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ABSTRACT

The common-envelope (CE) phase is an important stage in the evolution of binary stellar populations. The most
common way to compute the change in orbital period during a CE is to relate the binding energy of the envelope of the
Roche-lobe filling giant to the change in orbital energy. Especially in population-synthesis codes, where the evolution
of millions of stars must be computed and detailed evolutionary models are too expensive computationally, simple
approximations are made for the envelope binding energy. In this study, we present accurate analytic prescriptions
based on detailed stellar-evolution models that provide the envelope binding energy for giants with metallicities
between Z = 10−4 and Z = 0.03 and masses between 0.8 M� and 100 M�, as a function of the metallicity, mass,
radius, and evolutionary phase of the star. Our results are also presented in the form of electronic data tables and
Fortran routines that use them. We find that the accuracy of our fits is better than 15% for 90% of our model data
points in all cases, and better than 10% for 90% of our data points in all cases except the asymptotic giant branches
for three of the six metallicities we consider. For very massive stars (M � 50 M�), when stars lose more than
∼20% of their initial mass due to stellar winds, our fits do not describe the models as accurately. Our results are
more widely applicable—covering wider ranges of metallicity and mass—and are of higher accuracy than those of
previous studies.
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1. INTRODUCTION

The common-envelope (CE) phase (Paczynski 1976;
Webbink 1984; Taam & Sandquist 2000) is an important event
in the evolution of many binaries and is used to explain large
numbers of observed compact binaries, such as X-ray binaries,
cataclysmic variables (CVs), and double degenerates, as well
as bipolar planetary nebulae (de Kool 1990). The CE phase is
believed to be initiated when an evolved, giant star is in or-
bit with a more compact companion and fills its Roche lobe.
When such a donor star has a deep convective envelope and/or
the mass ratio of the system is sufficiently large, unstable mass
transfer occurs (Rasio & Livio 1996), resulting in a fast expand-
ing envelope which quickly engulfs the companion. Inside this
common envelope, the binary orbit of the core of the giant and
the secondary star shrinks due to friction and torques, leading
to either a compact binary consisting of these two objects or
their merger. The energy generated through orbital shrinkage
heats and eventually expels the envelope. The whole process is
thought to occur on timescales much shorter than the nuclear-
evolution timescales of stars (�103 yr) so that the mass of the
giant’s core does not change, and the secondary is not affected
(Taam & Sandquist 2000).

Despite the fact that CEs are an important ingredient for
modeling stellar systems and populations, the details of the pro-
cess are poorly understood. Three-dimensional hydrodynamical
models have provided detailed simulations for the first month or
so of CE evolution, in which significant orbital shrinkage takes
place, but due to the large differences in scale between a red
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giant envelope and its core, the precise outcome of the CE phase
cannot yet be predicted (e.g., Ricker & Taam 2008). Instead, a
very simplified scenario is commonly used, where the bind-
ing energy is equated to the difference in orbital energy before
and after the CE in order to predict the post-CE orbital period
(Webbink 1984). Part of the uncertainty in CE evolution is al-
lowed for in the CE parameter αCE, which specifies the efficiency
with which orbital energy is used to expel the envelope. Espe-
cially for population-synthesis codes, where the evolution of
millions of stars must be computed and models are very basic,
the stellar structure needed to compute the envelope binding en-
ergy is not available and the envelope-structure parameter λenv
(see Equation (8) and the discussion in Section 5.4) is used to
approximate the binding energy from basic stellar parameters.
In many studies, this parameter has been assumed constant, typ-
ically λenv ≈ 0.5 (e.g., de Kool et al. 1987; Nelemans et al. 2000;
Hurley et al. 2002), or αCEλenv = 1.0 or 0.5 (Belczynski et al.
2008), whereas in reality it can vary wildly during the evolution
of a star, especially on the asymptotic giant branch (AGB; e.g.,
Dewi & Tauris 2000; van der Sluys et al. 2006). In fact, van
der Sluys et al. (2010) show that the latter assumption implies
αCE > 1 for about 60% of the CEs that occur in a stellar pop-
ulation of solar metallicity. Note that an alternative scenario
for envelope ejection, based on angular-momentum balance
(Nelemans et al. 2000; Nelemans & Tout 2005; van der Sluys
et al. 2006), does not depend on the envelope binding energy
and is therefore not affected by our results.

In this paper, we use the stellar-evolution code ev (e.g., Yakut
& Eggleton 2005, and references therein) to compute detailed
stellar-evolution models for a range of masses (0.8–100 M�)
and six different metallicities, and compute their envelope
binding energies throughout their evolution. We fit the binding
energies as a function of basic stellar parameters (metallicity,
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mass, and radius) and provide the results of these fits, as well
as routines to compute the envelope binding energy for any
combination of mass and radius, for a given metallicity in our
grid. We find that our analytic prescriptions describe 90% of
our model data points with an accuracy better than 10%–15%
for the metallicities provided. Recently, Xu & Li (2010) have
used the same approach, providing fits for 14 discrete masses
and two different metallicities. Our study improves on that
by using the stellar mass as a fitting parameter, so that any
mass—and masses from a wider range—can be used, and by
providing a larger number and wider range of metallicities. In
addition, we show that our fits are largely independent of the
wind mass loss, allowing for many wind prescriptions, and we
provide a more detailed analysis of our accuracies—including
how these accuracies are affected by different definitions of
the core–envelope boundary and by different assumptions for
the mixing-length ratio. We also give a separate fit for the
recombination-energy term, so that it can be included in the
total envelope binding energy if desired by the user.

In Section 2 of this paper, we present the stellar-evolution
code used and the models generated with it. Section 3 describes
the method we use to fit the binding energies and in Section 4
we present our results and their accuracies. Section 5 contains
a discussion of this study and we present a summary and
conclusions in Section 6.

2. STELLAR EVOLUTION

Here we describe the stellar-evolution code that we use for
this study, the relevant details of the physics involved, as well
as the actual grids of detailed stellar-evolution models that are
computed to perform our fits and determine their accuracy.

