The formation of (double-lined) double white dwarfs and other GW sources

Marc van der Sluys

Nikhef / Utrecht University / Virgo

Andrew Loveridge, Vicky Kalogera Tyrone Woods, Natasha lvanova Gijs Nelemans, Sweta Shah Mónica Zorotovic, Matthias Schreiber, Alberto Rebassa-Mansergas
 LISA binaries
 UCXBs
 AM CVns
 Magnetic capture
 Observed double white dwarfs
 Common envelopes
 DWD reconstruction
 MT stability and conservation
 DWD population synthesis

 •OO
 •OO
 •OO
 •OO
 •OO
 •OOO
 •OOOO
 •OOO
 •OOO
 •OOO
 •OOO
 •OOO
 •OOO
 •OOOO
 •OOOOO
 •OOOO
 •OOOO
 •OOOO
 •OOOO
 •OOOOOOOOOOO
 •OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Laser Interferometer Space Antenna (LISA)

LISA binaries	UCXBs	AM CVns	Magnetic capture	Observed double white dwarfs	Common envelopes	DWD reconstruction	MT stability and conservation	DWD population synthesis
000	0000000	00000	00000000000	000000	00000	0000000	0000	000000000

LISA: verification binaries

Properties of known binaries:									
Туре	Number	<i>P</i> (min)	$M_1(M_\odot)$	$M_2(M_\odot)$	<i>d</i> (pc)				
AM CVn	27	5.4 – 65.1	0.55 – 1.2	0.006 - 0.27	100 – 2600				
DWDs	15	12.8 – 209	>0.1 - 0.8	0.17 - 0.39	100 - 1100				
UCXBs	8	11.4 – 42	\sim 1.4?	$\geq 0.02 - 0.06$	5k – 12k				
CVs	7	55 – 85	\gtrsim 0.7	0.10 - 0.15	43 – 200				
dNSs	1	147	1.34	1.25	\sim 1.2k				

https://www.astro.ru.nl/~nelemans/dokuwiki/doku.php?id=lisa_wiki

- *P* measured for:
 - AM CVns: RX J0806.3+1527 and V407 Vul
 - LMXBs: 4U 1820–30
- 4 out of 8 UCXBs are in globular clusters

LISA: verification binaries

Nelemans, 2009; Roelofs et al., 2007, 2010

LISA binaries OCXBs AM CVns Magnetic capture Observed double white dwarfs Common envelopes DWD reconstruction MT stability and conservation DWD population synthesis

Ultracompact X-ray binaries

X-ray binaries

- Bright X-ray sources: in Galactic plane, concentrated towards Galactic centre
- 14 bright X-ray sources in globular clusters
- Binaries with *P*_{orb} ≲ 60 min are called *ultra-compact*

XRBs are overabundant in GCs

- 1 in 10⁹ stars in Galaxy is an XRB
- 1 in 10⁶ stars in globular clusters is an XRB

Direct period measurement

M 15-X2

White & Angelini, 2001; Guhathakurta, 1996

- FUV study (less crowding)
- Magnitude modulation: 0.06m
- > 3000 cycles
- Period: 22.6 min.

Indirect period indication (1)

Optical vs. X-ray flux

- Optical flux from reprocessed X-rays in disc
- Scales with X-ray flux and size of disc
- Hence, $f_{\rm opt}/f_{\rm X} \propto R_{\rm disc} \propto a_{\rm orb}$

Van Paradijs & McClintock, 1994

Indirect period indication (2)

Burst maximum

UCXBs

000000 00000

• Maximum luminosity during burst is Eddington luminosity: $L_{\rm Edd} = \frac{4\pi cGM}{\sigma_{\rm T}}$

Magnetic capture

- Electron scattering cross section depends on hydrogen content: $\sigma_{\rm T} = 0.2 \ (1 + X) \ \frac{{\rm cm}^2}{{\rm g}}$
- Compact donor \rightarrow low $X \rightarrow$ small $\sigma_T \rightarrow$ high $L_{edd} \rightarrow$ (ultra)compact binary

Observed double white dwarfs Common envelopes DWD reconstruction MT stability and conservation DWD population synthesis

Indirect period indication (3)

X-ray spectrum

- Temperature *T*₀ of the seed photons comes from a Compton model
- Temperature *T*_{in} is observed from the inner disc
- $\bullet\,$ Ultracompacts show $T_0 \sim T_{\rm in}$

