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Abstract. A binary in which a slightly evolved star starts mass transfer to a neutron star can evolve towards ultra-short orbital
periods under the influence of magnetic braking. This is called magnetic capture. We investigate in detail for which initial
orbital periods and initial donor masses binaries evolve to periods less than 30–40 min within the Hubble time. We show that
only small ranges of initial periods and masses lead to ultra-short periods, and that for those only a small time interval is spent
at ultra-short periods. Consequently, only a very small fraction of any population of X-ray binaries is expected to be observed
at ultra-short period at any time. If 2 to 6 of the 13 bright X-ray sources in globular clusters have an ultra-short period, as
suggested by recent observations, their formation cannot be explained by the magnetic capture model.
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1. Introduction

The globular clusters belonging to our Galaxy house thirteen
bright (LX ∼> 1035 erg s−1 in the 0.5–2.5 keV range) X-ray
sources, neutron stars accreting from a low-mass companion.
A surprisingly large fraction of these has ultra-short orbital pe-
riods of less than about 40 min, as first noticed by Deutsch et al.
(1996). Two of the five orbital periods known are 11.4 min and
20.6 min (or its alias 13.2 min) for the sources in NGC 6624 and
NGC 6712, respectively (Stella et al. 1987; Homer et al. 1996).
The orbital periods of eight systems are not known, but for
four of them indirect evidence points to an ultra-short period.
This evidence consists of the absolute magnitude of the optical
counterpart (van Paradijs & McClintock 1994), of the energy
distribution of the X-ray spectrum (Sidoli et al. 2001), and of
the maximum flux reached during X-ray bursts (Kuulkers et al.
2003). Collating this evidence, Verbunt & Lewin (2004, their
Table 1) suggest that two more sources probably, and two oth-
ers possibly have ultra-short orbital periods (in NGC 1851 and
NGC 6652, and in NGC 7078 and Terzan 5, respectively). The
43.6 min period found by Deutsch et al. (1996) is not the period
of the bright X-ray source in NGC 6652, but of a fainter source
(Heinke et al. 2001).

Thus both among the known periods and among the sug-
gested periods, about half of the bright X-ray sources have
ultra-short orbital periods. This is in marked contrast to the pe-
riod distribution of bright X-ray sources in the galactic disk,
where only one period much shorter than 40 min has been sug-
gested so far (Wang & Chakrabarty 2004).

Ultra-short-period binaries with a neutron star can be
formed in a number of ways. An expanding giant star can

engulf the neutron star, which then spirals in to form a bi-
nary with the helium-burning core. If mass transfer starts im-
mediately after spiral-in, the donor is a helium-burning star
(Savonije et al. 1986), if mass transfer starts only after a long
time, the donor has evolved into a CO white dwarf or a CO
white dwarf with helium mantle (Yungelson et al. 2002). The
process requires a giant of higher mass than exists in globular
clusters today; but the waiting time between end of the spiral-
in and onset of the mass transfer allows us to observe the mass
transfer stage today of systems formed long ago. Indeed, it has
been argued that this in fact is the dominant formation pro-
cess for ultra-short-period binaries in globular clusters (Davies
& Hansen 1998; Rasio et al. 2000). Alternatively, it has been
suggested that in a cluster, a neutron star can also in a colli-
sion with a giant expell its envelope and form a binary with its
core (Verbunt 1987). It is not obvious that this leads to a bi-
nary sufficiently close to start mass transfer within the Hubble
time (Rasio & Shapiro 1991). A white dwarf donor implies an
expanding orbit, and thus predicts an increasing orbital period.

Yet another scenario starts from a binary of a neutron star
and a main-sequence star. The evolution of this binary depends
critically on the initial orbital period. When the period is short,
mass transfer is driven by loss of angular momentum, and the
orbital period decreases with the donor mass until a minimum
period is reached near 70 min (Paczynski & Sienkiewicz 1981).
We will call this a converging system. At the minimum pe-
riod, the donor becomes degenerate, and further mass trans-
fer expands the orbit. When the orbital period is long, mass
transfer is driven by expansion of the donor star, and the orbit
expands with the donor radius until the donor has transferred
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its full envelope (Webbink et al. 1983). These are diverging
systems. However, for a narrow range of periods loss of angu-
lar momentum can still shrink the orbit for a slightly evolved
donor. Due to its higher helium content, the donor becomes
degenerate at smaller radius, and correspondingly shorter or-
bital period (Tutukov et al. 1985). Orbital periods shorter than
11 min can be reached (Podsiadlowski et al. 2002). These sys-
tems therefore converge, but the process may take more than a
Hubble time. At 11.4 min, the period derivative may be nega-
tive or positive, depending on whether the system is still on its
way to the period minimum, or has already rebounded. We will
refer to this scenario as magnetic capture.

The repeated observation that the 11.4 min period of the
bright X-ray source in NGC 6624 is decreasing (van der Klis
et al. 1993; Chou & Grindlay 2001) would appear to indicate
that the system evolved according to the magnetic capture sce-
nario. However, it is not impossible that the negative period
derivative is only apparent, the consequence of an acceleration
of the binary in our direction, in the gravitational potential of
the innermost part of the globular cluster. A more accurate po-
sition of the (optical counterpart to the) X-ray binary and a re-
determination of the centre of the cluster shows that the X-ray
source is much closer to the cluster centre than was thought
before, and thus increases the probability that the measured pe-
riod is affected by acceleration. Nonetheless, the measurement
of a period decrease is a strong incentive to investigate the mag-
netic capture scenario in more detail.

A possible problem with the magnetic capture scenario is
suggested by computations for binaries in the galactic disk,
by Pylyser & Savonije (1988). None of their calculated evo-
lutions lead to periods of about 11 min within the Hubble time.
Podsiadlowski et al. (2002) do not address this problem explic-
itly, but only show the time elapsed since the onset of mass
transfer.

In this paper, we address the question under which circum-
stances the very short orbital periods observed in NGC 6624
and NGC 6712 are reached within the Hubble time, in the mag-
netic capture scenario described above. The parameters that we
vary are the initial mass of the donor star, the initial orbital pe-
riod (or more or less equivalently, the orbital period at which
mass transfer starts), and the metallicity of the donor. In Sect. 2
we briefly describe the code that we use, and the algorithms
specific to the evolutionary scenario that we study. In Sect. 3
we give the results for two specific cases, to compare with ear-
lier work and to illustrate the possible evolution paths. We then
describe the expected outcomes for an initial distribution of
donor masses and initial orbital periods in Sect. 4. We find that
orbital periods of 11.4 and 20.6 min are possible, but very un-
likely in this scenario. The consequences of this conclusion are
discussed in Sect. 5.

2. Binary evolution code

2.1. The stellar evolution code

We calculate our models using the STARS binary stellar evolu-
tion code, originally developed by Eggleton (1971, 1972) and
with updated input physics as described in Pols et al. (1995).

