Compact binaries and gravitational waves

Marc van der Sluys

Radboud University Nijmegen / FOM / NIKHEF

Outline

Common envelopes

- Common Envelope and Envelope Ejection
- Envelope structure parameter
- Envelope binding energies

Double white dwarfs

- Observed double white dwarfs
- Stable, conservative mass-transfer
- Unstable mass-transfer
- Stable, non-conservative mass transfer

Galactic binaries with eLISA

- (e)LISA
- Galactic binaries
- LISA data analysis
- Using astrophysical information

Observed double white dwarfs

System	Porb (d)	a_{orb} (R _☉)	<i>M</i> ₁ (<i>M</i> ⊙)	М₂ (М _☉)	q ₂ (<i>M</i> ₂ / <i>M</i> ₁)	Δau (Myr)
WD 0135-052	1.556	5.63	$\textbf{0.52} \pm \textbf{0.05}$	$\textbf{0.47} \pm \textbf{0.05}$	$\textbf{0.90} \pm \textbf{0.04}$	350
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03	450
WD 0957–666	0.061	0.58	0.32	0.37	1.13 ± 0.02	325
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.03	215
PG 1115+116	30.09	46.9	0.7	0.7	$\textbf{0.84} \pm \textbf{0.21}$	160
WD 1204+450	1.603	5.74	0.52	0.46	$\textbf{0.87} \pm \textbf{0.03}$	80
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05	—
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
WD 1704+481a	0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20 ^a
HE 2200_1///	0.277	1.99	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500
112 2203-1444	0.277	1.00	0.50 ± 0.00	0.50 ± 0.03	1.00 ± 0.12	500

^a Unclear which white dwarf is older

• WD masses \sim 0.3 – 0.7 M_{\odot}

See references in Maxted et al. (2002), Nelemans & Tout (2005) and MvdS et al. (2006)

• Orbital separations \sim 0.5 – 6 R_{\odot} (+47 R_{\odot})

Common Envelope and Envelope Ejection

Properties of observed white dwarfs:

- Average orbital separation:
 - 7 R_☉
- Typical progenitor system:
 - $M_{
 m c}~\gtrsim~0.3~M_{\odot}$
 - $R_{*}~\sim~100\,R_{\odot}$

Assumptions:

- Envelope ejection occurs much faster than nuclear evolution, hence:
 - core mass does not grow during envelope ejection
 - no accretion by companion during envelope ejection
- The timescale is not necessarily the dynamical timescale(!)

Envelope ejection

Classical α -common envelope (CE; spiral-in):

• orbital energy is used to expel envelope (Webbink, 1984):

$$E_{\rm bind} = \frac{\alpha_{\rm CE}}{2 \, a_{\rm f}} \left[\frac{G \, M_{\rm lf} \, M_2}{2 \, a_{\rm f}} - \frac{G \, M_{\rm li} \, M_2}{2 \, a_{\rm i}} \right]$$

• α_{CE} is the common-envelope efficiency parameter

γ -envelope ejection (EE; spiral-in not necessary):

 envelope ejection with angular-momentum balance (Nelemans et al., 2000):

$$\frac{J_{\mathrm{i}} - J_{\mathrm{f}}}{J_{\mathrm{i}}} = \frac{\gamma_{\mathrm{CE}}}{M_{\mathrm{1i}} + M_{\mathrm{2}}}$$

• $\gamma_{CE} \approx 1.5$ is the efficiency parameter

Envelope structure parameter

- Detailed stellar model is needed to compute Ebind
- Use λ_{env} to approximate E_{bind} from basic parameters (Webbink, 1984; De Kool et al., 1987)

$$\lambda_{\rm env} \equiv \frac{GMM_{\rm env}}{RE_{\rm bind,env}}$$
$$\frac{GMM_{\rm env}}{R} = \alpha_{\rm CE} \lambda_{\rm env} \Delta E$$

- Smaller λ_{env} indicates more centrally concentrated envelope
- Often, a constant value for λ_{env} is assumed in population-synthesis codes:
 - $\lambda_{
 m env}=0.5$ (e.g. De Kool 1987; Nelemans et al., 2000; Hurley et al., 2002)
 - $lpha_{ ext{CE}}\lambda_{ ext{env}}=0.5, 1.0$ (e.g. Belczynski et al., 2008)
- Value of λ_{env} is far from constant (e.g. Dewi & Tauris, 2000; MvdS et al., 2006)