X-ray sources in globular clusters

Known period information

Cluster	Position	P _{orb}	Indirect indication			
			low $f_{\rm opt}/f_{\rm x}$	burst max.	spectrum	
NGC 1851	0512-40	?	U	U	U	
NGC 6440	1745–20	8.7 hr	—	_	N	
NGC 6440	1748–20	57.3 min	—	_	—	
NGC 6441	1746–37	5.7 hr	—	N	Ν	
NGC 6624	1820–30	11.4 min	U	U	U	
NGC 6652	1836–33	?	U	U	U	
NGC 6712	1850–09	21/13 min	U	U	U	
NGC 7078	2127+12b	17.1 hr	—	_	_	
NGC 7078	2127+12a	22.6 min	_	U	—	
Terzan 1	1732–30	?	—	_	—	
Terzan 2	1724–31	?	—	U	Ν	
Terzan 5	1745–25	?	—	—	U	
Terzan 6	1751–31	12.4 hr	—	_	Ν	
Liller 1	1730–33	?	_	_	_	

• Up to 7 of the 14 X-ray binaries in globular clusters are ultra-compact!

11-min system (1820-30 in NGC 6624) has negative P

Overabundance in globular clusters: direct collisions

Star collisions occur in GCs

- Stellar density up to 10⁶ times higher than in solar neighbourhood
- Probability of collisions 10¹² times higher
- Direct collisions most likely for subgiants
- Binary with NS and core of subgiant is formed; envelope is expelled

After the collision

- A NS-WD binary is formed
- Gravitational radiation shrinks the orbit
- Orbital period increases as soon as mass transfer starts
- Observed X-ray binaries should always have positive \dot{P}
- The 11-min system has a measured $\dot{P}/P =$ -1.8 ± 0.3 × 10⁻¹⁵s⁻¹
 - this cannot be explained by gravitational acceleration:

Van der Klis et al., 1993

Cataclysmic variables

Jet X-ray heating Accretion disc Hot spot Accretion Companion Disc wind stream star

BinSim, R. Hynes

- "LMXBs with a WD accretor"
- Optical emission comes from hot spot
- Accretion speed, hence luminosity, varies, sometimes dramatically

Photometric variability

HP Lib (Seetha et al., 2000)

First ultracompact systems

- Two systems previously known from X-ray emission
- Ultrashort periods confirmed using 10 m Keck-telescope:
 - HM Cnc: shortest known period: 5.4 min

Systematic search for new ultracompacts: SDSS

- H poor \rightarrow strong He lines in spectrum
- SDSS spectroscopy and follow-up yielded 13 new systems

(Roelofs et al. 2005, 2009, Anderson et al. 2005, 2008, Rau et al. 2009)

- Newly discovered systems help determine space density
- $\bullet\,$ Problem: there are $\sim 10\times$ fewer AM CVn systems than theory predicts

AM CVn systems

- $\bullet\ \sim 30\ known$
- He-dominated spectra:
 - CVs without H signature
 - H/He $\lesssim 10^{-5}$
 - H-poor donor fits in tighter orbit

- Short orbital periods: \sim 5–65 min
- Main guaranteed LISA sources
- Possible donors:
 - He/hybrid He-CO white dwarf
 - helium star
 - evolved main-sequence star

Magnetic capture

- Onor star fills Roche lobe around TAMS
- Magnetic braking on donor removes AM from orbit
- H-rich envelope is transferred until processed core surfaces
- AM loss due to GWs takes over at short orbital periods
- Periods below 70–80 min possible

Podsiadlowski et al., 2003

- MB: Verbunt & Zwaan, 1981; Rappaport, Verbunt & Joss, 1983
- $M_{\rm WD}$: 0.6 1.0 M_{\odot}
- $M_{2,i}: 0.8 1.4 M_{\odot}$
- $t_{\rm RLOF} \sim 7 11 \, {\rm Gyr}$
- $t_{P_{\min}} \sim \text{few Gyr}$
- $P_{\rm min}$ down to ~ 10 min
- $\bullet~X_{\rm H} \sim 1-20\%$