Opacity tables are taken from OPAL (Iglesias et al. 1992), com-
plemented with low-temperature opacities from Alexander &
Ferguson (1994).

The equations for stellar structure and composition are
solved implicitly and simultaneously, along with an adaptive
mesh-spacing equation. Convective mixing is modelled by a
diffusion equation for each of the composition variables, and
we assume a mixing length ratio l/Hp = 2.0. Convective over-
shooting is taken into account as in Schröder et al. (1997), with
a free parameter δov = 0.12 calibrated against accurate stellar
data from non-interacting binaries (Schröder et al. 1997; Pols
et al. 1997). The helium core mass is defined as the mass coor-
dinate where the hydrogen abundance becomes less than 10%.

We use a version of the code (see Eggleton & Kiseleva-
Eggleton (2002), hereafter EK02) that allows for non-
conservative binary evolution, even though the evolution of
only one component star is calculated in detail. The compan-
ion, in our case a neutron star, is treated as a point mass. With
the adaptive mesh, mass loss by stellar winds or by Roche-lobe
overflow (RLOF) in a binary is simply accounted for in the
boundary condition for the mass. Spin-orbit interaction by tides
is treated according to the equilibrium tide theory (Hut 1981)
with a tidal friction timescale as given by EK02. This is taken
into account by solving additional equations for the moment
of inertia I(r), the uniform stellar rotation frequency Ωrot, the
orbital angular momentum Jorb and the orbital eccentricity e.
These equations (of which the latter three are independent of
the interior structure and only depend on time) are also solved
implicitly and simultaneously with the usual set of equations,
at little extra computational cost. The rotation induces a cen-
trifugal potential that influences the stellar structure through a
reduction of the effective gravity. The centrifugal potential for
each mesh point is averaged over a spherical shell. Rotationally
induced mixing is not taken into account in this code.

Unlike EK02, we do not include their model for dynamo-
driven mass loss and magnetic braking. Rather we apply a
magnetic braking law without accompanying mass loss, as dis-
cussed in Sect. 2.2. This facilitates direct comparison to previ-
ous binary evolution calculations in which similar assumptions
have been made. Although we follow tidal interaction in detail,
the effect on the current calculation is limited because the short
orbital periods we consider ensure that the orbit is always cir-
cularised and synchronised with the stellar spin. However, ex-
change of angular momentum between spin and orbit is taken
into account.

The initial hydrogen and helium abundances of our model
stars are a function of the metallicity Z: X = 0.76 − 3.0Z and
Y = 0.24 + 2.0Z. In this research we use the metallicities Z =
0.0001 (with X = 0.7597, Y = 0.2402), Z = 0.002 (with X =
0.754, Y = 0.244), Z = 0.01 (with X = 0.73, Y = 0.26) and
Z = 0.02 (with X = 0.70, Y = 0.28).

2.2. Angular momentum losses

If the lower mass star in a binary fills its Roche lobe and starts
to transfer mass to a more massive companion, the orbit will
widen, unless there are enough angular momentum losses to
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compensate for this effect. We assume three sources of angular
momentum loss from the system.

The most important source is magnetic braking. Due to
magnetic braking, spin angular momentum is lost from the
secondary and eventually, due to the tidal spin-orbit coupling,
from the orbit. We use the formula given by Rappaport et al.
(1983):

dJMB

dt
= −3.8 × 10−30 M2 R4 ω3 dyn cm. (1)

Like Podsiadlowski et al. (2002), we apply full magnetic brak-
ing when the mass of the convective envelope of the donor ex-
ceeds 2% of the total mass of the star, and if qconv < 0.02 reduce
the strength of the magnetic braking in Eq. (1) by a factor of
exp(1−0.02/qconv), where qconv is the mass fraction of the con-
vective envelope of the star. The fact that the magnetic braking
removes angular momentum from the spin of the star rather
than directly from the orbit is different from Podsiadlowski
et al. (2002). The main difference is that our study takes into
account stellar spin at all, which influences the radius of the
star and thus the moment at which Roche-lobe overflow com-
mences.

For short orbital periods, gravitational radiation is a strong
source of angular momentum loss. We use the standard descrip-
tion

dJGR

dt
= −32

5
G7/2

c5

M2
1 M2

2 (M1 + M2)1/2

a7/2
(2)

(Peters 1984).
The third way of angular momentum loss from the system

is by non-conservative mass transfer. We assume that only a
fraction β of the transferred mass is accreted by the neutron
star. The remainder is lost from the system, carrying away a
fraction α of the specific angular momentum of the neutron
star

dJML

dt
= −α (1 − β) a2

1 ω Ṁ2, (3)

where a1 is the orbital radius of the neutron star and ω is the
orbital frequency.

To keep the models simple, we applied no regular stellar
wind to our models, so that all mass loss from the system
and angular momentum loss due to this result from the non-
conservative mass transfer described above.

3. Binary models

3.1. Calculated grid

Using the binary evolution code described in Sect. 2, we cal-
culated an initial grid of models for Z = 0.01, the metallicity
of NGC 6624, and Y = 0.26. We choose initial masses between
0.7 and 1.5 M� with steps of 0.1 M�, and initial periods be-
tween 0.50 and 2.75 days, with steps of 0.25 days. Around the
bifurcation period between converging and diverging systems,
where the shortest orbital periods occur, we narrow the steps in
P to 0.05 days.

We specify the bifurcation period more precisely as the
longest initial period that leads to an ultra-short period, within

Fig. 1. Evolution of the orbital periods of selected systems with Z =
0.01, an initial secondary mass of 1.0 M� and initial periods of 0.50,
0.75, 1.00, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70,
1.75, 2.0, 2.25, 2.5 and 2.75 days. The symbols mark special points
in the evolution: + marks the start of Roche-lobe overflow (RLOF), ×
the minimum period, � the end of RLOF and © marks the end of the
calculation. The four dotted horizontal lines show the orbital periods
of the closest observed LMXBs in globular clusters: 11.4 and 20.6,
and in the galactic disk: 41 and 50 min.

a Hubble time. With this definition, the bifurcation period cor-
responds to the initial period of the binary that reaches its min-
imum period exactly after a Hubble time. This extra constraint
is needed because there is no sharp transition between con-
verging and diverging systems, especially since every diverging
system will eventually converge due to gravitational radiation,
if given the time. For instance, the system with an initial sec-
ondary mass of 1.1 M� and an initial period of 0.90 days – that
is shown to run out of the right of Fig. 2 at log P ≈ −0.4 –
does converge to a period of slightly more than 5 min, but only
after almost 32 Gyr. This system is therefore considered to be
diverging. Since the last part of the converging tracks in Figs. 1
and 2 is very steep, a system that reaches an ultra-short min-
imum period shortly after a Hubble time will usually have an
orbital period at the Hubble time that is on the order of hours.

The total number of calculations for Z = 0.01 is 150;
90 for the initial grid, and 60 for the finer grid. We follow
Podsiadlowski et al. (2002) in choosing α = 1 and β = 0.5 in
Eq. (3). The orbital evolution of the systems with initial masses
of 1.0 and 1.1 M� is displayed in Figs. 1 and 2.

