 hr	—	—	N		
Liller 1	1730–33	?	_	—	- 1		
• Up to 6 d	Up to 6 of the 13 X-ray binaries in globular clusters are						
		5					

ultra-compact!

• 11-min system has negative P

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Scenario 1: Magnetic braking

Magnetic wind

- Rotating stars can have magnetic fields
- Evolved stars can have strong winds
- Stellar wind follows magnetic-field lines
- Star loses angular momentum efficiently
- Tidal coupling causes orbit to shrink in case of a binary

(日)

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Magnetic capture

Scenario

- Low-mass donor
- Mass transfer starts after main sequence
- Lose angular momentum through MB
- Minimum period can be as low as 5 min.
- Period derivative can be negative

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Binary-evolution models

Behaviour

- Models with low $P_{\rm i}$ converge and rebound at $P_{\rm orb} \sim 70 \, {\rm min}$
- Models with high P_i diverge
- Narrow range of P_i leads to ultra-short period

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Creating a population

Find the orbital period P at a random moment in time for a random P_i

STERN

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Statistics

Results for a given donor mass

- Generate 10⁶ systems
- Some artefacts at long periods
- Short-period distribution is representative

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Statistics: compare magnetic-braking prescriptions

Different MB 'law'

- Use more realistic, saturated MB
- Lower limit for saturated MB similar to that for no MB
- No systems below \sim 70 min

Van der Sluys, Verbunt & Pols, 2005b

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Conclusions

Magnetic capture

- Magnetic capture produces too few ultra-compact X-ray binaries
- More realistic, weaker magnetic-braking laws predict no UCXBs at all
- Magnetic capture cannot explain the observations

Stellar collisions

- (Sub)giant collides with neutron star and forms NS-WD binary
- Gravitational waves cause orbital shrinkage until mass transfer starts
- P must be positive
- Measured negative P should then be explained by acceleration

・ロット (雪) (日) (日)

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Observed double white dwarfs

Common envelopes

Gravitational waves

Observed double white dwarfs

System	P orb	a orb	M ₁	M ₂	q_2	$\Delta \tau$
	(d)	(R_{\odot})	(<i>M</i> ⊙)	(<i>M</i> ⊙)	(\bar{M}_2/M_1)	(Myr)
WD 0135–052	1.556	5.63	0.52 ± 0.05	0.47 ± 0.05	0.90 ± 0.04	350
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03	450
WD 0957–666	0.061	0.58	0.32	0.37	1.13 ± 0.02	325
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.03	215
PG 1115+116	30.09	46.9	0.7	0.7	0.84 ± 0.21	160
WD 1204+450	1.603	5.74	0.52	0.46	$\textbf{0.87} \pm \textbf{0.03}$	80
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05	—
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
WD 1704+481a	0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20 ^a
HE 2209–1444	0.277	1.88	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500

^a Unclear which white dwarf is older

See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.

3

イロト イポト イヨト イヨト

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Common envelope

Average orbital separation:
7 R_☉
Typical progenitor:
M_c ≳ 0.3 M_☉
R_{*} ~ 100 R_☉

・ロット (雪) (日) (日)

э

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Common envelope

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Single stars	Binary stars	X-ray binaries		Gravitational waves
			000000000000000000000000000000000000000	

Envelope ejection

- Classical α -common envelope (spiral-in):
 - orbital energy is used to expel envelope (Webbink, 1984):

$$U_{\rm bind} = \alpha_{\rm CE} \left[\frac{G M_{\rm lf} M_2}{2 a_{\rm f}} - \frac{G M_{\rm li} M_2}{2 a_{\rm i}} \right]$$

• α_{CE} is the common-envelope efficiency parameter

- γ -envelope ejection (EE, spiral-in not necessary):
 - envelope ejection with angular-momentum balance (Nelemans et al., 2000):

$$\frac{J_{\mathrm{i}} - J_{\mathrm{f}}}{J_{\mathrm{i}}} = \frac{\gamma_{\mathrm{CE}}}{M_{\mathrm{1i}} + M_{\mathrm{2}}}$$

• $\gamma_{\rm CE} pprox$ 1.5 is the efficiency parameter

・ロット (雪) ・ (日) ・ (日)

Single stars	Binary stars	X-ray binaries		Gravitational waves
			000000000000000000000000000000000000000	

Envelope ejection

Assumption:

- Envelope ejection occurs much faster than nuclear evolution, hence:
 - core mass does not grow during envelope ejection
 - no accretion by companion during envelope ejection

From Eggleton models:

- White-dwarf mass fixes evolutionary state of progenitor
- Giant radius determines orbital period of progenitor
- Envelope binding energy dictates what α_{CE} is needed