Binary-evolution models

Grids of detailed binary-evolution models

- Eggleton's TWIN binary-evolution code (Eggleton 1971, 1972, etc., Pols et al., 1995)
- MB: Rappaport, Verbunt & Joss, 1983; $\gamma = 4$:
 - MB decreases as $\exp\left(1 \frac{0.02}{q_{conv}}\right)$ for $q_{conv} \equiv \frac{M_{conv}}{M_{*}} < 0.02$ (Podsiadlowski et al., 2002)
 - No MB if $q_{\rm conv} = 1$
- Analytic GW evolution after P_{min}
- Mass transfer fully non-conservative
- $M_{\rm WD} = 1.0 \, M_{\odot}; M_{2,i} = 0.7 1.5 \, M_{\odot}$
- $P_{
 m i} \sim$ 0.4 5.5 days; \sim 20–40 models per $M_{
 m 2,i}$

Period evolution

MvdS et al. (2005a)

Convergence vs. divergence: relevant timescales

Magnetic capture

LISA binaries UCXBs

Two models with $M_i = 1.1 M_{\odot}$, similar P_i :

- GWs take over where MB weakens → convergence
- GWs do not take over where MB weakens → divergence

Timescales:

Observed double white dwarfs Common envelopes DWD reconstruction MT stability and conservation DWD population synthesis

EV: Nuclear evolution

- MT: Mass transfer
- MB: Magnetic braking
- GW: Gravitational waves

MvdS et al. (2005a)

Convective mass fraction

Ultracompact/AM CVn population

Choice of magnetic-braking prescription

Rappaport, Verbunt & Joss

$$\frac{dJ_{\rm MB}}{dt} = -3.8 \times 10^{-30} \ \eta \ \left(\frac{M}{M_{\odot}}\right) \left(\frac{R}{R_{\odot}}\right)^4 \omega^3 \ \text{dyn cm}$$

Saturated magnetic braking: Sills et al., 2000; Andronov et al., 2003

$$\begin{aligned} \frac{dJ_{\rm MB}}{dt} &= -\mathcal{K} \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5} \omega^{3}, \qquad \omega \leq \omega_{\rm crit};\\ &= -\mathcal{K} \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5} \omega \,\omega_{\rm crit}^{2}, \qquad \omega > \omega_{\rm crit}, \end{aligned}$$
$$\mathcal{K} = 2.7 \times 10^{47} \, {\rm g \, cm}^{2} \, {\rm s}; \quad \omega_{\rm crit} = \omega_{\rm crit,\odot} \left(\frac{\tau_{\rm to}}{-}\right)^{-1}; \quad \omega_{\rm crit,\odot} \approx 2.5 \, {\rm day}.\end{aligned}$$

 $\langle \tau_{to,\odot} \rangle$

MB becomes saturated at some critical ω;

• $\omega_{\rm crit}$ depends on the convective-turnover timescale $\tau_{\rm to}$.

Effect of magnetic-braking prescription

LISA binaries UCXBs

Magnetic capture Observed double white dwarfs Common envelopes DWD reconstruction MT stability and conservation DWD population synthesis

Conclusions

Conclusions

- With the magnetic-capture scenario, a relatively large number of ultracompact CVs can be produced
- (a) A sizable fraction of these have $X_{
 m H} < 10^{-5}$ and would be observed as AMCVn stars
- I For each H-poor ultracompact CV (AM CVn), we would expect 1–10 H-rich ultracompact CVs
- I For each \sim 10-minute system, we would expect \sim 10 20-minute systems and \sim 100 30-minute systems
- A saturated magnetic-braking prescription increases the minimum period found from ~ 10 min to ~ 75 min
 this is still ~ 2× lower than can be achieved with GWs alone
- The 11.4-minute system with the negative P 1820-30 probably has a He-star donor

LISA binaries UCXBs AM CVns Magnetic capture **Observed double white dwarfs** Common envelopes DWD reconstruction MT stability and conservation DWD population synthesis

Observed double-lined double white dwarfs

WD 0136+768

• well determined: *P*_{orb}, *q*

model-dependent: M₁, M₂, τ_{cool}

Adapted from Maxted et al. (2002)