3.2. Interpretation of the models

Figure 1 shows that the models with the shortest initial peri-
ods converge to minimum periods of about 70 min. After this,
the stars become degenerate, and the orbits expand. Before the
minimum period is reached, the stars become fully convec-
tive, thus mixing all of the star to a homogeneous composition.
These stars have not yet formed a helium core, but are still a
mixture of hydrogen and helium when they become degener-
ate. The stars with larger initial periods have a lower hydrogen
abundance when they reach their minimum period.
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Fig. 2. Evolution of the orbital periods of selected systems with Z =
0.01, an initial secondary mass of 1.1 M� and initial periods of 0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00, 1.25, 1.50,
1.55, 1.60, 1.65, 1.70, 1.75, 2.0, 2.25, 2.5 and 2.75 days. See Fig. 1 for
more details.

For the longest initial periods, the Roche lobe is filled in a
later evolution stage and the evolutionary time scale is shorter,
so that the star expands faster and the mass transfer rate is
higher. Because of this, and the fact that the mass ratio is less
than 1, the angular momentum loss is not strong enough to
shrink the orbit, so that it starts to expand shortly after mass
transfer starts. These stars are sub-giants, and have a compact
helium core inside their hydrogen envelopes. After they have
transferred all of this envelope, they shrink and become helium
white dwarfs. The systems with larger initial periods are more
evolved when they fill their Roche lobes and produce more
massive white dwarfs.

In between the smallest and largest initial periods, there are
a number of models that reach orbital periods that are much
shorter than 70 min. This happens due to magnetic capture: the
orbital period is reduced strongly under the influence of strong
magnetic braking. When magnetic braking disappears, the or-
bit is close enough to shrink to ultra-short periods by angular
momentum loss due to gravitational radiation. The magnetic
captures come from models with a very narrow initial period
range. The four models with Mi = 1.0 M� that reach a period
less than 40 min, for instance, have initial periods of 1.45, 1.50,
1.55 and 1.60 days, where the last model reaches the ultra-short
period regime only after 14 Gyr. By interpolation, as described
later in Sect. 4.1, we find that the models that reach a minimum
period below 40 min and within 13.6 Gyr, have initial periods in
the range 34.5–38.1 h. These stars fill their Roche lobes when
their orbital periods are in the range of 14.3–17.2 h. The lowest
orbital period reached, by the system with the initial period of
38.1 h, is 12.0 min, after 13.6 Gyr.

If one draws a vertical line in Fig. 1 at 11.5 Gyr (about
the age of the globular clusters), one can imagine that there
is a distribution of observable X-ray binaries at that moment
in time. The lowest orbital period found at that time is about
10−1.75 days, or 25 min. All models with orbital periods higher

Fig. 3. Mass fraction of the convective envelope (qconv) as a function
of the total mass of the donor, for the models with the shortest 9 initial
orbital periods in Fig. 2. The numbers in the plot give the initial peri-
ods in days for that line. As evolution proceeds towards lower donor
masses, the mass faction of the convective envelope increases. For the
5 models with initial periods between 0.5 and 0.7 d, the total mass at
which the star becomes fully convective is anti-correlated with the ini-
tial period. At initial periods of 0.75 d and longer, the initial increase
of the mass fraction of the convective envelope is followed by a de-
crease.

than about 1 day have stopped mass transfer and will not be
visible as X-ray binaries. Because the lines in Fig. 1 are steeper
at lower periods, it is clear that the higher periods, around one
day, will dominate.

Figure 2 shows the same data as Fig. 1, but for models with
an initial secondary mass of 1.1 M�. The results are qualita-
tively similar, but the ultra-short period regime is reached from
lower initial periods, and after a shorter period of time. We find
that the models that reach periods lower than 40 min before
13.6 Gyr have initial periods of 18.0–20.9 h and fill their Roche
lobes in the period range 15.1–18.2 h. The system with the ini-
tial period of 18.0 h reaches 40 min after 8.3 Gyr, the system
with a 20.9 h initial period has the smallest minimum period:
8.0 min.

If we again imagine the period distribution at 11.5 Gyr, but
now for Fig. 2, we see that the period range that we expect
for mass transferring binaries is shifted downwards in period.
Orbital periods as short as 10.6 min can now occur, and systems
with periods over 9.5 h do not transfer mass anymore at that
moment. With respect to the tracks in Fig. 1, we see that their
density is much lower here. This is partially due to the fact that
we use linear equally spaced periods at a lower initial period,
so that they are more widely spaced in log P.

Figure 3 illustrates the evolution of the convective enve-
lope of a 1.1 M� star for the grid models with initial periods
between 0.5 and 0.9 d. Looking at the models in the order of
increasing initial period we find that in the first five the stars
become fully convective at decreasing total masses. The first
model that evolves towards ultra-short periods, with an ini-
tial period of 0.75 d is also the first model in which the donor
never becomes fully convective: an initial increase of the mass
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Table 1. Properties for the donor stars of some of our grid models with Z = 0.01 and Mi = 1.1 M� at their period minimum. The first three
columns list the orbital period initially (at the ZAMS) in days, at Roche-lobe overflow (Prlof) in hours and the minimum period (Pmin) in minutes.
The next 11 columns show stellar properties at Pmin: the age of the donor (since ZAMS), the logarithm of the mass transfer rate (expressed in
M� yr−1), the mass and luminosity of the donor, the logarithms of the effective temperature, the core temperature (both in K) and the central
density (in g cm−3), and the last four columns show the logarithms of the core and surface mass fractions of hydrogen and helium.

Pi (d) Prlof (h) Pmin (m) t (Gyr) Ṁtr M2 (M�) log L/L� log Teff log Tc log ρc log Xc log Yc log Xs log Ys

0.50 10.3 80.7 4.92 −10.31 0.060 −3.64 3.33 6.44 2.53 −0.23 −0.40 −0.23 −0.40
0.55 11.2 76.3 6.31 −10.39 0.052 −3.75 3.32 6.45 2.57 −0.31 −0.30 −0.31 −0.30
0.60 12.2 68.7 7.53 −10.49 0.042 −3.85 3.32 6.54 2.81 −1.46 −0.02 −0.53 −0.16
0.65 13.3 66.8 8.09 −10.31 0.038 −3.96 3.31 6.54 2.68 −0.64 −0.12 −0.64 −0.12
0.70 14.4 62.7 8.28 −10.36 0.043 −3.67 3.38 6.72 2.82 −1.32 −0.03 −0.89 −0.07

0.75 15.2 39.5 8.32 −9.67 0.056 −3.46 3.48 6.93 3.43 −2.34 −0.01 −1.24 −0.03
0.80 15.8 17.6 9.53 −8.53 0.074 −3.97 3.45 7.01 4.08 −∞ 0.00 −1.51 −0.02
0.85 17.6 11.3 11.17 −7.76 0.101 −4.15 3.45 7.10 4.43 −∞ 0.00 −1.84 −0.01
0.90 19.1 5.1 31.85 −6.62 0.164 −4.89 3.34 6.81 5.05 −∞ 0.00 −1.10 −0.04

Table 2. Some properties for two of our grid models with Z = 0.01 and Mi = 1.1 M� at selected orbital periods. First row: initial (ZAMS)
parameters. Rows 2–6: the model with Pi = 0.75 d and Pmin = 39.5 min. Rows 7–11: the model with Pi = 0.85 d and Pmin = 11.3 min. Ṁtr in
Col. 3 is expressed in M� yr−1 and Teff in Col. 7 in Kelvin. The last five columns give the logarithm of the surface mass fractions of the elements
described.