Determine typical values for λ_{env}

- Grid of 116 detailed stellar-evolution models; 32 brown-dwarf models
- Generate 10⁶ random ZAMS binaries; $M_* < 20 M_{\odot}$; uniform $P(\log P_{orb}), P(q)$; $M_c \equiv M(X = 0.1)$
- Follow donor stars from ZAMS to CE; record properties at RLOF: 165,007 CEs

Envelope structure parameter

Fits for the binding energy

$$E_{\text{bind}} = \int_{M_{\text{c}}}^{M_{\text{s}}} \left(E_{\text{int}}(m) - \frac{Gm}{r(m)} \right) \mathrm{d}n$$

$$\log\left(\frac{-E_{\text{bind}}}{\text{erg}}\right) \approx E_0 + \Lambda(M_0, M) \times \\\sum_{m,r} \alpha_{m,r} \left[\log\left(\frac{M}{M_{\odot}}\right)\right]^m \left[\log\left(\frac{R}{R_{\odot}}\right)\right]^r$$

- 73 models, 0.8 $M_{\odot} \leq M \leq$ 100 M_{\odot}
- fit as a function of ZAMS mass, current mass and current radius
- 6 different metallicities ($Z = 10^{-4} 0.03$)
- Λ correction factor for wind mass loss
- separate fits for recombination energy

Galactic binaries with eLISA

Fits for the binding energy

$$E_{\text{bind}} = \int_{M_{\text{c}}}^{M_{\text{s}}} \left(E_{\text{int}}(m) - \frac{Gm}{r(m)} \right) \mathrm{d}m$$

$$\log\left(\frac{-E_{\text{bind}}}{\text{erg}}\right) \approx E_0 + \Lambda(M_0, M) \times \\\sum_{m,r} \alpha_{m,r} \left[\log\left(\frac{M}{M_{\odot}}\right)\right]^m \left[\log\left(\frac{R}{R_{\odot}}\right)\right]^r$$

- 73 models, 0.8 $M_{\odot} \leq M \leq$ 100 M_{\odot}
- fit as a function of ZAMS mass, current mass and current radius
- 6 different metallicities ($Z = 10^{-4} 0.03$)
- Λ correction factor for wind mass loss
- separate fits for recombination energy

Accuracies of the fits

Ζ	group	$\Delta_{10\%}$ fit	$\Delta_{10\%}$ test	$\Delta_{15\%}$ fit	$\Delta_{15\%}$ test
10^{-4}	LMR	97.6%	97.7%	98.9%	99.1%
10^{-4}	LMA	86.6%	86.4%	94.8%	94.8%
10^{-4}	HM	94.8%	93.6%	96.4%	94.6%
10 ⁻³	LMR	92.0%	90.4%	95.0%	93.6%
10^{-3}	LMA	85.3%	84.3%	95.2%	92.5%
10^{-3}	HM	91.1%	90.0%	95.5%	93.4%
0.02	LMR	94.3%	92.7%	96.4%	96.4%
0.02	LMA	97.1%	91.9%	99.3%	96.9%
0.02	HM	92.0%	91.7%	96.6%	96.1%

Conclusions for the binding energies

Envelope binding energies:

- λ_{env} varies wildly as a function of stellar mass and evolutionary stage
- Simplified assumptions for $\lambda_{\rm env}$ may imply unphysical values for $\alpha_{\rm CE}$
- Loveridge et al. (2011) provide accurate fits for E_{bind}
 - · electronic data files and routines online
 - λ_{env} no longer needed

Population-synthesis codes:

- Fits are (being) implemented in:
 - StarTrack (Belczynski et al.)
 - SeBa (Toonen?)
 - BSE (Hurley et al., Mónica Zorotovic)

To do:

- Massive stars:
 - uncertainty in core-envelope boundary
 - deviations due to strong stellar winds

Galactic binaries with eLISA

Observed double white dwarfs

WD0316+768

Adapted from Maxted et al. (2002)