Observed double-lined double white dwarfs

System	Porb (d)	a_{orb} (R _☉)	M₁ (M _☉)	M [†] (M _☉)	$q_2 (M_2/M_1)$	Δau (Myr)
	()	,			, .,	,
WD 0135–052	1.556	5.63	0.52 ± 0.05	$\textbf{0.47} \pm \textbf{0.05}$	0.90 ± 0.04	350
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03	450
WD 0957–666	0.061	0.58	0.32	0.37	1.13 ± 0.02	325
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.03	215
PG 1115+116	30.09	46.9	0.7	0.7	$\textbf{0.84} \pm \textbf{0.21}$	160
WD 1204+450	1.603	5.74	0.52	0.46	0.87 ± 0.03	80
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05	_
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
WD 1704+481a	0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20*
HE 2209–1444	0.277	1.88	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500

[†] star 2 is supposedly the latest-formed WD

* unclear which white dwarf is older

See references in Maxted et al. (2002), Nelemans & Tout (2005) and MvdS et al. (2006)

- WD masses \sim 0.3 0.7 M_{\odot}
- Orbital separations \sim 0.5 6 R_{\odot} (and 47 R_{\odot})
- *q* ~ 0.70 1.28 (mean: 1.01)

LISA binaries OCXBs AM CVns Magnetic capture Observed double white dwarfs Ocomon envelopes DWD reconstruction MT stability and conservation DWD population synthesis

Double white dwarf vs. red giant

Properties of observed white dwarfs

- Ourrent DWD system:
 - $a_{\rm orb}$: mean: 7 R_{\odot} , median: 4 R_{\odot} • q: ~ 1

• Typical progenitor star:

- $M_{
 m c} \gtrsim 0.3 \, M_{\odot}$
- $R_{*}~\sim~100~R_{\odot}$

Common envelopes (CEs)

CE Assumptions

- Donor core and companion spiral in, *E*_{orb} heats up and expels envelope
- Envelope ejection occurs much faster than nuclear evolution ($\tau \lesssim$ 1000 yr?), hence:
 - core mass does not grow during envelope ejection
 - no accretion by companion during envelope ejection
- CE occurs when MT is dynamically unstable, *i.e.* if $q_1 > q_{\rm crit} \sim 0.65$ (Hurley et al., 2002)
- But what if the timescale is longer than the dynamical timescale?

Classical α -common envelope (CE):

• orbital energy is used to expel envelope (Webbink, 1984):

$$E_{\text{bind}} = \alpha_{\text{CE}} \left[\frac{G M_{1f} M_2}{2 a_{\text{orb},f}} - \frac{G M_{1i} M_2}{2 a_{\text{orb},f}} \right]$$

- $\alpha_{CE} \sim 1$ (0.3?) is the common-envelope efficiency parameter
- usually, $a_{\text{orb,f}} \ll a_{\text{orb,i}}$: spiral-in

First mass-transfer phase: common envelope (CE)?

Outcome of a CE as first MT phase

- Orbit shrinks a lot
- ② Secondary has a much smaller Roche lobe
- $\textcircled{O} Secondary fills Roche lobe at much smaller radius \rightarrow core mass$
- Second WD less massive than first WD: q ≁ 1

LISA binaries 000 00000 00000 Magnetic capture **Observed double white dwarfs** 00000 00000 DWD reconstruction MT stability and conservation DWD population synthesis

First mass-transfer phase: stable (and conservative)?

 $TWIN \rightarrow BinSim, R. \ Hynes: \ \texttt{http://www.phys.lsu.edu/~rih/binsim/}$

- Orbit typically grows (but: non-conservative MT?)
 Secondary becomes more massive → larger Roche lobe
- Secondary fills Roche lobe at larger radius \rightarrow core mass
- Second WD more massive than first WD: $\mathbf{q} \not\sim \mathbf{1}$

LISA binaries UCXBs AM CVns Magnetic capture Observed double white dwarfs Common envelopes DWD reconstruction MT stability and conservation DWD population synthesis

Common envelope (CE) and Envelope ejection (EE)

Classical α -common envelope (CE):

• orbital energy is used to expel envelope (Webbink, 1984):

$$\overline{E}_{\text{bind}} = \alpha_{\text{CE}} \left[\frac{G M_{1\text{f}} M_2}{2 a_{\text{orb},\text{f}}} - \frac{G M_{1\text{i}} M_2}{2 a_{\text{orb},\text{i}}} \right]$$