2.1. Stellar-evolution Code

We compute our stellar models using a version of the binary
stellar-evolution code ev (also known as STARS or TWIN),5

developed by Eggleton (Eggleton 1971, 1972; Yakut & Eggleton
2005, and references therein) and updated as described in Pols
et al. (1995). In the code, convective mixing is modeled by
a diffusion equation with a ratio of mixing length to pressure
scale height of l/Hp = 2.0. Convective overshooting in the
core is taken into account on the main sequence (MS) for stars
with M > 1.2 M� and on the horizontal branch (HB) for stars
of all masses. On the MS, we use an overshooting parameter
δov = 0.12 for stars with M > 2.0 M�, which corresponds to an
overshooting length of about 0.3 Hp, and 0.0 < δov < 0.12
increasing linearly with mass for stars with 1.2 M� < M <
2.0 M�. On the HB, we use δov = 0.12 for all models. The code
cannot evolve a model through the helium flash, the violent
ignition of helium in a low-mass star with a degenerate core, but
it automatically replaces the model at the moment of helium
ignition with a tailored model of the same total mass and
core mass in which helium has just ignited. For stars above
a certain mass (M � 2.1 M� for Z = 0.02), helium ignites
non-degenerately and this intervention is not needed.

We define the helium-core mass Mc as the mass coordinate
below which the hydrogen abundance does not exceed 10%.
We compute the binding energy of the hydrogen-rich envelope,
Ebind, by integrating the gravitational and internal energies over

5 The current version of ev is obtainable on request from
eggleton1@llnl.gov, along with data files and a user manual.

the mass coordinate of the model, from the core–envelope
boundary to the surface of the star Ms:

Ebind =
∫ Ms

Mc

(
Eint(m) − Gm

r(m)

)
dm. (1)

The term Eint is the internal energy per unit of mass, which
contains terms such as the thermal energy of the gas and
the radiation energy, but not the recombination energy. More
details regarding these assumptions are provided in van der
Sluys et al. (2006). In addition, we provide a separate fit for the
recombination-energy term, so that it can be included if the user
so chooses.

In reality, Equation (1) is a simplification of the actual
situation. First, the core–envelope boundary is not uniquely
defined, especially for high-mass stars (see the discussion in
Section 5.3). Second, formally one would need to compute the
total binding energies of the pre-CE donor and post-CE remnant,
and subtract the latter from the first. The difference between this
exercise and Equation (1) lies in the expansion of the remnant
during the CE, which would yield energy that can contribute
to the ejection of the envelope (Ge et al. 2010; Deloye & Taam
2010). This may be especially important for donors that fill their
Roche lobes of the Hertzsprung gap (HG).

In this study, we compute grids of models with six different
metallicities: Z = 10−4, Z = 0.001, Z = 0.010, Z = 0.015,
Z = 0.020, and Z = 0.030. The initial hydrogen and helium
abundances (X and Y, respectively) of our model stars are a
function of the metallicity Z, and are given by X = 0.76−3.0Z
and Y = 0.24 + 2.0Z.

For three of these metallicities, Z = 10−4, Z = 0.020, and
Z = 0.030, we calculate additional grids that include mass loss
via stellar winds. We use a prescription that was inspired by
Reimers (1975):

Ṁ = −η×min

⎧⎪⎨
⎪⎩

3.16 × 10−14 M� yr−1
(

M
M�

) (
L
L�

) (
Ebind

1050 erg

)−1

9.61 × 10−10 M� yr−1
(

L
L�

) ,

(2)
where we set η = 0.2 for this study. This wind prescription
dominates the stellar winds for lower-mass stars on the giant
branches, and the upper prescription in Equation (2) is used in
most of those models, except where |Ebind| is small, e.g., for
stars near the tip of the AGB. For massive, luminous stars, we
use the wind prescription by de Jager et al. (1988).

2.2. Stellar-evolution Models

We computed several grids of single-star models for a range
of metallicities and for each metallicity, for a range of initial
masses. For these grids, we assume that there is no mass loss
due to stellar winds. However, for three metallicities (Z = 0.02
(solar) and the two extremes Z = 10−4 and Z = 0.03), we
computed a grid of models where wind mass loss is included,
in order to determine how the accuracy of our fits is affected
by stellar winds and how we can correct for it (see Sections 3.4
and 4.4).

We selected 73 zero-age main-sequence (ZAMS) masses
between 0.8 M� and 100 M� in each grid, distributed uniformly
in log M:

log Mi � −0.038660 + 0.029124 × i, (3)

resulting in M ≈ 0.80, 0.86, 0.91, . . . , 93.5, 100.0 M�. We
ignore stars that have a main-sequence lifetime longer than
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Figure 1. Hertzsprung–Russell diagram for selected models with masses of 0.91,
1.36, 2.04, 3.05, 4.57, 6.84, 10.22, 15.3, 22.9, and 34.2 M� from our Z = 0.02
grid. The different line styles and colors indicate different evolutionary stages.
Dotted (gray) lines are used for the main sequence, (part of the) Hertzsprung
gap and horizontal branch, phases where the star either has no deep convective
envelope or cannot fill its Roche lobe. The solid (red) lines indicate the red
giant branch (LMR), the dashed (blue) lines show the asymptotic giant branch
(LMA), and the dash-dotted (magenta) lines indicate the high-mass models
(HM), which have only one giant branch.

(A color version of this figure is available in the online journal.)

13 Gyr for a given metallicity. We use the models with an odd
value of i to perform the fits, whereas the models with an even
value for i are used as verification, to determine the accuracies
of our fits for models that they are independent of.

The full grids of detailed stellar-evolution models are com-
puted for all metallicities considered. For the three stellar-wind
grids, only odd-i models are calculated, since this is all that is
required to determine the mass-loss correction factor described
in Section 3.4. A Hertzsprung–Russell diagram (HRD) for se-
lected stellar models from our grid with Z = 0.02 is shown in
Figure 1.

3. METHOD OF FITTING

With the data generated as explained above we construct
fit functions to model the behavior of the binding energy. In
this section, we describe the procedure by which these fits are
obtained. Section 3.1 describes our choice of fitting parameters,
in Section 3.2 we describe how we divide our evolutionary
tracks into groups which will be fitted separately, and Section 3.3
contains the formulation of the fitting functions and a description
of the fitting procedure itself. Finally, in Section 3.4 we present
a correction factor that takes into account the most important
effects of wind mass loss.