Single stars	Binary stars	X-ray binaries		Gravitational wave
			000000000000000000000000000000000000000	

Progenitor models

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational waves

Progenitor models

Single stars	Binary stars	X-ray binaries		Gravitational waves
			000000000000000000000000000000000000000	

Progenitor models

Singl	e s	tars	
0000	oc		

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Evolutionary scenarios

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Conservative first mass transfer

Binary stars

Single stars

X-ray binaries

Common envelopes

イロト イ理ト イヨト イヨト

Gravitational waves

Conservative first mass transfer

• WD 0957-666 × WD 1101+364 ★ HE 1414-0848 ▲ WD 1704+481a • HE 2209-1444

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Conservative mass transfer: $q, \Delta t$

(日)

Angular-momentum balance

• Average specific angular momentum of the system:

$$rac{J_{\mathrm{i}} \ - \ J_{\mathrm{f}}}{J_{\mathrm{i}}} \ = \ \gamma_{\mathrm{s}} \ rac{M_{\mathrm{1i}} \ - \ M_{\mathrm{1f}}}{M_{\mathrm{tot,i}}}$$

Specific angular momentum of the accretor:

$$\frac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma_{\rm a} \left[1 - \frac{M_{\rm tot,i}}{M_{\rm tot,f}} \exp\left(\frac{M_{\rm 1f} - M_{\rm 1i}}{M_2}\right)\right]$$

Specific angular momentum of the donor:

$$rac{J_{\mathrm{i}}~-~J_{\mathrm{f}}}{J_{\mathrm{i}}}~=~\gamma_{\mathrm{d}}~rac{M_{\mathrm{li}}~-~M_{\mathrm{lf}}}{M_{\mathrm{tot,f}}}~rac{M_{\mathrm{2i}}}{M_{\mathrm{li}}}$$

STERN TY

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational waves
Models				

• Number of progenitor models:

- 10+1 observed systems
- 199 progenitor models in our grid
- 11 variations in observed mass: $-0.05, -0.04, ..., +0.05 M_{\odot}$

STERN

ヘロン 人間 とくほ とくほう

• total: $11 \times 11 \times \sum_{n=1}^{198} n \approx$ **2.4 million**

Filters:

- dynamical MT: $R_* > R_{
 m BGB}$ and $q > q_{
 m crit}$
- age: $\tau_1 < \tau_2 < 13 \, \text{Gyr}$
- EE-parameter: $0.1 < \alpha_{ce}, \gamma < 10$

• Candidate progenitors left: ~ 204 000

Single stars	Binary stars	X-ray binaries		Gravitational waves
			000000000000000000000000000000000000000	

Results for $\gamma_{\rm d} + \overline{\gamma_{\rm a}}$

Single stars	Binary stars	X-ray binaries		Gravitational waves
			000000000000000000000000000000000000000	

Results: overview

Select systems with:

• $0.8 < \alpha_{ce} < 1.2$

• $1.46 < \gamma_{\rm s} < 1.79$

• $0.9 < \gamma_{a,d} < 1.1$

NORTHWESTERN

UNIVERSITY

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

System	1: $\gamma_{\rm s} \alpha_{\rm ce}$	2: $\gamma_{\rm s}\gamma_{\rm s}$	3: $\gamma_a \alpha_{ce}$	4: $\gamma_a \gamma_a$	5: $\gamma_{\rm d} \alpha_{\rm ce}$	6: $\gamma_d \gamma_a$	Best:
0135	-/-	+/~	+/~	-/-	+/~	+/~	2,3,5,6
0136	+/+	+/+	+/~	+/~	+/+	+/+	1,2,5,6
0957	+/+	+/+	-/-	+/-	+/+	+/+	1,2,5,6
1101	+/~	+/-	+/-	-/-	+/~	+/~	1,5,6
1115	+/~	+/+	+/~	+/~	+/+	+/+	2,5,6
1204	-/-	+/-	+/-	+/-	+/-	+/+	6
1349	+/+	+/+	+/+	+/+	+/+	+/+	1–6
1414	-/-	+/+	-/-	+/+	-/-	+/+	2,4,6
1704a	+/-	+/-	-/-	-/-	-/-	-/-	1,2
1704b	+/-	+/-	-/-	+/-	+/-	+/-	1,2,4,5,6
2209	+/+	+/+	-/-	-/-	+/~	+/+	1,2,6
							(iiii)

+: α, γ within range, -: α, γ outside range

+: $\Delta(\Delta t) < 50\%$, ~: 50% < $\Delta(\Delta t) < 500\%$, -: $\Delta(\Delta t) > 500\%$