• $\alpha_{CE} \sim 1$ (0.3?) is the common-envelope efficiency parameter • usually, $a_{orb,i} \ll a_{orb,i}$: spiral-in

γ -envelope ejection (EE):

• envelope ejection with angular-momentum balance:

$$rac{J_{\mathrm{i}}~-~J_{\mathrm{f}}}{J_{\mathrm{i}}}~=~\gamma_{\mathrm{EE}}~rac{M_{\mathrm{1i}}~-~M_{\mathrm{1f}}}{M_{\mathrm{1i}}~+~M_{\mathrm{2}}}$$

• $\gamma_{\rm EE} \approx 1.5$ is the efficiency parameter (Nelemans et al., 2000)

- $a_{
 m orb,f}$ may be $\sim a_{
 m orb,i}$; spiral-in not necessary
- But what does γ_{EE} mean? Why 1.5?

Envelope-structure parameter

- $\alpha_{CE}\lambda_{env} = 0.5, 1.0$ (e.g. Belczynski et al., 2008)
- Value of λ_{env} is far from constant (*e.g.* Dewi & Tauris, 2000; MvdS et al., 2006)

Determine typical values for λ_{env}

- Grid of 116 detailed stellar-evolution models; 32 brown-dwarf models
- Generate 10⁶ random ZAMS binaries; $M_* < 20 M_{\odot}$; uniform $P(\log P_{orb}), P(q); M_c \equiv M(X = 0.1)$
- Follow donor stars from ZAMS to CE; record properties at RLOF: 165,007 CEs

Envelope-structure parameter

Fits for the binding energy

low-mass RGB low-mass AGB high-mass GB dots: models, coloured lines: fits

$$E_{ ext{bind}} = \int_{M_{ ext{c}}}^{M_{ ext{s}}} \left(E_{ ext{int}}(m) - rac{Gm}{r(m)}
ight) \mathrm{d}m$$

$$\log\left(\frac{-E_{\text{bind}}}{\text{erg}}\right) \approx E_0 + \Lambda(M_0, M) \times \sum_{m,r} \alpha_{m,r} \left[\log\left(\frac{M}{M_{\odot}}\right)\right]^m \left[\log\left(\frac{R}{R_{\odot}}\right)\right]^r$$

- ev / STARS / TWIN (Eggleton 1971, 1972, ...)
- 73 models, 0.8 $M_{\odot} \leq M \leq$ 100 M_{\odot}
- fit as a function of ZAMS mass, current mass and current radius
- 6 different metallicities ($Z = 10^{-4} 0.03$)
- A correction factor for wind mass loss
- separate fits for recombination energy

Conclusions for the binding energies

Envelope binding energies:

- λ_{env} varies wildly as a function of stellar mass and evolutionary stage
- Simplified assumptions for λ_{env} may imply unphysical values for α_{CE}
- Loveridge et al. (2011) provide accurate fits for Ebind
 - · electronic data files and routines online
 - λ_{env} no longer needed

Population-synthesis codes:

- Fits are (being) implemented in:
 - StarTrack (Belczynski et al.)
 - SeBa (Toonen)
 - BSE (Hurley et al.; Zorotovic)

However:

- Massive stars:
 - uncertainty in core-envelope boundary
 - possible deviations for strong stellar winds

Formation channels

Envelope ejection with angular-momentum conservation

• Average specific angular momentum of the system (Nelemans et al., 2000):

$$rac{J_{
m i}~-~J_{
m f}}{J_{
m i}}~=~\gamma_{
m s}~rac{M_{
m 1i}~-~M_{
m 1f}}{M_{
m tot,i}}~~(\gamma_{
m s}\sim 1.5)$$

• Specific angular momentum of the donor (MvdS et al., 2006):

$$rac{J_{i} - J_{f}}{J_{i}} = \gamma_{d} rac{M_{1i} - M_{1f}}{M_{tot,f}} rac{M_{2i}}{M_{1i}} \quad (\gamma_{d} \sim 1.0)$$

• Specific angular momentum of the accretor (MvdS et al., 2006):

$$\frac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma_{\rm a} \left[1 - \frac{M_{\rm tot,i}}{M_{\rm tot,f}} \exp\left(\frac{M_{\rm 1f} - M_{\rm 1i}}{M_2}\right)\right] \quad (\gamma_{\rm a} \sim 1.0$$

LISA binaries OCC Barbon Control Contr

Formation models: reconstruction of second mass-transfer phase

- Reconstructing the second mass-transfer phase: CE
- White-dwarf mass sets core mass (evolutionary state) of progenitor
- Giant radius determines orbital period of progenitor

- Envelope binding energy dictates what $\alpha_{\rm CE}$ is needed for $\Delta P_{\rm orb}$
- Unknown: progenitor mass \rightarrow try them all!