3.1. Choice of Fitting Parameters

After some experimentation we find that the binding energy
is best described by the stellar mass and radius, as opposed to
other basic parameters like age or core mass. Such a relationship
of the binding energy with the mass and radius of a star was also
found by Dewi & Tauris (2000). Because the ranges of Ebind,

Table 1
Dividing Mass between the Low-mass (LMR/LMA) and High-mass (HM)

Models for Each Metallicity Considered

Mlh

Z = 10−4 11.7 M�
Z = 0.001 11.7 M�
Z = 0.01 10.2 M�
Z = 0.015 11.7 M�
Z = 0.02 11.7 M�
Z = 0.03 13.4 M�

R, and M may span several orders of magnitude, we use the
(base-10) logarithm of these variables.

We do our fits separately for each metallicity and do not
provide fits that take into account metallicity as a parameter. The
reason for this choice is that with each added fitting parameter,
subtle features in the models that were well described by the
other parameters are washed out when the new dimension is
added. However, we compare the changes due to the metallicity
in the log Ebind– log R plane for models with a given mass,
and find that these changes are relatively smooth, see Figure 3.
This suggests that the user could compute the envelope binding
energy for the two metallicities that bracket the desired value
of Z and interpolate linearly in log Ebind in order to estimate the
binding energy for the given star. In practice, however, this grid
may be sufficiently dense that the user can take the value of Z
that is closest to the desired value.

3.2. Dividing the Evolutionary Tracks

A CE phase can only be initiated by a star that is at its
maximum radius so far in its evolution. Because of this we
consider only evolutionary phases in which a star expands
(almost) monotonically. This results in the division of the
evolutionary tracks into four different groups, and we develop
fits for each group separately.

First, we divide our set of stellar-evolution models into a low-
mass and a high-mass group. The dividing mass between the
two groups lies around 12 M�, depends lightly on metallicity,
and is given in Table 1.

The low-mass stars in our grid (M � 12 M�) evolve through a
clear horizontal-branch (HB) phase between the red giant branch
(RGB) and AGB. In this phase, the star burns helium in its core
and the star’s radius is smaller than it was on the RGB, so that this
phase can be ignored for CE evolution. In addition, most of these
low-mass stars undergo a first dredge-up on the RGB, during
which the hydrogen-burning shell meets less-processed material
and the star as a whole shrinks slightly. We define the beginning
of the RGB as the moment where the hydrogen abundance in
the stellar core becomes zero. As a consequence, the envelope
binding energy in the HG is also described by the RGB fits for
most stars (see Figure 1). We define the end of the RGB as
the point of maximum radius before the core helium abundance
drops below half of its absolute maximum value over the stellar
lifetime. The beginning of the AGB is taken to be the point
where the core helium abundance drops below approximately
10% (we vary this value slightly for different stars). We find that
this roughly defines the point where the stellar radius begins to
increase again after the HB. For all of our models, the “AGB”
begins well before the radius surpasses its maximum on the
RGB, so that we cover more than the range of radii for which a
CE can be initiated. As the tip of the AGB, we take the model
where the star reaches its maximum radius in its entire evolution.
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Table 2
Coefficients for the Fit of the Division between the Groups LMR1

and LMR2 in Equation (4)

Z a0 a1 a2 a3 a4

10−4 0.604723 1.39724 −0.0824963 1.14143 0
0.001 0.4566 1.1866 2.39088 −3.05404 1.4049
0.01 0.282174 1.14938 1.88445 −1.0823 0
0.015 0.251818 1.21049 1.6349 −0.83691 0
0.02 0.240637 1.08922 1.95318 −1.03218 0
0.03 0.234888 0.897294 2.51995 −1.41411 0

We find that the accuracies of our fits are greatly improved if we
treat the tracks before and after this dredge-up phase separately.
Since the dredge-up occurs at different radii for models with
different masses, we include a simple function to describe this
radius as a function of the stellar mass:

RLMR =
4∑

i=0

ai

[
log

(
M

M�

)]i

, (4)

with the coefficients ai given in Table 2.
As a result, we split the tracks from the low-mass models into

three groups, LMR1 for the low-mass early RGB (before the
dredge-up), LMR2 for the low-mass late RGB, and LMA for
the low-mass AGB.

For the models with higher masses (M � 12 M�) there is
no HB and no first dredge-up, and we keep these tracks intact
and put them in a fourth group, which we call HM. Hence, these
tracks are defined between the moment hydrogen is exhausted in
the core near the terminal-age main sequence and the maximum
radius ever achieved in the evolution of each star. The lowest-
mass model (whose mass is ∼12 M�, see Table 1) included in
this high-mass group is also included in the low-mass RGB and
AGB groups to ensure continuity between the regions (we use
the phenomenological parallels in the log Ebind– log R curves,
see Figure 2, of lower-mass models to determine where to divide
this track between RGB and AGB).

We interpolate the evolutionary tracks from each stellar model
for each group in the log Ebind– log R plane, in order to give each
model the same number (200) of data points, which gives them
an equal weight when fitting along the mass axis, and with a
constant density along their tracks in this plane, which prevents
biasing the fits toward particular regions in these curves. The
only exception are the groups LMR1 and LMR2, which are
given 200 data points together. Figure 2 shows the model tracks
in the LMR, LMA, and HM groups for a selection of the models
in our Z = 0.02 grid.

3.3. Selecting the Fitting Functions

As described above, we choose to find a description for
log Ebind as a function of log M and log R. As a general
functional form, we select the polynomial of an as yet undefined
order in both the instantaneous mass M and radius R. Hence, the
general form of our fitting function is

log

(−Ebind

erg

)
≈ E0 + Λ (M0,M) ×

∑
m,r

αm,r

[
log

(
M

M�

)]m

×
[

log

(
R

R�

)]r

, (5)

with E0 = 33.29866, αm,r the fitting coefficients, and m and r
the integer indices and exponents. The factor Λ depends on the

Figure 2. Envelope binding energy as a function of stellar radius, for a selection
of models with masses of 0.91, 1.36, 2.04, 3.05, 4.57, 6.84, 10.22, 15.3, 22.9,
and 34.2 M�, and Z = 0.02. The line styles and colors indicate the same
evolutionary phases as in Figure 1 and are used for the results obtained by using
our fit. The black dotted lines show the original stellar-evolution models, which
overlap with the fits in most places. RGB and AGB phases are disconnected
here, and the lowest-mass and the three highest-mass models do not have an
AGB phase.

