Using astrophysical knowledge in gravitational-wave data analysis of binary inspirals

Marc van der Sluys

Radboud University Nijmegen / FOM / NIKHEF

-28 Th

Vivien Raymond, Ben Farr, Ilya Mandel, Vicky Kalogera Gijs Nelemans, Sweta Shah, Chris Chambers Christian Röver, Nelson Christensen, Alberto Vecchio

Parameter	estimation
00000	

Spin or no spin?

Using astrophysical information 00

Conclusions 00

Outline

Parameter estimation

- Signal and noise
- The SPINSPIRAL code

Spin or no spin?

- Analysis of a BH-NS and BH-BH signals
- The nuisance and importance of having spins

3

Using astrophysical information

- Example: GRB without spin
- Example: GRB with spin

 Parameter estimation
 Spin or no spin?
 Using astrophysical information
 Conclusions

 • 0000
 0000000
 00
 00

 Inspiral waveforms with increasing spin
 o

Initial LIGO and Virgo can detect the last \sim 10 s of a binary inspiral:

 $10 M_{\odot} \text{ BH} + 1.4 M_{\odot} \text{ NS}; \quad a_{\text{spin},\text{BH}} \equiv S/M^2 = 0.0, 0.1 \text{ and } 0.5$

Parameter estimation ○●○○○	Spin or no spin?	U	lsing astrophysica	l information	Conclusions OO
Predicted dete	ection rates of binar	y inspira	als		
all water					
Horizon dista	nces (Mpc):				
		NS-NS	BH-NS	BH-BH	
	Initial LIGO/Virgo	32	67	160	

364

767

1850

Detection-rate estimates (yr^{-1}) :

Advanced LIGO/Virgo

	NS-NS	BH-NS	BH-BH
Initial LIGO/Virgo	$2 \times 10^{-4} - 0.2$	$7 \times 10^{-5} - 0.1$	$2 \times 10^{-4} - 0.5$
Advanced LIGO/Virgo	0.4 - 400	0.2 - 300	0.4 - 1000

Estimates assume $\textit{M}_{\rm NS}=$ 1.4 \textit{M}_{\odot} and $\textit{M}_{\rm BH}=$ 10 \textit{M}_{\odot} Abadie et al. (2010)

Spin or no spin?

Using astrophysical information

Conclusions

Signal injection into detector noise

Example:

- Using two 4-km detectors H1, L1
- Inject signal coherently

Retrieve physical

parameters using MCMC

ΣSNR = 17

Spin or no spin?

Using astrophysical information

$\text{SPINspiral code} \rightarrow \text{LALinference}$

Purpose:

- Use Markov-Chain Monte Carlo for parameter estimation
- Follow-up after detection
- Gaussian, stationary noise or LIGO/Virgo/other detector data
- Analyse software injections, hardware injections, detection candidates/interesting events
- Include spin in injections and analysis
- Use any network composed of LIGO/Virgo detectors:
 - PDF $(\vec{\lambda}) \propto \operatorname{prior}(\vec{\lambda}) \times \prod_i L_i(d|\vec{\lambda})$

Output:

 posterior probability-density function (PDF) of the parameter set that describes the model (9–12–15 D)

Parameter estimation ○○○○●	Spin or no spin?	OS	OO
SPINSPIRAL	example		

Parameter	estimation

Spin or no spin?

Using astrophysical information

Conclusions 00

Information and correlations increase with spin

Spin or no spin?