First mass-transfer phase: stable, conservative MT

Stable MT: $R_* < R_{BGB}$ or $q < q_{Crit}$ (Hurley et al., 2002)

Maximum P_{orb} after stable, conservative mass transfer with $q_i = 0.62$ (Nelemans et al., 2000)

Only **five** systems have CE solutions with $P_{orb} < P_{max}$

+WD 0135-052	* WD 0136+768	∘WD 0957-666	×WD 1101+364	□ PG 1115+116
△WD 1204+450	⊕WD 1349+144	★HE 1414-0848	▲ WD 1704+481a	 HE 2209-1444

Magnetic capture Observed double white dwarfs Common envelopes

LISA binaries UCXBs

• 1414 fits

DWD reconstruction MT stability and conservation DWD population synthesis

00000000

- 0957, 1101, 1704b and 2209 nearly fit
- Out of ten systems, only one can be explained, while four are close
- Mwah...

Models for unstable MT + unstable MT

Number of progenitor models:

- 10+1 observed systems
- 199 progenitor models in our grid
- 11 variations in observed mass: $-0.05, -0.04, \dots, +0.05 M_{\odot}$
- Total: $11 \times 11 \times \sum_{n=1}^{198} n \approx 2.4$ million

Filters:

• Unstable MT: $R_* > R_{
m BGB}$ and $q > q_{
m crit}$

•
$$q_{
m crit}pprox 0.64+0.94\left(rac{M_{
m c}}{M_{st}}
ight)^5$$
 $(Z=0.02)$ (Hurley et al., 2002)

- Age: $\tau_1 < \tau_2 < 13 \, \text{Gyr}$
- CE/EE-parameter: $0.1 < \alpha_{CE}, \gamma_{s,d,a} < 10$

Result:

• Candidate progenitors left: ~ 204 000

Results for $\gamma_{d} + \gamma_{a}$

Unstable MT results: overview

Select systems with:	● 1.46 < γ _s < 1.79
• $0.8 < \alpha_{\rm CE} < 1.2$	• 0.9 $<\gamma_{ m a,d}<$ 1.1

System	1: $\gamma_{s} \alpha_{CE}$	2: $\gamma_{s}\gamma_{s}$	3: $\gamma_{a} \alpha_{CE}$	4: $\gamma_a \gamma_a$	5: $\gamma_{\rm d} \alpha_{\rm CE}$	6: $\gamma_{\rm d}\gamma_{\rm a}$	Best:
0135 0136 0957 1101 1115	-/- +/+ +/+ +/~	+/~ +/+ +/+ +/- +/+	+/~ +/~ +/- +/-	-/- +/~ +/- -/- +/~	+/~ +/+ +/+ +/~ +/+	+/~ +/+ +/+ +/~	2,3,5,6 1,2,5,6 1,2,5,6 1,5,6 2,5,6
1204 1349 1414 1704a 1704b 2209	-/- +/+ +/- +/- +/-	+/- +/+ +/+ +/- +/- +/+	+/- +/+ -/- -/- -/-	+/- +/+ +/+ -/- +/-	+/- +/+ -/- +/- +/~	+/+ +/+ +/+ +/- +/-	6 1–6 2,4,6 1,2 1,2,4,5,6 1,2,6
Best	$7 \times$	9 ×	2 ×	3 ×	$7 \times$	10×	

Column 1: +: α , γ within range, -: α , γ outside range

Column 2: +: $\Delta(\Delta t) < 50\%$, ~: 50% < $\Delta(\Delta t) < 500\%$, -: $\Delta(\Delta t) > 500\%$

DWD summary/conclusions so far

Stable, conservative mass transfer:

- Nelemans et al. (2000); MvdS et al. (2006)
- Analytic models and detailed binary-evolution models give qualitatively same results
- We can reproduce perhaps 1–4 out of 10 systems, all with $lpha_{\rm CE}>$ 1.6
- Conservative MT + CE cannot explain the observed double white dwarfs

Unstable mass transfer:

- Unstable envelope ejection can explain most observed double white dwarfs
- Several EE descriptions can reconstruct observed masses and periods
- In addition, $\gamma_s \gamma_s$ and $\gamma_d \gamma_a$ can explain most observed cooling-age differences

But:

- What do $\gamma_{s,d,a}$ mean?
- Is q_{crit} a good condition for stabilty of MT?
- What about stable, partly-conservative MT?
- What is the influence of stellar winds?

