Using astrophysical knowledge in gravitational-wave data analysis of binary inspirals

Marc van der Sluys

Radboud University Nijmegen / FOM

128 A. S. A. S.

Vivien Raymond, Ben Farr, Ilya Mandel, Vicky Kalogera Gijs Nelemans, Sweta Shah Christian Röver, Nelson Christensen, Alberto Vecchio

Using astrophysical information 00

Conclusions 000

Outline

Introduction

- Gravitational waves
- LIGO/Virgo

GW parameter estimation

- Signal and noise
- Markov-chain Monte Carlo algorithm
- Example SPINSPIRAL analysis
- MCMC examples
- Analysis of a BH-NS signal
- Analysis of a BH-BH signal
- The importance of having spins

Using astrophysical information

- Example: GRB without spin
- Example: GRB with spin

Conclusions

Using astrophysical information

Conclusions

Gravitational waves

⁽Breton et al., Science, 2008)

Introduction	
000	

Using astrophysical information 00

Conclusions

Gravitational waves

Gravitational waves...

- propagate transversely at the speed of light
- are quadrupole radiation at the lowest order
- stretch and squeeze spacetime in two polarisations
- allow us to measure their amplitude

• Strain: $h(t) = h_+(t)F_+(t) + h_\times(t)F_\times(t) = \frac{\delta L(t)}{L} \sim 10^{-22}$

Using astrophysical information 00

Conclusions 000

Laser Interferometer GW Observatory (LIGO)

GW parameter estimation

Using astrophysical information 00

Conclusions

Inspiral waveforms with increasing spin

LIGO and Virgo detect the last \sim 10 s of a binary inspiral:

 $a_{\rm spin} \equiv S/M^2 = 0.0, 0.1$ and 0.5

GW parameter estimation

Using astrophysical information 00

Conclusions

Signal injection into detector noise

Example:

- Using two 4-km detectors H1, L1
- Inject signal coherently
- ΣSNR = 17
- Retrieve physical parameters using MCMC

Using astrophysical information 00

Conclusions

SPINSPIRAL code

- Use Markov-Chain Monte Carlo for parameter estimation
- Follow-up after detection
- Gaussian, stationary noise or LIGO/Virgo detector data
- Analyse software injections, hardware injections, detection candidates/interesting events
- Include spin in injections and analysis
- Use any network composed of LIGO/Virgo detectors:
 - PDF $(\vec{\lambda}) \propto \operatorname{prior}(\vec{\lambda}) \times \prod_i L_i(\boldsymbol{d}|\vec{\lambda})$
- Result: posterior probability-density function (PDF) of the parameter set that describes the model (9–12–15 D)

GW parameter estimation

Using astrophysical information

Conclusions

SPINSPIRAL example

GW parameter estimation

Using astrophysical information 00

Conclusions

Correlations increase with spin

	M _c	η	a _{spin}	$\vartheta_{\rm SL}$	R.A.	Dec.
M _c	\square	0.22	0.42	0.17	-0.40	0.19
η	-0.27	$\overline{\ }$	-0.34	-0.53	-0.07	-0.04
a _{spin}	-0.61	0.89		-0.04	0.11	0.62
$\vartheta_{\rm SL}$	0.66	-0.87	-0.99		0.02	-0.34
R.A.	-0.36				$\overline{\ }$	0.12
Dec.	-0.23	0.08	0.18	-0.20	-0.05	\searrow

Parameters:

- BH-NS
- H1 & L1
- $M_1 = 10 M_{\odot}$
- $M_2 = 1.4 \, M_{\odot}$
- $a_{\rm spin} = 0.1, 0.8$
- $heta_{
 m SL}=55^\circ$
- Network SNR ≈ 25

GW parameter estimation

Using astrophysical information 00

Conclusions

MCMC results for the analysis of a BH-NS signal

Parameters:

- H1, L1, V
- *M*=10, 1.4 *M*_☉
- $d_L = 22.4 \, \text{Mpc}$
- $a_{\rm spin} = 0.8$, $\theta_{\rm SL} = 55^{\circ}$
- $\Sigma SNR \approx 17.0$
- simulated noise
- Black dash-dotted line: injection
- Red dashed line: median
- Δ's: 95%
 probability

GW parameter estimation

Using astrophysical information

Conclusions 000

Sky position for signals with different spins

Spinning BH, non-spinning NS: $10 + 1.4 M_{\odot}$, 16–22 Mpc, Σ SNR=17

> 2 detectors, $a_{spin} = 0.0$ 2- σ accuracy: 821°²

> 2 detectors, $a_{spin} = 0.5$ 2- σ accuracy: 163°²

> 3 detectors, $a_{spin} = 0.5$ 2- σ accuracy: 40^{o2}

van der Sluys et al., 2008; Raymond et al., 2009; Poster by Ben Farr

GW parameter estimation

Using astrophysical information 00

Conclusions

Analysis of a BH-BH signal with spins

HS-2:

- 3.5-pN waveform
- 3 detectors (H1,L1,V)
- $\mathcal{M} = 7.6 \, M_{\odot}, \\ \eta = 0.238; \\ M_1 = 11.0 \, M_{\odot}, \\ M_2 = 7.0 \, M_{\odot}$
- $a_{s1,2} = 0.9, 0.7$
- $heta_{s1,2} = 10,20^{\circ}$
- $d_{\rm L}=74.5\,{
 m Mpc}$
- ΣSNR=15
- simulated noise

van der Sluys et al., in preparation

Using astrophysical information 00

Conclusions

The importance of having spins in your analysis

Signal with spins

Analysis with spinning template

Analysis with non-spinning template

van der Sluys et al., in preparation

GW parameter estimation

Using astrophysical information

Conclusions

Using astrophysical data to constrain parameters

NS-NS, non-spinning: $1.2 + 1.5 M_{\odot}$ $d_{L} \approx 10.2 - 17.8 \text{ Mpc}$ ($\Sigma \text{ SNR}=15.0$)