- well determined: *P*_{orb}, *q*
- model-dependent: M_1 , M_2 , τ_{cool}

Observed double white dwarfs

	~ //		A	~	Δ
/stem P _{orb} a	a _{orb} IVI ₁	IV.	1 ₂	q ₂	$\Delta \tau$
(d) (A	(R_{\odot}) (M_{\odot})) (A	M _☉)	(M_2/M_1)	(Myr)
D 0135-052 1.556 5	5.63 0.52	\pm 0.05 0.	$.47 \pm 0.05$ (0.90 ± 0.04	350
D 0136+768 1.407 4	4.99 0.37	0.	.47	1.26 ± 0.03	450
D 0957-666 0.061 0	0.58 0.32	0.	.37	1.13 ± 0.02	325
D 1101+364 0.145 0	0.33 0.33	0.	.29	0.87 ± 0.03	215
G 1115+116 30.09 4	46.9 0.7	0.	.7	0.84 ± 0.21	160
D 1204+450 1.603 5	5.74 0.52	0.	.46	0.87 ± 0.03	80
D 1349+144 2.209 6	6.59 0.44	0.	.44	1.26 ± 0.05	_
E 1414–0848 0.518 2	2.93 0.55	\pm 0.03 0.	.71 ± 0.03	1.28 ± 0.03	200
D 1704+481a 0.145 1	1.14 0.56	\pm 0.07 0.	$.39 \pm 0.05$ (0.70 ± 0.03	-20 ^a
E 2209–1444 0.277 1	1.88 0.58	\pm 0.08 0.	$.58\pm0.03$	1.00 ± 0.12	500
D 0135-052 1.556 5 D 0136+768 1.407 4 D 0957-666 0.061 0 D 1101+364 0.145 0 G 1115+116 30.09 4 D 1204+450 1.603 5 D 1349+144 2.209 6 E 1414-0848 0.518 2 D 1704+481a 0.145 1 E 2209-1444 0.277 1	5.63 0.52 4.99 0.37 0.58 0.32 0.99 0.33 46.9 0.7 5.74 0.52 5.59 0.44 2.93 0.55 1.14 0.56 1.88 0.58	$egin{array}{cccc} \pm \ 0.05 & 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ 0.$	$\begin{array}{c} .47 \pm 0.05 \\ .47 \\ .37 \\ .29 \\ .7 \\ .46 \\ .44 \\ .71 \pm 0.03 \\ .39 \pm 0.05 \\ .58 \pm 0.03 \end{array}$	$\begin{array}{c} 0.90 \pm 0.04 \\ 1.26 \pm 0.03 \\ 1.13 \pm 0.02 \\ 0.87 \pm 0.03 \\ 0.84 \pm 0.21 \\ 0.87 \pm 0.03 \\ 1.26 \pm 0.05 \\ 1.28 \pm 0.03 \\ 0.70 \pm 0.03 \\ 1.00 \pm 0.12 \end{array}$	35 45 32 21 16 80 -2 50

^a Unclear which white dwarf is older

See references in Maxted et al. (2002), Nelemans & Tout (2005) and MvdS et al. (2006)