Porb (min) t (Gyr) log Ṁtr log−Ṗorb M2 (M�) log L/L� log Teff log H log He log C log N log O
PZAMS 0.000 – – 1.100 0.17 3.79 −0.14 −0.59 −2.75 −3.28 −2.30

80.0 8.023 −10.11 −12.56 0.097 −2.44 3.59 −0.46 −0.19 −5.12 −2.50 −2.36
60.0 8.147 −9.97 −12.48 0.086 −2.66 3.59 −0.57 −0.14 −5.07 −2.42 −2.44
50.0 8.205 −9.81 −12.49 0.079 −2.82 3.58 −0.70 −0.10 −5.01 −2.35 −2.53
45.0 8.236 −9.72 −12.54 0.074 −2.95 3.57 −0.82 −0.08 −4.96 −2.31 −2.62
39.5 8.317 −9.67 −∞ 0.056 −3.46 3.48 −1.24 −0.03 −4.90 −2.23 −2.88

40.0 11.145 −9.92 −11.86 0.124 −1.64 3.88 −0.48 −0.18 −5.22 −2.50 −2.36
30.0 11.156 −9.51 −11.68 0.122 −1.87 3.86 −0.51 −0.17 −5.23 −2.49 −2.36
20.0 11.163 −9.06 −11.41 0.120 −2.46 3.77 −0.57 −0.14 −5.18 −2.48 −2.37
15.0 11.165 −8.53 −11.26 0.117 −3.21 3.63 −0.68 −0.11 −5.11 −2.47 −2.39
11.3 11.167 −7.76 −∞ 0.101 −4.15 3.45 −1.84 −0.01 −4.81 −2.31 −2.62

fraction of the convective envelope is followed by a decrease.
For initial periods of 0.85 d and 0.9 d the convective envelope
disappears completely. The general trend with increasing initial
period that is visible in Fig. 3, is the consequence of an increas-
ing helium abundance in the core. The cores with a higher he-
lium abundance tend to be hotter and thus more stable against
convection. The absence of convection in the core in turn keeps
the helium abundance high. The third model, with an initial pe-
riod of 0.6 d shows a track that is slightly different from those
of the neighbouring models. This model becomes almost fully
convective, but the central 10−4 M� does not, and as a conse-
quence the mixing from the core to the surface is suppressed.
We have repeated this calculation with a slightly different con-
vective mixing efficiency and find the same results.

Table 1 lists some properties of the same nine models
shown in Fig. 3 at their period minimum. The first five mod-
els all have minimum periods more than 1 h and more than 1%
hydrogen in the core at their minimum, whereas the cores of
the last four models consist for more than 99% of helium. With
decreasing minimum period, the mass transfer rates increase
rapidly and the luminosities of the donors decrease.

In Table 2 we list some observational properties along the
evolutionary tracks of two of our grid models with Z = 0.01
and Mi = 1.1 M�.

Although we find that it is possible to reach orbital periods
below 40 min without spiral-in, but due to magnetic capture
instead, it seems that one has to select an initial period carefully
in order to actually do so. We also find that it is possible to
construct a model that has a minimum period as low as the
observed 11.4 min in a time span smaller than the Hubble time.
The question arises, however, what the chances are that such
a system is indeed formed in a population of stars. In order to
quantify this, we will expand our parameter space to the entire
grid we calculated and do statistics on these tracks in Sect. 4.

3.3. Bifurcation models

For an initial secondary mass of 1.1 M�, the grid models with
initial periods of 0.85 days and 0.90 days bracket the bifurca-
tion period. Some timescales that can explain this difference
are shown in Fig. 4. The evolution of both models is rather
similar in the beginning, except for the small difference in
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Fig. 4. Timescales of the models that bracket the bifurcation period
for 1.1 M�. Upper panel a): model with Pi = 0.85 d. Lower panel
b): model with Pi = 0.90 d. The line styles represent the different
timescales: Solid line: nuclear evolution timescale (M/M�)/(L/L�) ×
1010 yr, dashes: magnetic braking timescale Jorb/J̇MB, dash-dot: grav-
itational radiation timescale Jorb/J̇GR, dash-dot-dot-dot: mass transfer
timescale M/Ṁtr. See the text for a discussion.

orbital period, that stays about constant during the main se-
quence. The wider system has a larger Roche lobe and thus the
donor fills its Roche lobe at a slightly later stage of its evolu-
tion. At this point, the evolutionary timescale of the donor is
shorter than that in the closer system, and it can form a well
defined helium core. When the envelope outside this core has
been reduced by mass transfer to �0.03 M�, it collapses onto
the core, mass transfer stops, and magnetic braking disappears
before the magnetic capture is complete. Gravitational radia-
tion is then the only term of angular momentum loss and it is
not strong enough to shrink the orbit to the ultra-short period
regime within the Hubble time.

In the closer system, the evolutionary timescale of the
donor is slightly larger and its helium core mass is slightly
smaller. At approximately 9 Gyr mass transfer has stripped
the donor to such extend that hotter layers emerge at the sur-
face, the convective envelope of the star becomes very thin and
magnetic braking is strongly reduced (see the discussion with
Fig. 3). Figure 4 shows that this happens at the moment where
the gravitational radiation timescale becomes shorter than the
evolutionary timescale of the donor, so that angular momentum
loss remains sufficient to shrink the orbit from the hour to the
minute regime.

4. Statistics

4.1. Interpolation between models

In order to do statistics on our models, we have to interpolate
between the calculated models to get a time-period track, that
gives the orbital period of a system as a function of time, for a
given initial orbital period Pi.

Before we can interpolate between two calculated tracks,
we must first divide the tracks into similar parts of evolution.

We choose three parts: i) the part between ZAMS and the
beginning of RLOF; ii) the part between the beginning of
RLOF and the moment where the minimum period (Pmin) was
reached; and iii) the part between Pmin and the end of the calcu-
lation. Each of these parts is redistributed into a fixed number
of data points, equally spaced in the path length of that part and
determined by a polynomial interpolation of the third degree.
The path length is the integrated track in the t–log P plane, and
defined as

� =
∑

i

√(
t(i) − t(i − 1)

∆t

)2
+

(
log P(i) − log P(i − 1)

∆ log P

)2
, (4)

where ∆t = tmax − tmin and ∆ log P = log Pmax − log Pmin. Thus,
each part of all tracks contains the same number of points, and
each point on these parts marks about the same moment in evo-
lution in two different tracks.