(A color version of this figure is available in the online journal.)

initial (ZAMS) and instantaneous mass and corrects for effects
due to wind mass loss in high-mass stars. It is of course equal
to unity for stars that do not experience (significant) mass loss
and is discussed in more detail in Section 3.4.

Finding a good and accurate prescription for the binding
energy then consists of two parts. First, we must determine
the orders of each of the polynomials in Equation (5). In fact,
we choose to use a liberal definition of the word polynomial,
and rather than selecting the orders, we vary the ranges of m
and r for which αm,r has non-zero values in order to find the
narrowest ranges that still describe Ebind with good accuracy,
possibly including negative values for m and r. Second, for each
of our choices of the ranges of m and r, we must find the optimal
set of fitting coefficients αm,r and quantify the accuracy of the
fit, in order to compare to fits that use different polynomials.

For the actual fitting of the data points, we use only the odd-
numbered mass models from the grid described in Section 2.2
(the masses with odd values of i in Equation (3)). For each
selection of the range of m and r, we fit the data points, i.e.,
determine the best set of αm,r , using the χ2-minimization-
based fitting procedures available in Wolfram Mathematica 8
(Wolfram Research, Inc. 2010). Instead of using Mathematica’s
“goodness-of-fit parameter,” we choose three criteria to compare
the accuracies of the different fits in a quantitative way.

First, we use the newly generated fit function to predict the
binding energies for all mass models and all data points that
are used for the fit (i.e., the odd-numbered stellar-evolution
models), and determine for which fraction of these data points
the following condition holds:

∣∣∣∣Ebind,fit − Ebind,mdl

Ebind,mdl

∣∣∣∣ < f, (6)
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where we choose the value f = 0.1 for our criterion (note that
here we do not use the logarithm of Ebind). The fraction of data
points that fulfills this criterion for f = 0.1 is called Δ10%.
More specifically, we demand that for at least 90% of the data
points, the fit has an accuracy of 10% or better; in other words,
Δ10% � 90%.

Second, we use these fits to compute the envelope binding
energies for the even-numbered evolution models in our grid,
which were not used to create the fits. Again, we use the
condition in Equation (6) for f = 0.1 to determine the accuracy
of the fit, and demand that the results are similar to those from
the first criterion.

Third, we select the simplest polynomial, i.e., the narrowest
ranges for m and r in Equation (5), that still pass the first two
criteria.

For some groups of data these criteria turn out to be too strict,
i.e., there are no reasonable ranges of m and r that could meet
the first criterion while still being sufficiently well behaved to
also meet the second. For these groups we are satisfied if the fit
predicts at least 90% of the data points within 15% of the model
value, i.e., we increase f from 0.1 to 0.15 for these groups and
demand that Δ15% > 0.9. For this reason we report both Δ10%
and Δ15% for all groups in the next section.

3.4. Compensating for Stellar Mass Loss

So far, we have considered conservative stellar-evolution
models only. However, we find that when stars lose a significant
amount of mass due to stellar winds (i.e., stars with masses
�20–30 M�), our fits lose some of their accuracy. Since wind
mass-loss rates are uncertain, and because the assumption
of evolution without mass loss is unreasonable for the more
massive stars in our grids, we introduced the correction factor
Λ in Equation (5). The factor is based on a comparison of the fit
using conservative models, as discussed in the previous section,
to grids of models which experience mass loss as described in
Section 2.1. For models in the low-mass grid (LMR/LMA), this
correction is not necessary, and we use Λ = 1. For the high-
mass models (HM), we find that a correction factor based on the
relative amount of mass lost since the ZAMS gives a reasonably
good prescription for most models, restoring the accuracy found
for conservative models (see Figure 6):

ΛHM(M0,M) = 1 +
1

4

(
M0 − M

M0

)2

, (7)

where M0 is the ZAMS mass and M is the instantaneous mass
of the star. Note that ΛHM is independent of metallicity and that
it is valid across the range of metallicities considered here.

The fitting procedure described in this section was carried out
for each of the four groups mentioned in Section 3.2 and each
of the six metallicities listed in Section 2.2. The results of our
fits, their accuracies, and their validity for the case of moderate
wind mass loss are discussed in Section 4.

4. RESULTS

In this section we describe the accuracies of our fits. In
Section 4.1 we present the optimal fit parameters to describe
the binding energy as a function of basic stellar parameters.
Section 4.2 presents the accuracies of these fits and in Section 4.4
we discuss the effect of stellar winds on this accuracy. In
Section 4.5, we discuss the domain in which our fits are valid.
All stellar-structure models used in this study are included in
the online material, or can be found in Loveridge et al. (2011).

Figure 3. Envelope binding energy as a function of stellar radius, for models
with masses of M = 1.79, 13.4, and 26.2 M� and for metallicities of Z = 10−4,
10−3, and 0.02. The line styles and colors indicate the value of Z as indicated in
the figure. Colored lines represent fitting results, while black dotted lines show
the detailed models. The four groups of lines are from lower left to upper right:
1.79 M� RGB, 1.79 M� AGB, 13.4 M�, and 26.2 M�. Within each group, stars
with a lower metallicity have a higher binding energy, except near the end of
the AGB or high-mass tracks.

(A color version of this figure is available in the online journal.)

4.1. Analytic Prescriptions for the Envelope Binding Energy

We carried out the fitting of our data points to the fitting
function in Equation (5) as described in Section 3. Here, we
present the polynomials that best describe the data points, i.e.,
the ranges of m and r we used in Equation (5), and the values for
αm,r that best describe the data for those polynomials. We do this
for each of the four groups of our data set, LMR1, LMR2, LMA,
and HM, as described in Section 3.2 and defined by Tables 1
and 2 and the equations in Table 7 and the accompanying
supplementary material and for each metallicity we consider
in this study.