Galactic double white dwarfs for cLISA

/pes and formation channels:							
ν	Ν	$N/N_{\rm gal}$	N _{Resolved}	%			
:							
$1.34 imes10^{-2}$	$1.06 imes10^{8}$	38.41%	19936	59.21%			
$5.07 imes10^{-3}$	$4.11 imes 10^7$	14.89%	12852	38.17%			
$1.15 imes10^{-2}$	$1.08 imes10^{8}$	39.13%	586	1.74%			
2.13×10^{-3}	2.09×10^7	7.57%	296	0.88%			
$9.86 imes10^{-3}$	8.27×10^7	29.96%	1061	3.15%			
2.12×10^{-2}	$1.84 imes10^8$	66.67%	32 609	96.85%			
$1.04 imes10^{-3}$	$9.3 imes10^{6}$	3.37%	0	0			
$3.21 imes 10^{-2}$	$2.76 imes10^8$		33 670				
	ν : 1.34 × 10 ⁻² 5.07 × 10 ⁻³ 1.15 × 10 ⁻² 2.13 × 10 ⁻² 2.13 × 10 ⁻³ 9.86 × 10 ⁻³ 2.12 × 10 ⁻² 1.04 × 10 ⁻³ 3.21 × 10 ⁻²	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ν N N/N _{gal} : 1.34 × 10 ⁻² 1.06 × 10 ⁸ 38.41% 5.07 × 10 ⁻³ 4.11 × 10 ⁷ 14.89% 1.15 × 10 ⁻² 1.08 × 10 ⁸ 39.13% 2.13 × 10 ⁻³ 2.09 × 10 ⁷ 7.57% 9.86 × 10 ⁻³ 8.27 × 10 ⁷ 29.96% 2.12 × 10 ⁻² 1.84 × 10 ⁸ 66.67% 1.04 × 10 ⁻³ 9.3 × 10 ⁶ 3.37% 3.21 × 10 ⁻² 2.76 × 10 ⁸ -2.276×10^8	$\begin{tabular}{ c c c c c c } \hline ν & N & N/N_{gal} & $N_{Resolved}$ \\ \hline ν & N & N/N_{gal} & $N_{Resolved}$ \\ \hline 1.34×10^{-2} & 1.06×10^8 & 38.41% & 19.936 \\ \hline 5.07×10^{-3} & 4.11×10^7 & 14.89% & 12.852 \\ \hline 1.15×10^{-2} & 1.08×10^8 & 39.13% & 586 \\ \hline 2.13×10^{-3} & 2.09×10^7 & 7.57% & 296 \\ \hline 9.86×10^{-3} & 8.27×10^7 & 29.96% & 1061 \\ \hline 2.12×10^{-2} & 1.84×10^8 & 66.67% & 32.609 \\ \hline 1.04×10^{-3} & 9.3×10^6 & 3.37% & 0 \\ \hline 3.21×10^{-2} & 2.76×10^8 & 33.670 \\ \hline \end{tabular}$			

Yu & Jeffery (2010)

- Most Galactic DWDs form a noise foreground
- Resolved systems appear between $f \sim 1.4$ and 5.0 mHz ($P_{\rm orb} \sim 24-7$ min)

Galactic binaries with eLISA

Formation scenarios

Envelope ejection with angular-momentum conservation

• Average specific angular momentum of the system:

$$rac{J_{\rm i} \ - \ J_{\rm f}}{J_{\rm i}} \ = \ rac{\gamma_{\rm s}}{M_{
m tot,i}} \ (\gamma_{\rm s} \sim 1.5)$$

• Specific angular momentum of the donor:

$$rac{J_{
m i}~-~J_{
m f}}{J_{
m i}}~=~\gamma_{
m d}~rac{M_{
m li}~-~M_{
m lf}}{M_{
m tot,f}}~rac{M_{
m 2i}}{M_{
m li}}~(\gamma_{
m d}\sim1.0)$$

• Specific angular momentum of the accretor:

$$\frac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma_{\rm a} \left[1 - \frac{M_{\rm tot,i}}{M_{\rm tot,f}} \exp\left(\frac{M_{\rm lf} - M_{\rm li}}{M_2}\right)\right] \quad (\gamma_{\rm a} \sim 1.0)$$

Formation models: reconstruction

- White-dwarf mass sets core mass (evolutionary state) of progenitor
- Giant radius determines orbital period of progenitor

- Envelope binding energy dictates what α_{CE} is needed for ΔP_{orb}
- **Unknown:** progenitor mass → parametrise

Galactic binaries with eLISA

First mass-transfer phase: stable, conservative MT

Galactic binaries with eLISA

Conservative mass transfer: masses and periods

- 570 detailed binaryevolution models, computed to match pre-CE systems
- 270 result in DWDs
- spiral-in
- stable

Galactic binaries with eLISA

Conservative mass transfer: mass ratios and cooling-age differences

- 1414 fits
- 0957, 1101, 1704b and 2209 nearly fit
- Out of ten systems, 1 can be explained, 4 are close

Models for unstable MT + unstable MT

Number of progenitor models:

- 10+1 observed systems
- 199 progenitor models in our grid
- 11 variations in observed mass: -0.05, -0.04, ..., +0.05 M_☉
- Total: $11 \times 11 \times \sum_{n=1}^{198} n \approx 2.4$ million

Filters:

• Unstable MT:
$$R_* > R_{BGB}$$
 and $q > q_{crit}$
• $q_{crit} \approx 0.64 + 0.94 \left(\frac{M_c}{M_*}\right)^5 (Z = 0.02)$ (Hurley et al., 2002)