Next, we interpolate between two tracks, to calculate the
track for the given initial period. Because the tracks differ con-
siderably between the shortest and longest initial period, we
use linear interpolation between two adjacent tracks, that are
always rather similar. Each track is thus interpolated point-by-
point between each pair of corresponding points from the two
adjacent tracks, to get the time and the orbital period.

Once the interpolated track is known, we interpolate within
the track, to obtain the orbital period at a given moment in time.
For this, we use a polynomial interpolation of the fourth de-
gree. For some models the second part of a track consists of
one point, because the beginning of RLOF marks the minimum
period. For interpolations involving this point, we use a third
degree polynomial interpolation.

A handful of models crash after they have stopped mass
transfer, for instance the models with the highest initial period
in Figs. 1 and 2. These systems will not give observable X-ray
sources, but some of these tracks may be needed for the inter-
polation. We continued the orbital evolution of the most impor-
tant of these models analytically, under the influence of gravi-
tational radiation only, until the orbit becomes so small that the
star’s Roche lobe touches its surface. We consider the orbital
period at which mass transfer recommences as the minimum
period. We assume a constant radius of the star since the last
converged model, which probably means that we overestimate
the minimum period a bit in these cases.

4.2. Results for Z = 0.01

In Sect. 3, we have found that we can create LMXBs with peri-
ods down to 11 min or perhaps even less, within a Hubble time.
We also saw, however, that one has to select the initial period
carefully to create a model that reaches such a low period, and
that the system spends very little time on this minimum pe-
riod. In order to investigate how probable it is to observe ultra-
compact binaries, we select random points on random tracks
like the ones in Figs. 1 and 2 and convert the result into a his-
togram. We perform this operation in the following way.

For a fixed initial secondary mass, we draw a random ini-
tial period, between 0.50 and 2.75 days, from a flat distribu-
tion in log P. We then interpolate the time-period track that
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Fig. 5. Statistics results for the 1.1 M� models. Left panel a): results
from the draw of one million random initial periods and times. Each
dot represents the orbital period of the selected system at the selected
time. Only models that were converging and transferring mass at that
time were accepted, about 10.5% of the total number. The peaks at the
higher orbital periods are artefacts, caused by interpolation between
models with and without mass transfer. Dots below P = 30 min are
plotted larger for clarity. Right panel b): a histogram displaying the
fraction of systems found at a certain orbital period, at any time be-
tween 10 and 13 Gyr. The log P-axis was chosen to be vertical, to
correspond to the vertical axis in the left panel. The thick line dis-
plays the data corresponding to the horizontal axis, the thin line is the
short-period tail of the same data, multiplied by a factor of 100 in
the horizontal (probability) direction. The dotted horizontal lines are
the orbital periods of the four observed LMXBs mentioned in Fig. 1.

corresponds to this initial period, using the method described
in Sect. 4.1. For each point on this track, an estimate for the
mass transfer rate is obtained by interpolating in the logarithm
of the calculated mass transfer rates. For points without mass
transfer, we adapt a value of Ṁtr = 10−35 M� yr−1, so that we
can take its logarithm. This introduces some irregularities, like
the peaks around log P (d) = −0.5 in Fig. 5, where interpolation
between models with and without mass transfer, and interpola-
tion between converging and diverging models play a role. This
is usually only the case at orbital periods of several hours or
more, and hence it is of no consequence for the ultra-compact
binaries.

Once the time-period track is calculated, we draw a ran-
dom moment in time, from a linear distribution between 10 and
13 Gyr, the approximate ages of globular clusters, and interpo-
late within the track to obtain the orbital period at that random
moment. We accept only systems that have not evolved be-
yond their minimum period, firstly because of the negative pe-
riod derivative measured for the 11.4 min system in NGC 6624,
and secondly because the evolution code we use can generally
not calculate far beyond the period minimum. We also esti-
mate the mass transfer rate at that moment, again by interpolat-
ing in log Ṁtr. We reject all systems with a mass transfer rate
Ṁtr < 10−20 M� yr−1, because it is unlikely that they have any
mass transfer at that moment and will therefore not be an X-ray
source.

Fig. 6. Probability distribution for all models with Z = 0.01. The solid
line represents the sum of the distributions of the different masses
weighed with the Salpeter birth function, the dash-dotted line assumes
a flat distribution in mass. The thin lines below log P (d) = −1.3 and
below log P (d) = −1.7 are the same data, multiplied with 100 and
1000 respectively. The four vertical, dotted lines show the orbital pe-
riods of the four observed LMXBs mentioned in Fig. 1.

If we repeat this procedure many times, we can create a his-
togram that displays the expected distribution of orbital periods
of a population of converging LMXBs (with all the same initial
secondary masses) after 10–13 Gyr. The results for 1.1 M� and
Z = 0.01 are shown in Fig. 5.

To simulate a population consisting of stars of different
masses, one should interpolate between the tracks as we did
for the period. The tracks are too different from each other to
ensure correct results. It would require a large number of extra
models to be able to interpolate between the masses correctly.
Instead, we choose to add the period distributions of the differ-
ent masses to simulate such a population. We do this for two
different assumptions for the mass distribution: the Salpeter
birth function, and a flat distribution. The results are shown in
Fig. 6.

We see that there is little difference between the two weigh-
ing methods. This assures that although we do not know the
initial distribution of the mass, it is of little influence on this
result. Especially the short-period tails of the distributions are
almost equal. In a sample of 107 systems we find one converg-
ing system with a period of about 11 min and 15 systems with
a period of 20 min.

4.3. Results for other metallicities

The whole exercise we described in section Sect. 3.1, 4.1 and
4.2 is also applied to models for Z = 0.0001, Z = 0.002, and
Z = 0.02, in order to see the effect of metallicity on the ex-
pected distributions. For Z = 0.02 we calculate the same initial
grid as we did for Z = 0.01, between Pi = 0.5−2.75 days for
Mi = 0.7−1.3 M�, but Pi = 0.55−3.025 days for Mi = 1.4
and 1.5 M�, since these stars even at the ZAMS do not fit in
an orbit with P = 0.5 days. For Z = 0.002 we use the same
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Fig. 7. Bifurcation periods and minimum periods as a function of the
initial mass for the four metallicities. Upper panel a) the bifurcation
period (in hours) between systems that converge and systems that do
not converge within a Hubble time. Lower panel b) the minimum pe-
riod (in minutes) that can be reached within a Hubble time as a func-
tion of the initial secondary mass. The different line styles display the
different metallicities, as indicated in the upper panel. The data point
for Z = 0.0001, Mi = 1.5 M� is missing in both panels, because the
bifurcation period for these systems is lower than the period at which
such a donor fills its Roche lobe at ZAMS.