The ranges for m, r are variable, since for some groups of
models, the binding energy can be described in fewer terms
than for others. The extreme values used are 0 and 20 for m and
−5 and 20 for r. We provide the table of coefficients in electronic
form, listing m, r, and αm,r for all cases where αm,r is non-zero,
as well as the contents of Tables 1 and 2. In addition, we provide
Fortran routines which can read these data files and compute
the envelope binding energy as a function of metallicity, mass,
radius, and evolutionary phase of the star (RGB or AGB) in
Loveridge et al. (2011).

Figure 2 shows a comparison between the detailed stellar-
evolution models and fits for selected models with a range of
masses from our Z = 0.02 grid. Figure 3 shows the dependence
of the envelope binding energy on metallicity, by comparing
models with different metallicities for three different masses.

4.2. Accuracy of the Fit Prescriptions

Table 3 lists the accuracies of our fits for the envelope binding
energy for each of the metallicities considered, and for each
of the model groups defined in Section 3.2. To express the
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Figure 4. Cumulative histograms for the accuracies (as defined in Equation (6)) in our three different groups of models for all six metallicities in our grid. On the
vertical axis, we plot the fraction of model data points that fall outside the accuracy quoted on the horizontal axis, hence a fraction of 0.1 means that 90% of our data
points have that accuracy. Left panel: low-mass RGB; middle panel: low-mass AGB; right panel: high mass. The different line styles and colors indicate different
metallicities, as indicated in the middle panel, and the vertical and horizontal dotted black lines indicate the points where the accuracy is 10% and where 90% of our
model data points are included (10% excluded), respectively, and their intersection marks the point Δ10% = 90%.

(A color version of this figure is available in the online journal.)

Table 3
Accuracies of Our Fits, for Each Metallicity Considered and

Each Group Defined in Section 3.2

Z Group Δ10% Δ15%

Odd Even Odd Even

10−4 LMR 97.6% 97.7% 98.9% 99.1%
10−4 LMA 86.6% 86.4% 94.8% 94.8%
10−4 HM 94.8% 93.6% 96.4% 94.6%
10−3 LMR 92.0% 90.4% 95.0% 93.6%
10−3 LMA 85.3% 84.3% 95.2% 92.5%
10−3 HM 91.1% 90.0% 95.5% 93.4%
0.01 LMR 95.7% 93.7% 97.1% 96.5%
0.01 LMA 86.3% 87.2% 95.9% 95.0%
0.01 HM 92.4% 90.0% 96.2% 96.1%
0.015 LMR 95.0% 95.9% 96.6% 97.0%
0.015 LMA 91.4% 90.6% 97.8% 96.4%
0.015 HM 90.0% 90.3% 95.5% 95.8%
0.02 LMR 94.3% 92.7% 96.4% 96.4%
0.02 LMA 97.1% 91.9% 99.3% 96.9%
0.02 HM 92.0% 91.7% 96.6% 96.1%
0.03 LMR 95.0% 94.7% 97.1% 96.4%
0.03 LMA 97.0% 90.5% 98.7% 92.5%
0.03 HM 91.1% 90.4% 96.3% 95.8%

Note. For an explanation of the Δs, see Section 3.3 and Equation (6).

accuracy of each fit, we list the percentages of the fitted data
points that fall within 10% and 15% of the model values (Δ10%
and Δ15%).

We separately list the accuracies for the odd-numbered
stellar-evolution models, which were used to produce the fits,
and the even-numbered models, which have masses that lie
between those of the odd-numbered models and are used
only for verification. Note that the percentages refer to the
actual (absolute) value of the binding energy, not its logarithm.
The same results are presented in Figure 4, as cumulative
histograms of the fraction of data points that lie outside a given
accuracy.

As these data demonstrate, all of our fits meet the criteria
outlined in the previous section, for f = 0.15 in Equation (6).
In fact, all but three of the fits also meet the stricter criteria for
f = 0.1. For Z � 0.01, the features in the LMA models vary
irregularly from one mass model to the next, so that only for
our low-metallicity AGB models, the f = 0.1 criteria are not
satisfied. Politano et al. (2010) show that, for the cases where a
common envelope (CE) leads to a merger, only 17% of the CEs
are initiated on the AGB, against 83% on the RGB, so that the
lower accuracy for our LMA results probably has a somewhat
smaller impact than suggested by the numbers in the table
alone.

4.3. Fits for the Recombination Energy of the Envelope

In the fits presented so far we consider only the gravita-
tional and internal (e.g., thermal, radiation) energy of the en-
velope. In what follows we provide separate fit prescriptions
for the recombination energy, which may be tapped for unbind-
ing the envelope. This term includes the ionization energy, but
not the dissociation energy of molecular hydrogen, which is a
factor of ∼5–10 times smaller than the ionization energy. For
this, we use the models and methods that were used to fit the
actual binding energy above. Because the recombination energy
is a simpler function, we do not need to divide the tracks and we
can use one prescription per metallicity. As with the binding en-
ergy, we provide the coefficients in the supplementary material
and include them in the Fortran routines separately. We provide
the accuracies for the different metallicity grids in Table 4 and
see that they meet the criteria we used for the envelope binding
energy. A comparison of our fits with the original models can
be found in Figure 5. Since the recombination-energy term is
generally an order of magnitude lower than the rest of the en-
velope binding energy, the accuracy of the prescription will be
dominated by the accuracy of the binding energy in most cases.
We find that the recombination-energy term is independent of
mass loss for the parameter space our prescription applies to, so
that we can use Λ = 1 in all cases for the recombination-energy
formulae.
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Figure 5. Recombination-energy term in the envelope binding energy as a
function of stellar radius, for the selection of models which were also used in
Figure 2: masses of 0.91, 1.36, 2.04, 3.05, 4.57, 6.84, 10.22, 15.3, 22.9, and
34.2 M�, and Z = 0.02. The line styles and colors are the same as in Figure 2.
Note that while the errors seem larger here than in Figure 2, the absolute values
are typically ∼1–2 orders of magnitude smaller, except near the end of the AGB
for low-mass stars. Note also that the binding-energy term here is positive.