• Age: $\tau_1 < \tau_2 < 13 \,\text{Gyr}$

• EE-parameter:
$$0.1 < \alpha_{CE}, \gamma_{s,d,a} < 10$$

Result:

• Candidate progenitors left: ~ 204 000

Unstable MT results: overview

Select	systems	with:
--------	---------	-------

● 0.8 < α_{CE} < 1.2</p>

• 1.46 $< \gamma_{\rm s} <$ 1.79

•
$$0.9 < \gamma_{a,d} < 1.1$$

System	1: $\gamma_{\rm s} \alpha_{\rm CE}$	2: $\gamma_{\rm s}\gamma_{\rm s}$	3: $\gamma_a \alpha_{\rm CE}$	4: $\gamma_a \gamma_a$	5: $\gamma_{\rm d} \alpha_{\rm CE}$	6: $\gamma_d \gamma_a$	Best:
0135 0136 0957 1101 1115	-/- +/+ +/+ +/~	+/~ +/+ +/+ +/- +/+	+/~ +/~ +/- +/-	-/- +/~ +/- -/- +/~	+/~ +/+ +/+ +/~ +/+	+/~ +/+ +/+ +/~ +/+	2,3,5,6 1,2,5,6 1,2,5,6 1,5,6 2,5,6
1204 1349 1414 1704a 1704b 2209	-/- +/+ -/- +/- +/- +/+	+/- +/+ +/+ +/- +/- +/+	+/- +/+ -/- -/- -/-	+/- +/+ +/+ -/- +/- -/-	+/- +/+ -/- +/- +/~	+/+ +/+ +/+ -/- +/- +/+	6 1–6 2,4,6 1,2 1,2,4,5,6 1,2,6
Best	$7 \times$	9 ×	2 ×	3 ×	$7 \times$	10×	

Column 1: +: α, γ within range, -: α, γ outside range Column 2: +: $\Delta(\Delta t) < 50\%$, $\sim: 50\% < \Delta(\Delta t) < 50\%$, -: $\Delta(\Delta t) > 500\%$ Common envelopes

Double white dwarfs

Galactic binaries with eLISA

Results: example solution

DWD conclusions so far

Stable, conservative mass transfer:

- Follow-up study of Nelemans et al. (2000)
- More accurate models give qualitatively same results
- We can reproduce perhaps 1–4 out of 10 systems, all with $\alpha_{\rm CE} >$ 1.6
- Conservative mass transfer cannot explain the observed double white dwarfs

Unstable mass transfer:

- Unstable envelope ejection can explain the observed double white dwarfs
- Several EE descriptions can reconstruct observed masses and periods
- In addition, $\gamma_s \gamma_s$ and $\gamma_d \gamma_a$ can explain most observed cooling-age differences

But:

- What do $\gamma_{s,d,a}$ mean?
- Is q_{crit} a good condition for stabilty of MT?
- What about stable, non-conservative MT?
- Do stellar winds have any influence?

Galactic binaries with eLISA

Stability of and conservation factor during mass transfer

Response of donor star and Roche lobe to mass loss:

$$\zeta_{\rm ad} \equiv \left(\frac{d\log R_*}{d\log M_*}\right)_{\rm ad} = f\left(\frac{M_{\rm c}}{M_*}\right)$$

$$\zeta_{\mathrm{Rl}} \equiv rac{d \log R_{\mathrm{Rl}}}{d \log M_*} = f(q, \beta)$$

- If $\zeta_{ad} \gtrsim \zeta_{Rl}$ (*i.e.*, $\dot{R}_* \lesssim \dot{R}_{Rl}$), mass transfer is dynamically stable (Hjellming & Webbink, 1987)
- β : mass-conservation factor; $\dot{M}_2 = -\beta \dot{M}_1$

Tyrone Woods et al., 2012

Galactic binaries with eLISA

Dependence on binary parameters

Default system:

- $M_{1,i} = 1.2 M_{\odot}$
- $q_{\rm i} = 1.09 \ (M_{2,\rm i} = 1.1 \ M_{\odot})$
- $P_{\rm i} = 100 \, {\rm d}$