Using astrophysical information

Conclusions

MCMC results for the analysis of a BH-NS signal

van der Sluys et al., 2008

Parameters:

- H1, L1, V
- *M* = 10, 1.4 *M*_☉
- $d_L = 22.4 \, \text{Mpc}$
- $a_{\rm spin} = 0.8$, $\theta_{\rm SL} = 55^{\circ}$
- $\Sigma SNR \approx 17.0$
- simulated noise
- Black dash-dotted line: injection
- Red dashed line: median

Parameter estimation ococo Sky position for signals with different spins

Spinning BH, non-spinning NS: 10 + 1.4 M_{\odot} , 16–22 Mpc, Σ SNR=17

> 2 detectors, $a_{spin} = 0.0$ 2- σ accuracy: 821^{o2}

> 2 detectors, $a_{spin} = 0.5$ 2- σ accuracy: 163^{o2}

3 detectors, $a_{spin} = 0.5$ 2- σ accuracy: 40^{°2}

van der Sluys et al., 2008; Raymond et al., 2009

Spin or no spin?

Using astrophysical information

Conclusions

Analysis of a BH-BH signal with spins

HS-2:

- 3.5-pN waveform
- 3 detectors (H1,L1,V)
- $\mathcal{M} = 7.6 \, M_{\odot}, \\ \eta = 0.238; \\ M_1 = 11.0 \, M_{\odot}, \\ M_2 = 7.0 \, M_{\odot}$
- $a_{s1,2} = 0.9, 0.7$
- $\theta_{s1,2} = 10,20^{\circ}$
- $d_{\rm L}=74.5\,{
 m Mpc}$
- Σ SNR=15
- simulated noise

van der Sluys et al., in preparation

Spin or no spin? ○○○●○○○ Using astrophysical information

Conclusions

Analysis of a BH-BH signal with spins

Spin or no spin?

Using astrophysical information

Conclusions 00

The nuisance of having spins in your analysis

Signal **without** spins, analysis with spinning template

Signal **with** spins, analysis with spinning template

Spin or no spin?

Using astrophysical information

Conclusions 00

The importance of having spins in your analysis

Signal **with** spins, analysis with non-spinning template

3 detectors

See also: poster by Riccardo & Salvatore at GWPAW

Spin or no spin?

Using astrophysical information

Conclusions

Using astrophysical data to constrain parameters: short GRB

BH-NS, spinning BH: $10 + 1.4 M_{\odot}, a_{spin} = 0.6$ $d_{L} \approx 20.2 \text{ Mpc} (\Sigma \text{ SNR}=15.0)$

No astrophysical information

Sky position known

Sky position and distance known

van der Sluys et al., in preparation

Parameter estimation	Spin or no spin?	Using astrophysical information	Conclusions ●O
Conclusions			

SPINSPIRAL

- can recover the 12–15 parameters of a binary inspiral, including one or two spins, using an MCMC technique
- has now been integrated in the LALinference package
- Sky-position reconstruction (few ×10°²) is poor for astrophysical standards
- Combination of position, distance and time can lead to association with an electromagnetic detection (*e.g.* GRB)

Taking into account spins

- The inclusion of spin adds significantly to the number of dimensions (9–12–15) and introduces (strong) correlations
- Failing to take into account spin can result in biases in *e.g.* mass and sky-position parameters

Parameter estimation	Spin or no spin? 0000000	Using astrophysical information	Conclusions ⊙●
Conclusions (numbe	rs are preliminary)		

Using astrophysical knowledge for GW data analysis: no spins

- Knowing the sky position of a source improves determination of:
 - distance (\sim 20 50%)
 - inclination (≥ 2 detectors)
- Knowing the position and distance improves inclination further, also in 1-detector analysis

Using astrophysical knowledge for GW data analysis: spins

- Knowing the sky position of a source improves determination of:
 - distance (\sim 50%)
 - inclination, polarisation angle (50 90%)
 - masses (\sim 20%)
 - spin angles
- Knowing the position and distance improves:
 - spin magnitude (\sim 20%)

Learn:

- whether SHGRBs are caused by CBCs
- about masses and spins of GRB progenitors
- get a handle on GRB beaming

Parameter	estimation

Spin or no spin?

Using astrophysical information

Conclusions

End...

Spin or no spin

Using astrophysical information

Conclusions

Convergence of chains

- Dots: starting values
- Dashes: injection values

