Measuring neutron-star properties with LIGO and Virgo

Marc van der Sluys

Radboud University Nijmegen / FOM / NIKHEF

Gijs Nelemans, Sweta Shah, Chris Chambers

Outline

LIGO and Virgo

Inspiral waveforms with increasing spin

Initial LIGO and Virgo can detect the last \sim 10 s of a binary inspiral:

10 M_{\odot} BH + 1.4 M_{\odot} NS; $a_{\rm spin,BH} \equiv S/M^2 = 0.0, 0.1$ and 0.5

Predicted detection rates of binary inspirals

Horizon distances (Mpc):

	NS-NS	BH-NS	BH-BH
Initial LIGO/Virgo	32	67	160
Advanced LIGO/Virgo	364	767	1850

Detection-rate estimates (yr⁻¹):

	NS-NS	BH-NS	BH-BH
Initial LIGO/Virgo	$2 \times 10^{-4} - 0.2$	$7 \times 10^{-5} - 0.1$	$2 \times 10^{-4} - 0.5$
Advanced LIGO/Virgo	0.4 - 400	0.2 - 300	0.4 – 1000

Estimates assume $\textit{M}_{\rm NS}=$ 1.4 \textit{M}_{\odot} and $\textit{M}_{\rm BH}=$ 10 \textit{M}_{\odot} Abadie et al. (2010)

Signal injection into detector noise

Example:

- Using two 4-km detectors H1, L1
- Inject signal coherently
- ΣSNR = 17

$\text{SPINspiral code} \rightarrow \text{LALinference}$

Purpose:

- Use Markov-Chain Monte Carlo for parameter estimation
- Follow-up after detection
- Gaussian, stationary noise or LIGO/Virgo/other detector data
- Analyse software injections, hardware injections, detection candidates/interesting events
- Include spin in injections and analysis
- Use any network composed of LIGO/Virgo detectors:
 - PDF $(\vec{\lambda}) \propto \text{prior}(\vec{\lambda}) \times \prod_i L_i(d|\vec{\lambda})$

Output:

 Posterior probability-density function (PDF) of the parameter set that describes the model (9–12–15 D)

MCMC example

Short GRB (NS-NS inspiral): GW data only

NS-NS, no spins

- $M_{1,2} = 1.5 + 1.2 M_{\odot}$
- 3 detectors (initial H1,L1,V)
- $d_{\rm L} \approx 16.4 \, {\rm Mpc}$ ($\Sigma \, {\rm SNR} \approx 15.0$)

ι = 10°

- black dash-dotted line: true value
- red dashed line: posterior median
- red dotted lines: 95%-probability range

Short GRB (NS-NS inspiral): GW data only

Short GRB (NS-NS inspiral): GW data only

Short GRB: NS-NS inspiral without spin

NS-NS, non-spinning: $1.2 + 1.5 M_{\odot}$ $d_L \approx 10.2 - 17.8 \text{ Mpc}$ ($\Sigma \text{ SNR=15.0}$)

No astrophysical information

Sky position known exactly

Sky position known exactly + distance known $\pm 10\%$

Sky position known exactly + inclination known: $\iota < 20^{\circ}$

Short GRB: NS-NS inspiral without spin

Short GRB: BH-NS inspiral with spin

BH-NS, spinning BH: $10 + 1.4 M_{\odot}$, $a_{spin} = 0.6$ $d_{L} \approx 20.2 \text{ Mpc} (\Sigma \text{ SNR}=15.0)$

No astrophysical information

Sky position known

Sky position and distance known

Conclusions

GW parameter-estimation code

- Can recover the 9–12–15 parameters of a binary inspiral, including one or two spins, using an MCMC technique
- Sky-position reconstruction (few $\times 10^{\circ^2}$) is poor for astrophysical standards
- Combination of position, distance and time can lead to association with an electromagnetic detection (*e.g.* GRB)

Measuring NS masses

- $\bullet\,$ Individual masses can be measured with an accuracy of $\sim 15-20\%$
- Chirp mass well determined most uncertainty is in mass ratio
- Uncertainty in $M_1 imes M_2$ is few $imes 10^{-4} M_\odot^2 \sim (0.02 \, M_\odot)^2$

Conclusions (numbers are preliminary)

Using astrophysical knowledge for GW data analysis: no spins

- Knowing the sky position of a source improves determination of:
 - distance (\sim 20 50%)
 - inclination (≥ 2 detectors)
- Knowing the position and distance improves inclination further, also in 1-detector analysis

Using astrophysical knowledge for GW data analysis: spins

- Knowing the sky position of a source improves determination of:
 - distance (~ 50%)
 - inclination, polarisation angle (50 90%)
 - masses (\sim 20%)
 - spin angles
- Knowing the position and distance improves:
 - spin magnitude (\sim 20%)