Woods et al., 2012

Galactic binaries with eLISA

Thermal and nuclear mass transfer

Formation of low-mass DWDs through stable mass transfer

DWD conclusions

Stable, conservative mass transfer

- Cannot explain the 10 observed DWDs
- Best try: 1–4 systems, with $\alpha_{CE} \gtrsim$ 1.6

Unstable envelope ejection (α, γ)

- Explains 9-10 out of 10 of them reasonably
- Explains 8–9 systems when cooling age is taken into account
- Physics is (somewhat) poor for (some) γs

Stable, non-conservative mass transfer

- Explains DWDs comparable to 3 out of 10 observed systems
- Only works for systems with $M \lesssim$ 0.47 M_{\odot} , $q \lesssim$ 1 or does it?
- Cooling ages not taken into account in Woods et al. (2012)

Galactic binaries with eLISA

European Laser Interferometer Space Antenna (eLISA)

Galactic binaries with eLISA ○●○○○○○○○○○○

European Laser Interferometer Space Antenna (eLISA)

Mission:

- 3 spacecraft, 4 test masses
- Triangular configuration, arm length $\sim 2 \times 10^6 \, \text{km}$
- Detector is in solar orbit, trailing the Earth by 20°, in a plane inclined by 60°
- 1 Watt laser beams between spacecraft
- Low-frequency sensitivity: 0.1 mHz 0.1 Hz ($P_{\rm orb} \sim 20 \, {\rm s} 5 \, {\rm h}$)
- Mission length \geq 5 yr
- Final decision April 2012
- LISA Pathfinder must test technology (~ 2012?)
- Launch \gtrsim 2020 2025?

eLISA: Galactic binaries

Detached binaries:

- Double white dwarfs:
 - abundant; most common endpoint of evolution: $\sim3 imes10^8$, $\sim3 imes10^4$ resolved (Yu & Jeffery, 2010)
 - several tens discovered (e.g. Saffer 1988, Marsh 1995)
 - so far, only few in the eLISA band
- White-dwarf-neutron-star binaries:
 - typically WD + pulsar
 - Iong periods
 - no systems in eLISA band found, several expected
- Double neutron stars:
 - earliest discovered (Hulse & Taylor 1975)
 - 8 known
 - PSR J0737–3039 has $P = 2.4 \text{ h} (f = 2.3 \times 10^{-4} \text{ Hz})$

Interacting binaries:

- AM CVn stars:
 - white dwarf accretes He-rich material from a compact donor (e.g. Warner 1995)
 - periods 5.4 65 mir
- Ultracompact X-ray binaries:
 - \sim 27 known, 8 with known periods 11–50 min
 - o donor typically He rich, sometimes CO rich
 - up to half of the 14 observed LMXBs in GCs is ultracompact

(Nelemans, 2009)

eLISA: Galactic binaries

Detached binaries:

- Double white dwarfs:
 - abundant; most common endpoint of evolution: $\sim3 imes10^8$, $\sim3 imes10^4$ resolved (Yu & Jeffery, 2010)
 - several tens discovered (e.g. Saffer 1988, Marsh 1995)
 - so far, only few in the eLISA band
- White-dwarf-neutron-star binaries:
 - typically WD + pulsar
 - Iong periods
 - no systems in eLISA band found, several expected
- Double neutron stars:
 - earliest discovered (Hulse & Taylor 1975)
 - 8 known
 - PSR J0737–3039 has $P = 2.4 \text{ h} (f = 2.3 \times 10^{-4} \text{ Hz})$

Interacting binaries:

- AM CVn stars:
 - white dwarf accretes He-rich material from a compact donor (e.g. Warner 1995)
 - periods 5.4 65 min
- Ultracompact X-ray binaries:
 - \sim 27 known, 8 with known periods 11–50 min
 - o donor typically He rich, sometimes CO rich
 - up to half of the 14 observed LMXBs in GCs is ultracompact

Galactic binaries with eLISA

Cataclysmic variables, AM CVn systems, low-mass X-ray binaries

- WD/NS accretor
- Optical emission comes from hot spot
- Accretion speed, hence luminosity, varies, sometimes dramatically

BinSim, R. Hynes

AM CVn systems

- $\bullet\ \sim 30\ known$
- He-dominated spectra:
 - CVs without H signature
 - $\bullet ~H/He \lesssim 10^{-5}$
 - H-poor donor fits in tighter orbit