System mass loss during stable mass transfer

Mass loss during mass transfer:

- "stable, non-conservative mass transfer [...] would stabilise the mass transfer." (MvdS et al., 2006)
- "[the DWDs] evidently evolved through quasi-conservative mass transfer." (Webbink, 2008)

This leads to:

- stable MT can be initiated at longer orbital periods (q_{crit} changes)
- stable MT can be initiated for almost equal-mass binaries
- MT can be stable from more-massive donor stars
- shorter post-MT orbits due to AM loss

Hence:

- more massive primaries
- less massive secondaries
- more (low-mass) DWDs with $q \sim 1$

Stability of and conservation factor during mass transfer

Critical mass ratio:

CE occurs when MT is dynamically unstable, *i.e.* if $q_1 > q_{\rm crit} \sim 0.65$ (Hurley et al., 2002)

Response of donor star and Roche lobe to mass loss:

$$\zeta_{\rm ad} \equiv \left(\frac{d\log R_*}{d\log M_*}\right)_{\rm ad} = f\left(\frac{M_{\rm c}}{M_*}\right)$$

$$\zeta_{\rm Rl} \equiv \frac{d\log M_{\rm Rl}}{d\log M_*} = f(q,\beta)$$

- If $\zeta_{ad}\gtrsim \zeta_{RI}$ (*i.e.*, $\dot{R}_*\lesssim \dot{R}_{RI}$), mass transfer is dynamically stable (Hjellming & Webbink, 1987)
- $\beta \in [0, 1]$: mass-conservation factor; $\dot{M}_2 = -\beta \dot{M}_1$

Thermal and nuclear mass transfer

Woods et al., 2012

Default system:

•
$$M_i = 1.2 + 1.1 M_{\odot}$$
 ($q_i \approx 1.09$)
• $P_i = 100 d$ ($M_{c,1} \approx 0.35 M_{\odot}$)
• $\beta = 0.3$

LISA binaries OCXBs AM CVns Magnetic capture Observed double white dwarfs Oommon envelopes DWD reconstruction OCO

Formation of low-mass DWDs through stable mass transfer

Population synthesis

Caveat

Work in progress!!!

BSE

- BSE/popbin (Hurley et al., 2000, 2002)
- Updated stability criterion (ζ instead of q_{crit}) for (sub)giants

Initial population

- 10 million ZAMS binaries; constant star-formation rate
- Kroupa IMF, 0.8 $M_{\odot} \leq M_1 \leq$ 10 M_{\odot}
- Uniform q_i distribution; 0.1 $M_{\odot} \leq M_2 \leq M_1$
- Uniform distribution in $log(a_i)$, 5 $R_{\odot} \le a \le 10^4 R_{\odot}$; e = 0

Assumptions

- $\alpha_{\rm CE} = 1.0, \lambda$: simple fit
- MT conservation factor β ($\beta = 1$: conservative)

constant $0.0 \le \beta \le 1.0$ variable β :

$$\begin{cases} \beta_{\text{nuc}} = \min \left[10 \times \frac{M_{\text{a}}/\tau_{\text{th},a}}{M_{\text{d}}/\tau_{\text{nuc},d}}, 1 \right] \ (\sim 1) \\ \beta_{\text{th}} = \min \left[10 \times \frac{M_{\text{a}}/\tau_{\text{th},a}}{M_{\text{d}}/\tau_{\text{th},d}}, 1 \right] \ (\sim 0.01) \end{cases}$$

Match with observed systems

- M_2 within observed uncertainty ($\Delta M_{2,\min} = 0.05 M_{\odot}$)
- q₂ within observed uncertainty
- P_{orb} within 1% from observed
- simple double-linedness criterion:
 - ① $T_{\rm eff,1,2} > 6000 \,\rm K;$
 - 2 $T_{\rm hot}/T_{\rm cool}$ < 2.5; and
 - $P_{\rm orb} < 70 \, \rm days.$