No astrophysical information

Sky position known

Sky position and distance known

van der Sluys et al., in preparation See also: Nissanke et al., 2010

GW parameter estimation

Using astrophysical information

Conclusions

Using astrophysical data to constrain parameters

BH-NS, spinning BH: $10. + 1.4 M_{\odot}$ $d_{\rm L} \approx 20.2 \, {\rm Mpc}$ ($\Sigma \, {\rm SNR}$ =15.0)

> No astrophysical information

Sky position known

Sky position and distance known

Introduction 000	GW parameter estimation	Using astrophysical information	Conclusions ●OO
Conclusion	ne		

SPINSPIRAL

- SPINSPIRAL can recover the 12–15 parameters of a binary inspiral, including one or two spins, using an MCMC technique
- Sky-position reconstruction (few $\times 10^{\circ^2}$) is poor for astrophysical standards
- Combination of position, distance and time can lead to association with an electromagnetic detection (*e.g.* GRB)

Taking into account spins

- The inclusion of spin adds significantly to the number of dimensions (9–12–15) and introduces (strong) correlations
- Failing to take into account spin can result to biases in especially mass parameters

Conclusions

Conclusions (numbers are preliminary)

Using astrophysical knowledge for GW data analysis: no spins

- Knowing the sky position of a source improves determination of:
 - distance ($\sim 20-50\%$)
 - inclination
- Knowing the position and distance improves inclination further, also in 1-detector analysis

Using astrophysical knowledge for GW data analysis: spins

- Knowing the sky position of a source improves determination of:
 - distance (\sim 50%)
 - inclination, polarisation angle (50 90%)
 - masses (~ 20%)
 - spin angles
- Knowing the position and distance improves:
 - spin magnitude (\sim 20%)

GW parameter estimation 00000000 Using astrophysical information

Conclusions

End...

Using astrophysical information 00

Conclusions

Predicted detection rates

Realistic estimate:

	Rates (yr ⁻¹)			Horizon (Mpc)		
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH
Initial	0.015	0.004	0.01	32	67	160
Enhanced	0.15	0.04	0.11	71	149	349
Advanced	20	5.7	16	364	767	1850

Plausible, optimistic estimate:

	Rates (yr ⁻¹)			Horizon (Mpc)		
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH
Initial	0.15	0.13	1.7	32	67	160
Enhanced	1.5	1.4	18	71	149	349
Advanced	200	190	2700	364	767	1850

Estimates assume $M_{
m NS} = 1.4\,M_{\odot}$ and $M_{
m BH} = 10\,M_{\odot}$

CBC group, rates document

Using astrophysical information 00

Conclusions

MCMC analyses

MCMC parameters

Masses: $\mathcal{M} \equiv (M_1 + M_2) \eta^{3/5} \& \eta \equiv \frac{M_1 M_2}{(M_1 + M_2)^2}$, distance: $\log d_L$, time and phase at coalescence: $t_c \& \varphi_c$, position: $\alpha \& \sin \delta$, spin magnitude: $a_{\text{spin}_{1,2}}$, spin orientation: $\cos \theta_{\text{spin}_{1,2}} \& \varphi_{\text{spin}_{1,2}} \&$ binary orientation: $\cos(\iota) \& \psi$

MCMC set-up

- \geq 5 serial chains per run, starting from offset parameter values
- Chain length: \sim few $\times 10^6$ states; burn-in: \sim few $\times 10^5$ states
- Run time: 10 days on a 2.8 GHz CPU for 1.5-pN waveform; ~ 2.5× longer for 3.5-pN

Using astrophysical information 00

Conclusions

MCMC analyses

MCMC parameters

Masses: $\mathcal{M} \equiv (M_1 + M_2) \eta^{3/5} \& \eta \equiv \frac{M_1 M_2}{(M_1 + M_2)^2}$, distance: $\log d_L$, time and phase at coalescence: $t_c \& \varphi_c$, position: $\alpha \& \sin \delta$, spin magnitude: $a_{\text{spin}_{1,2}}$, spin orientation: $\cos \theta_{\text{spin}_{1,2}} \& \varphi_{\text{spin}_{1,2}} \&$ binary orientation: $\cos(\iota) \& \psi$

MCMC set-up

- \geq 5 serial chains per run, starting from offset parameter values
- Chain length: \sim few $\times 10^6$ states; burn-in: \sim few $\times 10^5$ states
- Run time: 10 days on a 2.8 GHz CPU for 1.5-pN waveform; \sim 2.5 \times longer for 3.5-pN

Analysis details: BH-NS signal

- Signals injected in simulated noise for H1L1V @ SNR \approx 17.0
- Fiducial binary: $M_{1,2} = 10 + 1.4 M_{\odot}$, $d_{L} = 16-23 Mpc$
- Spin: $a_{spin} = 0.0, 0.1, 0.5, 0.8, \theta_{SL} = 20^\circ, 55^\circ$

GW parameter estimatio

Using astrophysical information

Conclusions

Convergence of chains

Dots: starting values

 Dashes: injection values

GW parameter estimation

Using astrophysical information

Conclusions

Analysis of a BH-BH signal with spins

GW parameter estimation

Using astrophysical information 00

Conclusions

The nuisance of having spins in your analysis

Signal **without** spins, analysis with spinning template

Signal **with** spins, analysis with spinning template