(A color version of this figure is available in the online journal.)

Table 4
Accuracies of Our Fits for the Recombination Energy Term,

for Each Metallicity Considered

Z Group Δ10% Δ15%

Odd Even Odd Even

10−4 All 81.3% 83.5% 91.4% 93.5%
10−3 All 83.7% 84.6% 93.7% 94.4%
0.01 All 91.5% 91.9% 96.2% 96.2%
0.015 All 91.3% 89.5% 96.1% 95.0%
0.02 All 91.5% 91.1% 96.3% 95.8%
0.03 All 91.5% 91.8% 96.1% 96.1%

Note. For an explanation of the Δs, see Section 3.3 and Equation (6).

4.4. The Effect of Stellar Mass Loss

The accuracies in the previous section apply to the prediction
of the binding energies of stars that have not suffered mass loss
due to stellar winds. Here, we compare the outcome of our fits,
based on conservative models, to grids of stellar models that
undergo wind mass loss as described in Section 2.1. Table 5
lists the accuracies for this comparison for the two extreme
metallicities in our grid (Z = 10−4 and 0.03) as well as
“solar” metallicity (Z = 0.02), expressed as Δ10% and Δ15%
(see Section 3.3). We see that when the factor Λ in Equation (5)
is ignored, the LMR grid is hardly affected compared to Table 3,
whereas the accuracies in the LMA and especially the HM grids
suffer appreciably. As described in Section 3.4, the correction
factor Λ defined in Equation (7) improves the accuracies for
the high-mass models significantly. This improvement is also
shown in Figure 6. For the LMA group, we found no simple
correction factor that is independent of metallicity. Since the

Table 5
Accuracies of Our Fits as in Table 3, but Applied to Models with Stellar Wind,

with Λ = 1 and Λ = ΛHM (Equation (7))

Group Z Λ = 1 Λ = ΛHM

Δ10% Δ15% Δ10% Δ15%

LMR 10−4 98.8% 99.3%
0.02 94.3% 96.4%
0.03 93.7% 96.4%

LMA 10−4 77.3% 87.4%
0.02 75.5% 87.5%
0.03 68.3% 76.6%

HM 10−4 69.7% 86.4% 92.1% 96.1%
0.02 54.7% 63.1% 87.2% 89.5%
0.03 60.1% 70.7% 87.0% 89.8%

drop in accuracy due to winds is not as large as for the LM
models, we decided to leave these fits uncorrected.

The advantage of the Λ factor is that our prescription
for the binding energy can be used with arbitrary mass-loss
prescriptions and still provide the accuracies listed in Table 5.
However, we find that for very strong mass loss, even this
correction factor can no longer describe our models accurately.
Our results show that when a star loses more than ∼20% of its
ZAMS mass, our fits become increasingly inaccurate. For each
metallicity, this implies an upper limit in mass for which these
fits can be used. We did not include the results of more massive
models in Table 5 and discuss these limitations in more detail
in Section 4.5.

4.5. Limits on the Domain of the Fits

Here we note the limitations on the applicability of the fit
functions. Outside these limits we do not provide fits and hence
cannot estimate accuracies.

In the absence of mass loss, Table 3 displays the accuracies
of our fits for any star with a mass 0.8 M� � M � 100 M�, the
full range of masses we computed. However, when mass loss is
present, we note that the parameter ΛHM is only effective when
stars have lost less than ∼20% of their ZAMS masses. For the
wind prescriptions used in this study, this limit can be translated
to an upper mass limit of approximately 50 M� for Z = 0.02
and Z = 0.03, and about 75 M� for Z = 10−4.

In terms of radius, we have considered each model from
the end of the MS to the star’s maximum radius on the AGB,
excepting only phases of radial shrinkage—most notably on the
horizontal branch, so that any radius that may correspond to the
initiation of a CE in a binary is covered in our study.

The values of the metallicity considered here are discrete,
and we do not provide accuracies for Z < 10−4 and Z > 0.03.
Analogous to metallicities that lie between those used in this
study, for metallicities outside this range the reader can either
choose to use the value for Z that lies closest to the desired value,
or to use an extrapolation scheme.

5. DISCUSSION

In this section we describe how the envelope binding energy
varies through our parameter space, discuss our results qual-
itatively, compare our fits to previous attempts to model the
binding energy, and note the possible effects of the choice of
core definition, mixing-length ratio, and strong winds on the
accuracy and applicability of our results.
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Figure 6. Cumulative histograms for the accuracies (as defined in Equation (6)) in our high-mass models HM with wind mass loss, for a selection of metallicities in
our grid. Left panel: no wind-correction factor applied (Λ = 1), right panel: with Λ = ΛHM, as defined in Equation (7), applied. The different line styles and colors
indicate different metallicities, as indicated in the panels, and the vertical and horizontal dotted black lines indicate the points where the accuracy is 10% and where
90% of our model data points are included (10% excluded), respectively.

(A color version of this figure is available in the online journal.)

5.1. Qualitative Examination of the Fitting Results

Figures 2 and 3 show examples of the envelope binding
energies of a selection of detailed stellar-evolution models
(black dotted lines) compared with the results of our fits (colored
lines). These figures indicate that the fitting function we defined
in Equation (5) describes the binding energy fairly well. A full
picture of the accuracy of our fits, when compared to our models,
can be read from Table 3 and Figure 4, and from Table 5 and
Figure 6, for models with conservative evolution and models
that undergo wind mass loss, respectively.