Population synthesis: $q - P_{orb}$

• $\beta = \text{variable & } \zeta \text{s}$

MvdS et al., in preparation

Population synthesis: $q - P_{orb}$

MvdS et al., in preparation

• $\beta = \text{variable & } \zeta \text{s}$

• allow twice observed uncertainty "2- σ "

Population synthesis: $M_1 - M_2$, β

MvdS et al., in preparation


```
• \beta = \text{variable & } \zeta \text{s}
```

allow twice observed uncertainty "2-σ"

Cheating(?) with errors

Interpretation of errors: " 1σ " \rightarrow " 2σ "

- ΔM : $1 \times \rightarrow 2 \times \text{min}(\text{observed} uncertainty}, 0.05 M_{\odot})$
- Δq_2 : 1× \rightarrow 2× observed uncertainty
- $P_{\rm orb}$ within 1% ightarrow 2% from observed

Original models

- 10⁷ ZAMS binaries
- 713723 ZA DWDs
- DWD recycling: $25x \rightarrow evolve$ 17 843 075 ZA DWDs to present day
- 1 572 727 present-day DWDs
- 856 solutions matching 9/10 observed systems ("2σ")

Number of explained DWDs									
uncertainty	expected	conservative	non-conservative						
1σ	6.8	2	4						
2σ	9.5	6	9						
3σ	10.0	7	10						

Results: example solutions

 $\beta = 0.3$

Match with observed double-lined double white dwarfs

System		Obse	rved			Recons	structed			Init	ial	
	<i>M</i> ₁ (<i>M</i> _☉)	M₂ (M⊂)	q_2	Porb	M_1	M₂ (M⊂)	q ₂	Porb	<i>M</i> _{1i} (<i>M</i> _)	<i>M</i> _{2i} (<i>M</i> _)	P i (d)	β
	((111)		(0)	(()		(4)	((1110)	(0)	
WD 0135	0.52	0.47	0.90	1.556	0.514	0.461	0.897	1.549	1.37	1.36	180	1.00
WD 0136	0.37	0.47	1.26	1.407	0.438	0.533	1.217	1.377	1.34	1.31	84.3	0.67
WD 0957	0.32	0.37	1.13	0.061	0.312	0.352	1.128	0.061	1.26	1.22	12.6	0.73
WD 1101	0.33	0.29	0.87	0.145	0.355	0.304	0.856	0.144	1.10	1.10	130	dCE
PG 1115	0.7	0.7	0.84	30.09	0.842	0.701	0.833	0.041	3.58	2.00	3409	0.95
WD 1204	0.52	0.46	0.87	1.603	0.509	0.438	0.861	1.624	1.19	1.18	338	0.41
WD 1349	0.44	0.44	1.26	2.209	0.446	0.509	1.141	2.205	1.12	1.12	342	
HE 1414	0.55	0.71	1.28	0.518	0.514	0.645	1.255	0.509	1.93	1.91	32.2	1.00
WD 1704	0.56	0.39	0.70	0.145	0.361	0.537	1.488	0.139	1.99	1.86	247	0.51
HE 2209	0.58	0.58	1.00	0.277	0.555	0.551	0.993	0.276	2.20	2.20	374	dCE

γ -values for non-conservative MT

DWD conclusions

Stable, non-conservative mass transfer + CE

- Can explain 4/9/10 of 10 observed DWDs $(q, P_{\text{orb}}, M_1, M_2, \Delta \tau)$
- Forms fewer DWDs through CE, but many more through stable MT
- Crux is adapted stability criterion, not AM loss
- System mass loss is naturally explained by thermal-timescale mass transfer

Progenitors:

- Equal-mass systems in double CE (β independent)
- Near-equal-mass systems + β < 1

γ_{EE}

• $\gamma_{\mathsf{EE}} \sim$ 1.5 may indicate stable, non-conservative mass transfer

To do:

Consider mass loss through L₂

LISA binaries UCXBs AM CVns Magnetic capture Observed double white dwarfs 00000 00000 DWD reconstruction 000000 000000 DWD population synthesis

The End