initial mass range, but it turns out that for Mi = 1.0−1.5 M�
the bifurcation period lies very close to or lower than 0.5 days
(see Fig. 7). We therefore shift the minimum initial period to
0.35 days for Mi = 1.0, 1.4 and 1.5 M�, and to 0.4 days for
Mi = 1.1−1.3 M�. For Z = 0.0001, the minimum initial pe-
riod is shifted to 0.3 d for 0.7−1.2 M� and even to 0.28 d for
1.3−1.5 M�. For Z = 0.0001 and Mi = 1.5 M�, the initial pe-
riod at which a ZAMS star fills its Roche lobe is higher than
the bifurcation period. Stars with higher Z have larger radii and
often do not fit in these tight orbits. We shift the upper limit for
the period range from which we took random values accord-
ingly, so that the size of the range (in log P) did not change.
Since the bifurcation period for the lower metallicity models
lies lower, we also have to pinpoint better to calculate the in-
teresting models around it. We therefore narrow the grid to
steps of 0.01 d around the bifurcation period for Z = 0.002 and
Z = 0.0001, and even down to 0.001 d for the last metallicity.

The bifurcation periods for the different masses are plotted
in Fig. 7a. There is a trend in metallicity in the sense that the
dotted line of Z = 0.02 could be moved down and left to fall
over that of Z = 0.01 and further to reach that of Z = 0.002
and Z = 0.0001. Figure 7b shows the minimum periods for the
systems that have the bifurcation period for that mass as their
initial period. The trend that is shown can be explained the fact
that low mass stars with a lower metallicity reach the TAMS
before the Hubble time and are therefore eligible for magnetic
capture, whereas low mass stars of higher Z do not.

The results of the statistics for Z = 0.0001, Z = 0.002 and
Z = 0.02 are plotted in Figs. 8–10 in the same way as the results
for Z = 0.01 in Fig. 6, so that they can easily be compared.
All four distributions are also plotted in a cumulative plot in

Fig. 8. Probability distribution of the orbital periods for all models
with Z = 0.0001. The characteristics of this plot are the same as in
Fig. 6.

Fig. 9. Probability distribution of the orbital periods for all models
with Z = 0.002. The characteristics of this plot are the same as in
Fig. 6.

Fig. 11, showing the fraction of systems with an orbital period
below some value, so that they can be compared directly.

The most remarkable feature in the three distributions with
the higher metallicities is the sharp drop of the number of pre-
dicted systems below log P (d) = −1.25, or about 80 min. This
is due to the systems with low initial mass (0.7−0.9 M�), that
reach their minimum periods there because they evolve too
slow to reach ultra-short periods before the Hubble time, and
remain relatively long at this period. Models with Z = 0.0001
evolve more quickly, and although most models do not reach
ultra-short periods, they are substantially lower than 80 min and
can even reach 31 min in the case of Mi = 0.9 M�. The drop is
therefore less sharp for the lowest metallicity we used.

The lower mass stars dominate in roughly the log P-range
−1.25−−0.6, as can be seen from the fact that here the solid
line for a Salpeter weighted addition of the masses that favours
low mass stars is higher than the dash-dotted line for a flat mass
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Fig. 10. Probability distribution of the orbital periods for all models
with Z = 0.02. The characteristics of this plot are the same as in Fig. 6.

Fig. 11. Cumulative plot for the distribution of the orbital periods for
all models and all four metallicities. The different line styles repre-
sent the different metallicities as indicated in the lower right of the
plot. The height of the lines shows the logarithm of the fraction of
all probed systems that have an orbital period equal to or lower than
the period on the horizontal axis. For all lines, a flat initial mass dis-
tribution is used. The dotted vertical lines show the observed orbital
periods mentioned in Fig. 1.

distribution. For the ultra-short periods, there is very little dif-
ference between the two weighing methods, and we can again
conclude that the exact initial mass distribution is not important
for our results.

We also see that the lowest possible orbital period for an
X-ray binary with Z = 0.0001 within the Hubble time is about a
factor two smaller than for the other metallicities. This is partly
due to the fact that ultra-compact binaries are less likely to be
formed for this low metallicity because the initial period must
be chosen more precisely. However, we find no minimum pe-
riods less than 16.0 min for this metallicity. This has probably
to do with the fact that these stars are hotter and thus have a
weaker magnetic field.

In a sample of 107 binaries with Z = 0.0001, we expect
no converging systems with mass transfer and an orbital period
of 11.4 min, and around 5 with a 20.6 min period (Fig. 8). For
Z = 0.002 and Z = 0.02, these numbers are 7 systems with an
11.4 min period and 60 with a 20.6 min period and 4 systems
with an 11.4 min period and 10 with a 20.6 min period respec-
tively.

Figure 11 shows clearly that there is some difference be-
tween the period distributions for the different metallicities, the
largest difference being the higher period cut-off for the lowest
orbital periods for Z = 0.0001. The largest differences for the
three higher metallicities are found around 11 min, (a bit more
than an order of magnitude between Z = 0.01 and the other two
metallicities) and around 20 min (less than an order of magni-
tude between Z = 0.002 and the others). Note that the line for
Z = 0.01 predicts for each system with an orbital period of
11 min about 100 systems with Porb ∼< 20 min.

5. Discussion

5.1. The importance of converging evolution
for the formation of ultra-compact binaries

To understand why the fraction of ultra-compact binaries with
decreasing orbital period in our computations is so small, we
note that there are three main factors contributing to this. First,
only a limited range of initial orbital periods leads to strongly
converging orbital evolution within the Hubble time, as listed in
Table 3. This range of periods varies strongly with donor mass:
for Z = 0.01 and for 1.0 and 1.1 M� the width is about 0.1 d;
but for 1.2 and 1.3 M� it is only 0.003 d. This corresponds to
∼5% and ∼0.2%, respectively, of the range that we consider.
The reason for this rapid decrease is that the nuclear evolution
time scale of the star increases much more rapidly with mass
than the time scale of magnetic braking. Thus, at higher stellar
mass magnetic capture can only occur for smaller initial or-
bital periods. Second, for each initial orbital period within the
range of converging systems, only a very short time is spent
at ultra-short periods while converging. Thus, the 1.1 M� sys-
tem with initial period of 0.85 d reaches the 20 min period after
11.163 Gyr and the 11 min period after 11.167 Gyr. If we al-
low a range of ages of 3 Gyr, then only 0.1% of these systems
will have an orbital period less than 20 min and a negative pe-
riod derivative. If we allow also positive period derivatives, the
fraction of ultra-compact binaries is somewhat higher: as can
be seen in Fig. 2 the evolution towards longer period is com-
parably rapid as the evolution towards shorter period close to
the minimum period. Third, as already mentioned, the range
of initial periods leading to converging systems is very small
for donors with M ≥ 1.2 M�; hence only donors in a narrow
range of initial masses contribute to ultra-short period systems.
The combination of these three factors explains why so few
ultra-short period systems are produced, as already surmised
by Tutukov et al. (1987).