We want to emphasize here the limitation of our results for
stars that undergo substantial wind mass loss. When stars lose
more than ∼20% of their ZAMS mass, the binding energy is
no longer easily related to that of a star of the same mass but
without a mass-loss history. This is the result of an interplay
between the different effects of wind mass loss on both the
mass and structure of the envelope. Strong mass loss ultimately
reduces the envelope mass, which results in a less tightly bound
envelope compared to a conservative star of the same total mass
and radius. However, our models indicate that the envelope
structure is also affected by mass loss, in a way that counteracts
the first effect. We find that this results in a more tightly bound
envelope than that of a conservative star, unless the mass loss
becomes very significant. Hence, our compensation factor ΛHM
in Equation (7), which is greater than unity, gives reasonably
good results for small amounts of mass loss, but becomes
gradually less accurate when more than ∼20% of the ZAMS
mass of the star is lost. We note that for our choice of wind
mass-loss prescription, this happens for stars with masses larger
than �50 M� for Z = 0.02, 0.03 and for M � 75 M� for
Z = 10−4, hence the most massive stars in our grids. These
upper limits will be decreased when stronger winds are used
in the stellar-evolution models. However, as we shall discuss
in Section 5.3, the dominant source of uncertainty for these
high-mass stars is the definition of the core–envelope boundary.

5.2. Dependence on the Mixing-length Ratio

The choice of the mixing length relative to the pressure scale
height will directly influence the radius of a model star with a
deep convective envelope. Dewi & Tauris (2000) looked at the
effect of this parameter and found a weak dependence for the
binding energy, with a higher mixing-length ratio translating
into a slightly lower binding energy on the AGB. We compared
our fits based on our standard assumption l/Hp = 2.0 to a
few test models which were computed with l/Hp = 1.5 and
found a similar effect: a drop in accuracy almost exclusive to
the AGB, resulting in ∼15%–20% more data points outside the
10% accuracy range.

5.3. Definition of the Core–Envelope Boundary

The binding energy of a stellar envelope is computed by
integrating the different energy sources (thermal, gravitational,
etc.) from the core–envelope boundary to the surface of the
star (Equation (1)). Hence, the value of the binding energy
will depend on the definition of the core mass Mc, which we
chose to define as the mass coordinate at which the hydrogen
abundance reaches 10%. Tauris & Dewi (2001) consider several
reasonable choices for this definition, one of which is identical
to the definition used in our study (the central region of the
star with X < 0.1). If we follow these authors and discard the
extreme cases (first and last row) in their Table 1 (their λb is
almost identical to our λenv defined in Equation (8)), we see that
while for low-mass stars different definitions result in similar
values for Mc and hence the binding energy, for more massive
stars the results can vary quite appreciably. For a 20 M� star, the
variation in Ebind can even be more than an order of magnitude.
They also note that “our” choice of the definition of the core
gives the lowest value for λenv, hence the highest value for the
binding energy (and so the most tightly bound envelope), among
the three options considered.
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Table 6
Accuracies of Our Fits as in Table 3, but Applied to Models with Different

Definitions of the Core–Envelope Boundary

Group X = 0.15 X = 0.20

Δ10% Δ15% Δ25% Δ10% Δ15% Δ25%

LMR 65.6% 76.7% 87.8% 54.8% 60.9% 70.9%
LMA 79.5% 93.7% 99.6% 71.3% 80.4% 92.6%
HM 82.6% 85.9% 88.0% 71.8% 74.9% 77.5%

Note. All data are for Z = 0.02.

Naively, we would therefore expect that the definition of the
core mass would have little or no influence on our results for low-
mass stars, with masses �7–10 M�. Since these stars provide
the majority of CE donors in binaries (van der Sluys et al. 2010),
most instances of CEs in nature would be little affected, as would
the results for low-mass compact binaries, such as double white
dwarfs, CVs, and low-mass X-ray binaries. On the other hand,
for high-mass stars, we expected the binding energy to depend
strongly on how the core–envelope boundary is defined.

In order to test this, we compute the binding energy for
models with two alternative definitions for this boundary, and
determine how accurately the binding energies are described by
our original fit functions. We use the odd-numbered stellar-
evolution models (see Section 2.2) for this test, and solar
metallicity. As previously stated, our original definition of
the core–envelope boundary is the mass coordinate where the
hydrogen abundance equals 10% (X = 0.10). Here, we include
the definitions X = 0.15 and X = 0.20 as well.

Our results in Table 6 show, contrary to expectation, that the
application of our results to models with a different definition
of the core–envelope boundary yields significantly lower accu-
racies than before, even though the formulae remain reasonable
approximations at 25% accuracy. This effect is most apparent
for low-mass stars (M � 11 M�), even though for these stars
the core (and hence envelope) masses do not change much. The
explanation here is that even though the envelope mass changes
by only a small fraction, this is the most tightly bound part of the
envelope and hence the effect on the total binding energy of the
envelope is relatively large. For high-mass stars, the lower accu-
racy is expected, because a small change in the definition of the
core–envelope boundary is known to result in larger differences
in core mass.

In reality, the exact remnant mass after the CE will depend
on the response of both the donor star and the orbit to the spiral-
in, and hence also on the properties of the binary companion
(Deloye & Taam 2010; Ivanova 2011). Therefore, for massive
stars no unique core mass can be defined and detailed stellar-
structure and binary-evolution models are needed to determine
a self-consistent outcome of a CE. The uncertainty thus intro-
duced is likely to be much larger than the uncertainties due to
the definition of the core mass and those due to wind mass loss,
as described in Section 5.1.

Finally, we would like to remark that our choice of the
core–envelope-boundary definition is identical to that used for
the fits that resulted in the stellar-evolution prescriptions in the
SSE and BSE codes (Hurley et al. 2000, 2002), which form
the basis of a number of population-synthesis codes, such as
StarTrack (Belczynski et al. 2008) and the latest version
of SeBa (Portegies Zwart & Verbunt 1996; Nelemans et al.
2001; S. Toonen et al. 2011, in preparation). Hence, even if
there is no unique definition of the core mass, our fits will

Table 7
Coefficients for the Fit

m r αmr

Z = 0.0001, LMR1:

0 0 1.4988436956623641E+01
0 1 3.5567401921688857E+00
0 2 −1.5057932532349948E+01
0 3 2.7450727863794665E+01
0 4 −2.4042013220474267E+01
0 5 6.0855990240175180E+00
1 0 4.7768951761575389E+00
1 1 −3.5244825763187947E+01
1 2 1.2618150916674917E+02
1 3 −2.0576044813941508E+02

(This table is available in its entirety in a machine-readable form in
the online journal. A portion is shown here for guidance regarding
its form and content.)

provide consistent prescriptions when implemented in the most
commonly used population-synthesis codes.