Single stars		Binary s	stars	X-ray bi	naries		Common e	envelopes	000000	Gravit 00000	ational waves
Resu	lts:	solı	itior	າຣ							
WD	Mthd.	γ_1	$\gamma_2, \\ \alpha_{ce2}$	$\Delta au/Myr$ obs mdl	M₁i M⊙	M₂i M⊙	P _i d	P _m d	M₁f M⊙	M _{2f} M⊙	P _f d
0135 0136 0957 1101 1115	$egin{aligned} & \gamma_{ m d}\gamma_{ m a} \ & \gamma_{ m d}\gamma_{ m a} \end{aligned}$	1.11 0.96 1.00 1.10 0.97	0.94 1.05 1.01 0.98 1.04	350 118 450 450 325 317 215 322 160 240	3.30 1.70 1.98 2.87 5.42	2.90 1.59 1.83 2.34 3.42	36.28 106.1 26.17 22.02 201.2	41.10 371.4 79.26 28.23 1012.	0.47 0.37 0.33 0.39 0.89	0.42 0.46 0.37 0.34 0.75	1.56 1.41 0.06 0.14 30.09
1204 1349 1414 1704a 1704b 2209	$\begin{array}{c} \gamma_{ m d}\gamma_{ m a} \ \gamma_{ m d}\gamma_{ m a} \end{array}$	1.09 0.95 0.95 1.11 1.03 1.04	0.92 0.98 0.99 1.13 0.15 1.05	80 100 0 101 200 188 -20 52 20 182 500 340	3.34 1.86 3.51 2.06 1.68 4.15	2.98 1.81 3.09 1.88 1.65 2.94	15.47 63.44 70.81 40.37 212.1 98.45	19.99 241.2 358.3 65.66 478.6 294.3	0.47 0.35 0.52 0.51 0.41 0.63	0.41 0.44 0.66 0.36 0.58 0.63	1.60 2.21 0.52 0.14 0.14 0.28

Conclusions double white dwarfs

- Conservative mass transfer cannot explain the observed double white dwarfs
- Unstable envelope ejection can do this
- Several EE descriptions can reconstruct observed masses and periods
- γ_sγ_s and γ_dγ_a can in addition explain most observed cooling-age differences

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Laser Interferometer GW Observatory

Sing	le	S	ta	rs	
000	oc	00	0	С	

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Goals of this project

LIGO

- Show that Markov-Chain Monte Carlo (MCMC) with a large number of parameters (12–15) on LIGO data can be done
- Automated parameter estimation on detected inspiral signal:
 - Confirm spinning inspiral nature of signal
 - Determine physical parameters (masses, spin, position, ...)

Astrophysics

- BH/NS mass distributions, BH spins and spin alignments
- Association of GW and EM events, e.g. GRB
- Merger rates, NS-NS/BH-NS/BH-BH merger ratios
- Evolution of massive stars (in binaries), CEs
- Initial-mass range for BH progenitors

コンスロンス ミンス ミン・ミーク ヘ

STERN

Sing	le	sta	Irs
000	ЭC	boc	00

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Predicted detection rates

|--|

	Rates (yr ⁻¹)			Horizon (Mpc)		
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH
Initial	0.015	0.004	0.01	32	67	160
Enhanced	0.15	0.04	0.11	71	149	349
Advanced	20	5.7	16	364	767	1850

Plausible, optimistic estimate:

	Rates (yr ⁻¹)			Horizon (Mpc)		
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH
Initial	0.15	0.13	1.7	32	67	160
Enhanced	1.5	1.4	18	71	149	349
Advanced	200	190	2700	364	767	1850

Estimates assume $\it M_{\rm NS}=$ 1.4 $\it M_{\odot}$ and $\it M_{\rm BH}=$ 10 $\it M_{\odot}$

CBC group, rates document

ъ

A D > A P > A D > A D >

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Inspiral waveforms

Single stars **Binary stars** X-ray binaries Common envelopes

Signal injection into detector noise

- Using 1–2 4-km detectors H1, L1
- Gaussian, stationary • noise
- Do 1.5PN software injections
- Retrieve physical parameters with 1.5PN template

Here, $\Sigma SNR = 17$

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational waves

Compute posterior distribution

- Find posterior density of the model parameters
- Bayesian approach
- The likelihood for each detector *i* is:

$$L_i(d|\vec{\lambda}) \propto \exp\left(-2\int_0^\infty \frac{\left|\tilde{d}(f) - \tilde{m}(\vec{\lambda}, f)\right|^2}{S_n(f)} df
ight) \propto \exp\left(rac{\mathrm{SNR}^2}{2}
ight)$$

