The formation of (double-lined) double white dwarfs

Marc van der Sluys

Radboud University Nijmegen / FOM / NIKHEF / Virgo

Andrew Loveridge, Vicky Kalogera Tyrone Woods, Natasha Ivanova Mónica Zorotovic, Matthias Schreiber, Alberto Rebassa-Mansergas

Outline

Common envelopes

- Common Envelope and Envelope Ejection
- Envelope structure parameter
- Envelope binding energies

Double white dwarf systems

- Observed double white dwarfs
- Stable and unstable mass transfer
- Stable, non-conservative mass transfer

Double white dwarf populations

- Population synthesis
- Populations

Observed double white dwarfs

System	Porb	aorb	<i>M</i> ₁	M ₂	q ₂	$\Delta \tau$
	(d)	(H_{\odot})	(<i>M</i> ⊙)	(<i>M</i> ⊙)	(M_2/M_1)	(Myr)
WD 0135–052	1.556	5.63	0.52 ± 0.05	0.47 ± 0.05	0.90 ± 0.04	350
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03	450
WD 0957–666	0.061	0.58	0.32	0.37	1.13 ± 0.02	325
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.03	215
PG 1115+116	30.09	46.9	0.7	0.7	0.84 ± 0.21	160
WD 1204+450	1.603	5.74	0.52	0.46	0.87 ± 0.03	80
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05	_
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
WD 1704+481a	0.145	1.14	0.56 ± 0.07	$\textbf{0.39} \pm \textbf{0.05}$	0.70 ± 0.03	-20 ^a
HE 2209–1444	0.277	1.88	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500

^a Unclear which white dwarf is older

- *2 is supposedly the latest-formed WD
- See references in Maxted et al. (2002), Nelemans & Tout (2005) and MvdS et al. (2006)

- WD masses \sim 0.3 0.7 M_{\odot}
- Orbital separations \sim 0.5 6 R_{\odot} (+47 R_{\odot})

Double white dwarf systems

Double white dwarf populations

Common Envelope

Properties of observed white dwarfs:

- Average orbital separation:
 - 7 R_{\odot}
- Typical progenitor system:
 - $M_{
 m c}~\gtrsim~0.3~M_{\odot}$
 - $R_* \sim 100 \, R_{\odot}$

Classical α -common envelope (CE; spiral-in):

• orbital energy is used to expel envelope (Webbink, 1984):

$$E_{\text{bind}} = \alpha_{\text{CE}} \left[\frac{G M_{1\text{f}} M_2}{2 a_{\text{f}}} - \frac{G M_{1\text{i}} M_2}{2 a_{\text{i}}} \right]$$

 α_{CE} is the common-envelope efficiency parameter

Assumptions:

- Envelope ejection occurs much faster than nuclear evolution, hence:
 - core mass does not grow during envelope ejection
 - no accretion by companion during envelope ejection
- The timescale does not have to be the dynamical timescale(!)

Double white dwarf populations

Envelope structure parameter

- Detailed stellar model is needed to compute *E*_{bind}
- Use λ_{env} to approximate E_{bind} from basic parameters (Webbink, 1984; De Kool et al., 1987)

$$\lambda_{\rm env} \equiv \frac{G \, M \, M_{\rm env}}{R \, E_{\rm bind, env}}$$

$$-\frac{GMM_{\rm env}}{R} = \alpha_{\rm CE}\,\lambda_{\rm env}\,\Delta E_{\rm orb}$$

- Smaller λ_{env} indicates more centrally concentrated envelope
- Often, a constant value for λ_{env} is assumed in population-synthesis codes:
 - $\lambda_{env} = 0.5$ (*e.g.* De Kool 1987; Nelemans et al., 2000; Hurley et al., 2002)
 - $\alpha_{\rm CE}\lambda_{\rm env}=$ 0.5, 1.0 (*e.g.* Belczynski et al., 2008)
- Value of λ_{env} is far from constant (e.g. Dewi & Tauris, 2000; MvdS et al., 2006)

(Loveridge et al., 2011)