5.4. The Envelope-structure Parameter λenv

The purpose of this study is to provide fits of the binding
energy of stellar envelopes, based on basic stellar parameters,
so that they can be used to treat CEs in population-synthesis
simulations, where detailed stellar-structure models are not
available. So far, such codes have often used the so-called
envelope-structure parameter, λenv, defined by

Ebind = −GMMenv

Rλenv
, (8)

to compute the binding energy (Webbink 1984; de Kool et al.
1987), instead of Equation (1). In such a case, one needs to
assume a value for λenv. For example, Nelemans et al. (2000)
and Hurley et al. (2002) use λenv = 0.5, while Belczynski et al.
(2008) choose αCEλenv = 0.5 and 1.0. Since λenv has been used
extensively, it is useful to give an indication here of our results
expressed in terms of this parameter, and to compare them to
the choices above. In Figure 7, we show the values of λenv for
three different stellar-evolution models and the results of our
fits, converted to λenv. This figure alone indicates that λenv is
far from constant and will vary for stars of different masses and
different evolutionary phases. Dewi & Tauris (2000) and van der
Sluys et al. (2006) give more extensive examples of the variation
of this parameter. In addition, van der Sluys et al. (2010) show
that, for Z = 0.02, the assumption of αCEλenv = 1.0 implicitly
assumes that αCE > 1 for roughly 60% of the CEs in a typical
stellar population, while for some cases αCE > 10 is implied.
These examples strongly indicate that a better prescription for
the envelope binding energy is needed.

The reason why we chose to develop an expression for the
envelope binding energy, and not λenv, may now become clear.
The parameter was introduced in order to estimate the binding
energy when it could not be computed otherwise. From now
on, a reasonably accurate prescription for Ebind is available and
there is no longer any need to use the parameter λenv.

5.5. Comparison with Previous Work

Previous studies that provided a simple prescription for
the binding energy have been limited to tabulations of λenv
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Figure 7. Typical values of λenv for a selection of models in our Z = 0.02 grid.
Shown are the LMR (solid red lines) and LMA (dashed blue lines) for low-mass
models and HM (dash-dotted magenta lines) for the high-mass model. Masses
shown are 1.04 M� (long, high LMR; short, low LMA), 4.57 M� (short, lower
LMR; long, high LMA), and 15.3 M� (HM track). In all cases, colored lines
indicate results from our fits, dotted, black lines show the detailed stellar model.

(A color version of this figure is available in the online journal.)

(Dewi & Tauris 2000) for stars of different masses and dif-
ferent evolutionary stages. However, while our paper was in
preparation, a paper was published by Xu & Li (2010), largely
with the same idea as our study: to create simple and fast pre-
scriptions that can provide the envelope binding energy in order
to treat CEs in population-synthesis codes.

The main points where our study improves on the latter paper
concern the range of applicability. First, whereas Xu & Li (2010)
provide fits for a selection of 14 discreet masses between 1 M�
and 20 M�, we use the stellar mass as a continuous parameter so
that it can take any value between 0.8 M� and 100 M�. Hence,
the user does not have to interpolate between masses, which may
not be a trivial process. For example, while stars of 1.0 M� and
1.5 M� reach a radius of 100 R� on the RGB, a 2.0 M� star does
not. It may therefore be impossible to obtain the binding energy
for a 1.5 M� star at that radius on the RGB by interpolating
the results of the 1.0 M� and 2.0 M� models in a discrete grid.
Second, they provide two choices of metallicity (Z = 0.001 and
Z = 0.02), whereas we include six different, albeit still discrete,
values, ranging from Z = 10−4 to Z = 0.03. We believe that
our grid of metallicities is sufficiently dense that the nearest
value can be used without too much loss in accuracy. Third,
whereas their study includes a fixed choice of stellar winds, our
fits allow for the user’s choice of wind prescription (although
the accuracy we present is valid only within certain limits, as
discussed in Section 5.1).

In addition to having wider applicability, our paper presents a
more extensive error analysis. As we have shown in Section 5.1,
our accuracies are dominated by the uncertainty in wind mass
loss for massive stars, by the uncertainty in the separation
between core and envelope at the end of a CE, or even by
the intrinsic problems in determining this separation a priori for
stars with masses of ∼10–20 M� and up (Section 5.3). These

systematic errors are discussed by Xu & Li (2010) as well.
However, for the majority of CEs the donor mass is �10 M�,
so that these external uncertainties are less important. For these
cases the uncertainty in the fits will dominate, which we present
explicitly in this paper.

On the other hand, the study by Xu & Li (2010) has two
advantages over ours. First, their work covers the HB for all
masses they consider. While we include all stages of stellar
evolution where a CE could be initiated, knowledge of the
envelope binding energy on the HB for low-mass stars, which
cannot initiate a CE, may be useful for, e.g., collisions. Second,
their prescriptions are simpler than ours, making them easier to
implement.

6. SUMMARY AND CONCLUSIONS

We provide analytical fits capable of predicting the envelope
binding energy of stars with masses between 0.8 M� and
100 M� on the giant branches, for any given mass and radius,
and for six discrete choices of the metallicity. These fits are based
on detailed stellar-evolution models. In addition, we define an
ad hoc correction factor that takes into account wind mass loss.
We provide electronic data files with the fitting coefficients and
Fortran routines and are ready to use these files (Loveridge
et al. 2011).

We find that the accuracy of our fits is better than 15% for
90% of our model data points in all cases and better than 10%
for 90% of the data points for most cases, when fractional mass
loss since the ZAMS is less than ∼20%. For low-mass stars,
the true accuracy will be close to the value we quote, whereas
for high-mass stars the uncertainty in the determination of the
core–envelope boundary will probably be the limiting factor. We
conclude that our fits allow population-synthesis codes and other
environments where detailed stellar models are not available to
compute envelope binding energies for, e.g., common envelopes
quickly and accurately. In addition, the results presented here
are more widely applicable and more accurate than previous
prescriptions.
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