- Short orbital periods: \sim 5–65 min
- Main guaranteed LISA sources
- Possible donors:
 - He/hybrid He-CO white dwarf
 - helium star
 - evolved main-sequence star

(Nelemans et al. 2010)

Galactic binaries with eLISA

First ultracompact systems

(Motch et al. 1996; Israel et al., 1999; Burwitz & Reinsch 2001)

(Roelofs et al. 2010)

- Two systems previously known from X-ray emission
- Ultrashort periods now confirmed using 10 m Keck-telescope:
 - HM Cnc: shortest known period: 5.4 min

Galactic binaries with eLISA

cLISA: verification binaries

Nelemans, 2009; Roelofs et al., 2007, 2010

Galactic binaries with eLISA

Mock LISA data challenges (MLDCs)

Round 1 (2006):

- Single galactic binaries / verification binaries / resolvable binaries
- Massive black-hole binaries
- EMRIs

Round 2 (2007):

- Galactic foreground: 30M monochromatic galactic binaries + 25 verification binaries
- The Whole Enchilada: (1) + 4–6 BH binaries + 5 EMRIs

Round 3 (2008):

- Galaxy with 60M chirping binaries
- Ø MBH binary over galactic confusion
- EMRIs
- Cosmic string bursts
- Stochastic backgrounds

Round 4 (2011):

Round 3, all in one data set:

Galactic binaries with eLISA

Properties of AM CVn and SDSS J 0651+2844

	AM CVn	J 0651
A (10 ⁻²²)	1.494	1.670
f (mHz)	1.944	2.61
$\iota(^{\circ})$	43	89.6
$\lambda(^{\circ})$	170.1	101.4
β(°)	37.2	5.7
$M_1(M_{\odot})$	0.71	0.55
$M_2(M_{\odot})$	0.13	0.25
d (kpc)	0.606	0.1
P (min)	17.1	12.8

Accuracies and correlations from GW data analysis

AM CVn,	$SNR \approx$	11.5, ι	$pprox 43^\circ$
---------	---------------	---------	------------------

	\mathcal{A}	ϕ_{0}	$\cos \iota$	f	ψ	$\sin \beta$	λ
	(1.49×10^{-22})	π	0.73	$1.944 imes10^{-3}$	$\pi/2$	0.61	2.97
\mathcal{A}	1.08×10^{-22}	0.29	-0.99	-0.06	-0.30	-0.03	-0.60
ϕ_{0}		3.22	-0.27	-0.03	-0.99	0.26	-0.44
$\cos \iota$			0.58	0.06	0.28	0.04	0.60
f				$6.8 imes 10^{-10}$	-0.03	-0.11	-0.19
ψ					1.17	-0.27	0.03
$\sin \beta$						0.03	0.03
λ	(0.04 /

J 0651, SNR \approx 10.7, $\iota\approx$ 89.6 $^{\circ}$

	\mathcal{A}	ϕ_{0}	$\cos \iota$	f	ψ	$\sin \beta$	λ
	(1.67×10^{-22})	π	0.01	$1.944 imes10^{-3}$	$\pi/2$	0.10	1.77 _\
\mathcal{A}	1.56×10^{-23}	0.01	-0.05	-0.02	0.02	0.03	-0.08
ϕ_{0}		0.21	-0.01	-0.89	-0.02	0.13	-0.13
$\cos \iota$			0.04	0.01	0.02	-0.06	0.34
f				$8.4 imes 10^{-10}$	0.01	-0.17	0.16
ψ					0.04	-0.03	0.09
$\sin \beta$						0.07	0.09
λ	(0.02 /

Galactic binaries with eLISA

Signal envelopes for AM CVn

Shah et al., in preparation

Galactic binaries with eLISA

Improvement in amplitude uncertainties

Shah et al., in preparation

Conclusions for LISA

For binaries with an inclination below 45°

- Amplitude and inclination are degenerate, hence ill-determined
- A strong correlation between these two parameters helps constrain ${\cal A}$ when ι is known
- A correlation between ϕ_0 and ψ is astrophysically uninteresting

For binaries with an inclination above 45°

- Amplitude and inclination are non-degenerate and well-determined
- A correlation between ϕ_0 and f is astrophysically uninteresting

Future work

- Determine the influence of sky position
- Develop strategic plans for EM follow-up