Double white dwarf populations

Envelope structure parameter

Fits for the binding energy

$$E_{\rm bind} = \int_{M_{\rm c}}^{M_{\rm s}} \left(E_{\rm int}(m) - \frac{Gm}{r(m)} \right) {
m d}m$$

$$\begin{split} \log\left(\frac{-E_{\rm bind}}{\rm erg}\right) &\approx E_0 + \Lambda\left(M_0, M\right) \times \\ &\sum_{m,r} \alpha_{m,r} \left[\log\left(\frac{M}{M_{\odot}}\right)\right]^m \left[\log\left(\frac{R}{R_{\odot}}\right)\right]^r \end{split}$$

- ev / STARS / TWIN (Eggleton 1971, 1972, ...)
- 73 models, 0.8 $M_{\odot} \leq M \leq$ 100 M_{\odot}
- fit as a function of ZAMS mass, current mass and current radius
- 6 different metallicities ($Z = 10^{-4} 0.03$)
- A correction factor for wind mass loss
- separate fits for recombination energy

Observed double white dwarfs

Porb	(Bo)	M_1	M_2	q_2	$\Delta \tau$ (Myr)
(u)	(10)	(1110)	(110)	(112/111)	(10191)
1.556 1.407	5.63 4.99	$\begin{array}{c} 0.52\pm0.05\\ 0.37\end{array}$	$\begin{array}{c} 0.47 \pm 0.05 \\ 0.47 \end{array}$	$\begin{array}{c} 0.90\pm0.04\\ 1.26\pm0.03\end{array}$	350 450
0.061	0.58	0.32	0.37	1.13 ± 0.02	325
0.145	0.99	0.33	0.29	0.87 ± 0.03	215
30.09	46.9	0.7	0.7	$\textbf{0.84} \pm \textbf{0.21}$	160
1.603	5.74	0.52	0.46	0.87 ± 0.03	80
2.209	6.59	0.44	0.44	1.26 ± 0.05	_
0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20 ^a
0.277	1.88	$\textbf{0.58} \pm \textbf{0.08}$	$\textbf{0.58} \pm \textbf{0.03}$	1.00 ± 0.12	500
	Porb (d) 1.556 1.407 0.061 0.145 30.09 1.603 2.209 0.518 0.145 0.277	$\begin{array}{c c} \textbf{P}_{orb} & \textbf{a}_{orb} \\ (d) & (R_{\odot}) \\ \hline 1.556 & 5.63 \\ 1.407 & 4.99 \\ 0.061 & 0.58 \\ 0.145 & 0.99 \\ 30.09 & 46.9 \\ \hline 1.603 & 5.74 \\ 2.209 & 6.59 \\ 0.518 & 2.93 \\ 0.145 & 1.14 \\ 0.277 & 1.88 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a Unclear which white dwarf is older

- *2 is supposedly the latest-formed WD
- See references in Maxted et al. (2002), Nelemans & Tout (2005) and MvdS et al. (2006)

- WD masses \sim 0.3 0.7 M_{\odot}
- Orbital separations \sim 0.5 6 R_{\odot} (+47 R_{\odot})

Double white dwarf populations

Formation scenarios

Unstable + unstable MT							
MS + MS							
↓ Unstable M.T. (γ -EE) ↓							
WD + MS							
↓ Unstable M.T. (α -CE, γ -EE) ↓							
WD + WD							

Envelope ejection with angular-momentum conservation

• Average specific angular momentum of the system (Nelemans et al., 2000):

$$rac{J_{\rm i}~-~J_{\rm f}}{J_{\rm i}}~=~\gamma_{\rm s}~rac{M_{
m li}~-~M_{
m lf}}{M_{
m tot,i}}~(\gamma_{
m s}\sim1.5)$$

• Specific angular momentum of the donor (MvdS et al., 2006):

$$rac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma_{\rm d} rac{M_{\rm li} - M_{\rm lf}}{M_{\rm tot,f}} rac{M_{\rm 2i}}{M_{\rm li}} \quad (\gamma_{\rm d} \sim 1.0)$$

• Specific angular momentum of the accretor (MvdS et al., 2006):

$$\frac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma_{\rm a} \left[1 - \frac{M_{\rm tot,i}}{M_{\rm tot,f}} \exp\left(\frac{M_{\rm lf} - M_{\rm li}}{M_2}\right)\right] \quad (\gamma_{\rm a} \sim 1.0)$$