• Coherent network of detectors:

• PDF $(\vec{\lambda}) \propto \operatorname{prior}(\vec{\lambda}) \times \prod_{i} L_{i}(\boldsymbol{d}|\vec{\lambda})$

Use Markov-Chain Monte Carlo to sample the posterior

(日)

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational waves
Maultart	a ha i na			

Markov chains

- Choose starting point for chain: $\vec{\lambda}_1$
- Calculate its likelihood: $L_j \equiv L(d|\vec{\lambda}_j)$
- do j = 1, N
 - draw random jump size $\Delta \vec{\lambda}_j$ from Gaussian with $\vec{\sigma}$
 - consider new state $\vec{\lambda}_{j+1} = \vec{\lambda}_j + \Delta \vec{\lambda}_j$
 - calculate $L_{j+1} \equiv L(d|\vec{\lambda}_{j+1})$
 - if($\frac{L_{j+1}}{L_i} > \operatorname{ran_unif}[0,1]$) then
 - Accept new state $\vec{\lambda}_{j+1}$
 - Increase jump size $\vec{\sigma}$

else

- Reject new state; $\vec{\lambda}_{j+1} = \vec{\lambda}_j$
- Decrease jump size $\vec{\sigma}$
- end if
- save state $\vec{\lambda}_{j+1}$
- end do (j)

3

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

2×10⁶

3×10⁶

4×10⁶

0

0

10⁶

WESTERN Tersity

996

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational waves

MCMC runs

MCMC parameters

masses: $M_c \& \eta$, distance: log d_L , time and phase at coalescence: $t_c \& \varphi_c$, position: R.A. & sin Dec, spin magnitude: $a_{spin_{1,2}}$, spin orientation: $\cos \theta_{spin_{1,2}} \& \varphi_{spin_{1,2}}$, orientation: $\cos(\iota) \& \psi$

MCMC set-up

- 5 serial chains per run, starting from the true parameter values
- Chain length: 5×10^6 states, burn-in: 5×10^5 states
- Run time: 10 days on a 2.8 GHz CPU
- Signals injected in simulated noise for H1L1 @ SNR ≈17.0

・ロット 御マ キョマ キョン

- Fiducial binary: $M_{1,2} = 10 + 1.4 M_{\odot}$, $d_{\rm L} = 16 21 \,{\rm Mpc}$
- Spin: $a_{spin} = 0.0, 0.1, 0.5, 0.8, \theta_{SL} = 20^{\circ}, 55^{\circ}$

Single stars	Binary stars	X-ray binaries	Common envelopes	Gravitational wave	
		_			

Spinning MCMC results

Parameters:

- H1 & L1
- *M* = 10, 1.4 *M*_☉
- $d_L = 18.7 \, \text{Mpc}$
- $a_{\rm spin} = 0.5$, $\theta_{\rm SL} = 20^{\circ}$
- $\Sigma SNR \approx 17.0$
- Black dashed line: true value
- Red dashed line: median
- Δ's: 90%
 probability
 NORTHWESTERN
 UNIVERSITY

Sing	le	sta	ırs	
0000	ЪC	boc	00	

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

Spinning MCMC results

- 3.5-pN waveform
- 3 detectors
- $\mathcal{M} = 3.0, \ \eta = 0.22$
- $a_{spin} = 0.5, 0.8$

(日)

Spinning MCMC results

Spinning BH, non-spinning NS: $10 + 1.4 M_{\odot}$, 16–22 Mpc, Σ SNR=17

2 detectors, $a_{\rm spin} = 0.0$

2 detectors, $a_{\rm spin} = 0.5$

3 detectors, $a_{\rm spin} = 0.5$

・ロット (雪) (日) (日)

э

van der Sluys et al., 2008; Raymond et al., 2009

Binary stars

X-ray binaries

Common envelopes

Gravitational waves

STERN

Conclusions GW parameter estimation

MCMC code:

We have developed an MCMC code that can recover the 12–15 parameters of a binary inspiral, including one or two spins

Accuracies:

- Detection with only 2 detectors can produce astronomically relevant information when spin is present, with typical accuracies for low/higher spin:
 - individual masses: $\sim 32\%/39\%$
 - dimensionless spin: 0.17 0.18
 - distance: $\sim 55\%/45\%$
 - sky position: $\sim 25^{\circ}/7^{\circ}$
 - binary orientation: $\sim 55^{\circ}/15^{\circ}$
 - time of coalescence: 11ms / 6ms
- Combination of the above can lead to association with an electromagnetic detection (*e.g.* gamma-ray burst)