In our computations above we have assumed an initial pe-
riod distribution in the range 0.5 d ∼< Pb ∼< 3 d. In the galac-
tic disk, the actual period range extends to much longer pe-
riods, and accordingly our estimates of the fraction of X-ray
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Table 3. Comparison between the orbital periods that lead to periods
less than 30 min within a Hubble time and orbital periods that result
from tidal capture with a 1.4 M� neutron star, for different secondary
masses and Z = 0.01. Column 1: initial secondary mass, Cols. 2 and 3:
initial period range that leads to ultra-short periods, Cols. 4 and 5:
RLOF-period period range that leads to ultra-short periods, Cols. 6
and 7: ZAMS and TAMS radii, Cols. 8 and 9: orbital periods for a
circularised binary with capture distances of 1 × Rzams and 3 × Rtams.
Masses are in M�, radii in R� and periods in days.

Mi Pi,1 Pi,2 Prlof,1 Prlof,2 Rzams Rtams Pzams Ptams

1.0 1.477 1.589 0.638 0.715 0.92 1.73 0.19 2.50
1.1 0.767 0.856 0.640 0.740 1.05 1.51 0.22 2.00
1.2 0.753 0.756 0.686 0.689 1.18 1.71 0.26 2.37
1.3 0.753 0.756 0.704 0.707 1.27 2.00 0.29 2.94
1.4 0.753 0.758 0.714 0.719 1.31 2.37 0.29 3.71
1.5 0.752 0.763 0.717 0.728 1.33 2.65 0.29 4.32

binaries that is observed at ultra-short periods are upper
bounds, for systems evolved along the scenario that we com-
pute. This is in agreement with the absence of large numbers of
X-ray binaries with periods much less than 40 min, in the galac-
tic disk. If fact only one such system has recently been discov-
ered; it may well have formed through a different mechanism,
e.g. via a double spiral-in at the end of which a white dwarf
becomes the donor of a neutron star (Savonije et al. 1986).

In globular clusters the binary period distribution is ex-
pected to be different from that in the galactic disk: the
widest primordial binaries are dissolved and close binaries
are produced in close stellar encounters. If the neutron star
is exchanged into a primordial binary in a neutron-star/binary
encounter, the period after the encounter scales with the pre-
encounter binary period; in general the orbit after exchange will
be similar in size (Sigurdsson & Phinney 1993). However, the
range of periods is still expected to be wider than the range
that we have considered in our computations, which therefore
give an upper bound to the fraction of ultra-compact binaries. If
the neutron star is captured tidally, the orbital period after cap-
ture tends to be short. The exact description of tidal capture is
highly uncertain, and we will discuss the simplest description
to provide a reference frame. In this description, the neutron
star captures a main-sequence star if its closest approach d is
within three times the radius R of that star, i.e. d ≤ 3R (Fabian
et al. 1975). The capture rate is linear in d; thus one third of the
captures is a direct hit, which completely destroys the main-
sequence star. Capture may lead to a binary if R ∼< d ≤ 3R.
The lower bound may in fact be higher, since too close a cap-
ture still does serious damage to the star (Ray et al. 1987).
The orbit immediately after capture is highly eccentric, and af-
ter it circularises its semi-major axis is twice the capture dis-
tance: ac � 2d. Hence orbits formed by tidal capture have a
semi-major axis (after circularisation) 2R ∼< ac ≤ 6R, or with
Kepler’s law:

0.23 d

(
R
R�

)3/2 ( M�
M + m

)1/2
� Pb

≤ 1.20 d

(
R

R�

)3/2 ( M�
M + m

)1/2
. (5)

Immediately after the capture, the main-sequence star is highly
perturbed, but after a thermal timescale it may settle on its equi-
librium radius, and continue its evolution. The range of orbital
periods depends on the radius that the star has when it is cap-
tured. In general, the period range is bounded below by the pe-
riod found by entering twice the zero-age main-sequence radius
into Eq. (5) and above by entering six times the terminal-age
main-sequence radius (because a star evolved beyond this point
does not evolve towards shorter periods). In Table 3 we list the
period ranges expected in this simplest description of capture.
Unless the central density of the globular cluster evolves dra-
matically, the probability of capture is approximately flat in
time. The period after capture close to the zero-age main se-
quence should be compared to the initial binary period in our
computations; the period after capture close to terminal-age
main sequence should be compared to the period of a system
close to filling its Roche lobe. In either case, we see that cap-
ture leads to a period distribution which covers an appreciable
fraction of the period distribution that we cover in our computa-
tions. This means that our conclusion that only an exceedingly
small fraction of all binaries with a neutron star evolve towards
periods less than 30 min holds also for tidally captured binaries.

We have taken the simplest description of tidal capture.
From the above argument it is clear that changing the assump-
tions made about tidal capture is unlikely to change our con-
clusion, that evolution from magnetically driven converging
evolution does not contribute significantly to the population
of ultra-compact binaries. Even if tidal capture would miracu-
lously focus the resulting orbits into the narrow range required
for converging evolution, the fact would remain that each sys-
tems spends only a small fraction of its time converging from
20 min to 11 min.

If the binary in NGC 6624 were the only ultra-short-period
binary in a globular cluster, one could accept an evolutionary
scenario with low probability. It is thus worthy of note that our
statistical argument depends critically on the observation that
the 20.6 min (or 13.2 min) period of the binary in NGC 6712
is real. So far, this period has been measured only once in a
single HST data set, and an independent new measurement is
very desirable, to exclude definitely that the first measurement
of a significant periodicity is a statistical fluke.

5.2. Comparison to Pylyser & Savonije

The question arises why Pylyser & Savonije (1988) and Pylyser
& Savonije (1989), hereafter PS1 and PS2, did not find ultra-
compact systems in their study. We tried to reproduce their
models with a 1.0 M� compact primary and a 1.5 M� secondary
(models A25-I25 in PS1 and A25-Z25 in PS2) because these
are best documented and they find the lowest minimum period
here (38 min for A25 in PS2). We calculated models with the
same initial masses, mixing length (l/Hp = 1.5), metallicity
(Z = 0.02) and without overshooting. Figure 12 compares their
results to our calculations as the minimum period (Pmin) as a
function of the period where Roche-lobe overflow starts (Prlof).