Double white dwarf populations

Unstable MT results: overview

Selec	t systems	with:
-------	-----------	-------

● 0.8 < α_{CE} < 1.2</p>

• 1.46 $< \gamma_{\rm s} <$ 1.79

•
$$0.9 < \gamma_{a,d} < 1.1$$

System	1: $\gamma_{s} \alpha_{CE}$	2: $\gamma_{\rm s}\gamma_{\rm s}$	3: $\gamma_a \alpha_{\rm CE}$	4: $\gamma_a \gamma_a$	5: $\gamma_{\rm d} \alpha_{\rm CE}$	6: $\gamma_d \gamma_a$	Best:
0135 0136 0957 1101 1115	-/- +/+ +/+ +/~ +/~	+/~ +/+ +/+ +/- +/+	+/~ +/~ -/- +/- +/~	-/- +/~ +/- -/- +/~	+/~ +/+ +/+ +/~ +/+	+/~ +/+ +/+ +/~ +/+	2,3,5,6 1,2,5,6 1,2,5,6 1,5,6 2,5,6
1204 1349 1414 1704a 1704b 2209	-/- +/+ +/- +/- +/-	+/- +/+ +/+ +/- +/- +/+	+/- +/+ -/- -/- -/-	+/- +/+ +/+ -/- +/- -/-	+/- +/+ -/- +/- +/~	+/+ +/+ +/+ -/- +/- +/+	6 1–6 2,4,6 1,2 1,2,4,5,6 1,2,6
Best	$7 \times$	9 ×	2 ×	3 ×	$7 \times$	10×	

Column 1: +: α , γ within range, -: α , γ outside range Column 2: +: $\Delta(\Delta t) < 50\%$, \sim : 50% $< \Delta(\Delta t) < 50\%$, -: $\Delta(\Delta t) > 500\%$

DWD summary/conclusions so far

Stable, conservative mass transfer:

- Nelemans et al. (2000); MvdS et al. (2006)
- Analytic models and detailed binary-evolution models give qualitatively same results
- $\bullet\,$ We can reproduce perhaps 1–4 out of 10 systems, all with $\alpha_{CE}>$ 1.6
- Conservative MT + CE cannot explain the observed double white dwarfs

Unstable mass transfer:

- Unstable envelope ejection can explain the observed double white dwarfs
- Several EE descriptions can reconstruct observed masses and periods
- In addition, $\gamma_s\gamma_s$ and $\gamma_d\gamma_a$ can explain most observed cooling-age differences

But:

- What do $\gamma_{s,d,a}$ mean?
- Is q_{crit} a good condition for stabilty of MT?
- What about stable, non-conservative MT?
- Do stellar winds have any influence?

System mass loss during stable mass transfer

Mass loss during mass transfer:

- "stable, non-conservative mass transfer [...] would stabilise the mass transfer." (Mvds et al., 2006)
- "[the DWDs] evidently evolved through quasi-conservative mass transfer." (Webbink, 2008)

This leads to:

- stable MT initiated at longer orbital periods (q_{crit} changes)
- stable MT initiated for almost equal-mass binaries
- stable MT from more-massive donor stars
- shorter post-MT orbits due to AM loss

Hence:

- more massive primaries
- less massive secondaries
- more (low-mass) DWDs with $q \sim 1$

Double white dwarf populations

Stability of and conservation factor during mass transfer

Response of donor star and Roche lobe to mass loss:

$$\zeta_{\rm ad} \equiv \left(\frac{d\log R_*}{d\log M_*}\right)_{\rm ad} = f\left(\frac{M_{\rm c}}{M_*}\right)$$

$$\zeta_{\mathrm{Rl}} \equiv rac{d\log R_{\mathrm{Rl}}}{d\log M_*} = f(q,\beta)$$

- If $\zeta_{ad} \gtrsim \zeta_{Rl}$ (*i.e.*, $\dot{R}_* \lesssim \dot{R}_{Rl}$), mass transfer is dynamically stable (Hjellming & Webbink, 1987)
- β : mass-conservation factor; $\dot{M}_2 = -\beta \dot{M}_1$

Double white dwarf populations

Thermal and nuclear mass transfer

Formation of low-mass DWDs through stable mass transfer

Population synthesis

BSE

- BSE/popbin (Hurley et al., 2000, 2002)
- Updated stability criterion (ζ instead of q_{crit}) for giants