We find the bifurcation period at much larger Prlof , which is
due to the fact that our stars rotate (about 25% of the difference,
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Fig. 12. Comparison of our models (dashed line) to the models
A25-I25 of PS1 and A25-Z25 of PS2 (solid lines). See the text for
details.

according to test calculations we have done) and increased
opacities. Both effects increase the radii of our model stars, so
that they must be placed in a larger orbit to fill their Roche
lobe at the same stage of evolution. It seems that shifting the
two solid lines of PS1 and PS2 horizontally can approximately
compensate for this, but the lines must be shifted over different
amounts. Hence, a gap arises between what at first sight ap-
pears to be a continuous Prlof -range from PS1 and PS2. The fact
that they find the minimum period at the limit of each range,
and the fact that these two points are both at Prlof = 0.70 d, but
give very different minimum periods (100 min and 38 min for
PS1 and PS2 respectively), are supporting the evidence for the
existence of this gap. The cause for the gap seems to be clear;
in PS2 an accretion induced collapse (AIC) occurs when the
primary reaches 1.44 M�, whereas in PS1 no such event hap-
pens. The AIC decreases the mass of the compact object and
increases the orbital period so that the further evolution can no
longer be compared to that of systems without an AIC.

In our more complete series of models, shown in Fig. 12,
the lowest minimum period we find is 7.0 min, and is reached
after 12.4 Gyr.

5.3. Comparison to Podsiadlowski et al.

We chose the parameters of our models as similar as possi-
ble to those of Podsiadlowski et al. (2002) (see Sect. 2), to
see if we could reproduce their results for a 1.4 M� neutron
star and a 1.0 M� secondary. Indeed, the results of our calcu-
lations are qualitatively very similar to their findings in their
Fig. 16 and their statement that binaries with an orbital period
of 5 min can be achieved without a spiral-in, although we need
slightly larger initial periods to get to the same minimum pe-
riod. Podsiadlowski et al. (2002) display their results as a func-
tion of time since Roche-lobe overflow started, and because of
this we cannot ascertain the total age of the binary at the min-
imum period. The red and blue model in their Fig. 16 reach
minimum periods of about 9 and 7 min, at approximately 4.5

and 5.5 Gyr after the beginning of RLOF. We find very simi-
lar results, and in addition we find the total ages of these sys-
tems: 14 and 17 Gyr respectively. We find that it takes 13.4 Gyr
to reach an orbital period of 11.4 min, the shortest period ob-
served for an X-ray binary, and more than 35 Gyr to shrink the
orbit to 5 min. We conclude that it is not possible to create sys-
tems with orbital periods less than 10 min this way, within a
Hubble time.

Podsiadlowski et al. (2002) find that there is a rather large
range of initial orbital periods (13–17.7 h) that lead to a min-
imum period that is less than 30 min. We find for the same
condition a Prlof of 15.3–17.2 h, which is considerably smaller.
This is firstly because our model stars have a slightly larger ra-
dius. Part of the explanation of the increased radius is given by
the rotation of the star, although this can only account for 20%
of the difference in the Prlof -range, and by the different helium
abundance (Podsiadlowski et al. (2002) use Y = 0.27, we have
Y = 0.26), which explains 10%. The larger radius shifts the
whole Prlof -range to larger orbital period. Secondly, we limit
our range to systems that reach their minimum period before
the Hubble time, so that it is cut off above a certain Prlof .

What Podsiadlowski et al. (2002) call the initial period is
the period at which RLOF initiates, and which we call Prlof . In
the time before RLOF began, the magnetic braking may have
played a role in shrinking the pre-RLOF orbit of the systems as
listed in Table 3.

5.4. Comparison with observations and other models

The main result from our computations is that, in a population
where all X-ray binaries evolve from close detached binaries
of a main-sequence star and a neutron star, systems with or-
bital periods less than 30–40 min and with decreasing orbital
periods are very rare. If we accept that the orbital period of the
X-ray source in NGC 6624 is decreasing intrinsically (and not
just observationally due to gravitational acceleration), we must
accept that it is a statistical fluke, or look for a different origin.

In this respect it would be important to know more about
the orbital periods and their derivatives of other X-ray sources
in globular clusters. A very short orbital period is detected for
just one other bright X-ray source, in NGC 6712, as a regular
variation of 0.044(7) mag in one series of 53 F300W (wide U)
filter HST observations with WFPC2 in 1995; aliasing allows
two solutions at 13.2 or 20.6 min (Homer et al. 1996). Homer
et al. (1996) opt for the longer period, on the basis of the low
X-ray luminosity that reflects a low mass-transfer rate and a
model in which the donor to the neutron star is a white dwarf
(Verbunt 1987). We note that the same choice for the longer pe-
riod would follow for the magnetic-capture model. The period
derivative of the source in NGC 6712 is not known. The argu-
ment that as many as half of the bright X-ray sources in globu-
lar clusters have ultra-short periods is based on the similarity of
various properties of those X-ray sources with the properties of
the X-ray sources in NGC 6624 and NGC 6712. This argument
is correct only if the X-ray source in NGC 6712 indeed has an
ultra-short period. It is therefore important that this period is
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confirmed; which will also settle between the aliases of 13.2
and 20.6 min.

Measurement of the period derivative will be very difficult.
It is therefore of interest to know how many ultra-compact bi-
naries one would expect irrespective of their period derivative,
in the magnetic capture model. Alas, our computations stop a
short time after the minimum period, so that we do not have
an accurate estimate of the time spent at positive period deriva-
tive. Nonetheless, inspection of our results as reflected in Fig. 1
shows that the evolution away from the minimum period is
only slightly slower than the evolution towards it. Thus, the
number of systems expected at the shortest period range of be-
tween 10–30 min would only be a factor few higher than the
number in the same period range with decreasing period only.
This implies that the presence of even two systems with periods
less than 30 min among 13 globular cluster systems excludes
the magnetic-capture scenario as the dominant formation pro-
cess. The conclusion is true a fortiori if more such systems are
discovered.

A donor in an ultra-compact system can also be a helium-
burning star. To bring such a small star into contact, a spiral-
in must have occurred (Savonije et al. 1986). The progenitor
of such a helium-burning star would be more massive than
the main-sequence star found in globular clusters, and Verbunt
(1987) argued that this excludes such donors for sources in
globular clusters. However, more massive stars can be made
in direct collisions: if such a more massive star ends up in a bi-
nary with a neutron star, further evolution can lead to a helium-
burning donor in an ultra-compact system. This scenario may
gain in importance if tidal capture is indeed less efficient, as in-
dicated by a high fraction of systems with ultra-short periods.
It allows negative derivatives of the orbital period.

Since the measurement of the intrinsic derivative of the or-
bital period is so difficult, it is useful to look for other obser-
vational properties that can discriminate between the different
origins of an ultra-compact binary. With this in mind, we refer
to Table 2 where some properties of ultra-short-period systems
are listed that follow for the magnetic-capture model, in par-
ticular the mass-transfer rate at various periods, and the abun-
dances of the more important elements. A pure white-dwarf
donor, whittled down to a mass less than 0.1 M�, would have no
hydrogen if it was a helium white dwarf; and no hydrogen and
no helium if it was a carbon-oxygen white dwarf. Therefore,
if hydrogen is discovered in the spectrum of an ultra-compact
X-ray binary, this indicates evolution through magnetic cap-
ture and the orbital period must still be decreasing. Close to the
minimum period the hydrogen abundance at the surface goes
to zero and thus is no longer discriminant between models.
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