Initial population

- 200 million ZAMS binaries; constant star-formation rate
- Kroupa IMF, 0.8 $M_{\odot} \leq M_1 \leq$ 10 M_{\odot}
- Uniform q_i distribution; 0.1 $M_{\odot} \leq M_2 \leq M_1$
- Uniform distribution in log(a_i), 5 $R_{\odot} \le a \le 10^4 R_{\odot}$; e = 0

Assumptions

- $\alpha_{\rm CE} = 1.0$, λ : simple fit
- Constant MT conservation factor $0.0 \le \beta \le 1.0$

Match with observed systems

- M_2 within observed uncertainty ($\Delta M_{2,\min} = 0.05 M_{\odot}$)
- q2 within observed uncertainty
- Porb within 1% from observed

Double white dwarf systems

Double white dwarf populations

Population synthesis: $q - P_{orb}$

MvdS et al., in preparation

β = 0.0–1.0

Non-conservative MT

standard stability criterion (q_{crit})

Double white dwarf systems

Double white dwarf populations

Population synthesis: $q - P_{orb}$

MvdS et al., in preparation

- β = 0.0–1.0
- adapted stability criterion ($q_{crit} \rightarrow \zeta s$)

Double white dwarf systems

Double white dwarf populations

Population synthesis: individual masses

MvdS et al., in preparation

Double white dwarf populations

Match with observed double-lined double white dwarfs

System	Observed				Reconstructed				Initial			
-	<i>M</i> ₁ (<i>M</i> ⊙)	М₂ (<i>M</i> _☉)	q 2	Porb (d)	<i>M</i> ₁ (<i>M</i> ⊙)	М₂ (<i>M</i> _☉)	q 2	Porb (d)	<i>M</i> _{1i} (<i>M</i> _☉)	М_{2і} (M _☉)	P i (d)	eta_{\max}
WD 0135 WD 0136 WD 0957 WD 1101 PG 1115	0.52 0.37 0.32 0.33 0.7	0.47 0.47 0.37 0.29 0.7	0.90 1.26 1.13 0.87 0.84	1.556 1.407 0.061 0.145 30.09	0.515 — 0.315 0.386 0.826	0.466 0.356 0.334 0.701	0.905 1.130 0.865 0.849	1.547 — 0.061 0.144 30.038	1.27 1.03 1.47 3.45	1.25 1.02 1.47 2.03	233 16.2 170 3452	0.7 1.0 1.0
WD 1204 WD 1349 HE 1414 WD 1704 HE 2209	0.52 0.44 0.55 0.56 0.58	0.46 0.44 0.71 0.39 0.58	0.87 1.26 1.28 0.70 1.00	1.603 2.209 0.518 0.145 0.277	0.515 0.534 0.520 0.582	0.443 0.694 0.357 0.580	0.860 	1.598 0.519 0.145 0.277	1.53 1.93 1.96 2.45	1.47 1.86 1.88 2.45	160 60.3 31.0 352	0.3 — 0.2 0.0 1.0

See references in Maxted et al. (2002), Nelemans & Tout (2005) and MvdS et al. (2006)

Double white dwarf populations

Results: example solutions

MvdS et al., in preparation

rocheplot.sf.net

Double white dwarf populations

Population synthesis: γ -values for non-conservative MT

DWD conclusions

Stable, conservative mass transfer + CE

- Cannot explain the 10 observed DWDs
- Best try: 1–4 systems, with $\alpha_{\rm CE}\gtrsim$ 1.6

Unstable envelope ejection (α, γ)

- Explains 9–10 out of 10 of them reasonably
- Explains 8–9 systems when cooling age is taken into account
- Physics is somewhat poor for ys

Stable, non-conservative mass transfer + CE

- Can explain ~ 8/10 observed DWDs reasonably well (q, P_{orb}, M₁, M₂)
- Forms fewer DWDs through CE, but many more through stable MT
- Crux is adapted stability criterion, not AM loss
- Results effectively in 1.5 $\lesssim \gamma \lesssim$ 2.0 for many systems

Progenitors:

- Equal-mass systems in double CE (β independent)
- Near-equal-mass systems + small β

Work in progress

Observable?

- Convert population of physical binaries into detectable double-lined systems (Alberto)
- Take into account cooling ages

Interpretation

- Why should $\beta \ll 1$?
- Connection with near-equal-mass initial systems?

More observations

- Single-lined systems
- ELMs systems

Double white dwarf populations

