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95 % of the Universe 1s unknown
All known
matter:

' Esars
| ‘planets, -
:galaXieS_'_



Higgs: You got a new toy, it's a playmobil castle with a
size between 1-1000 cm. Can you find it ?




Today: | have a new toy for you, | put it somewhere in
your room. The size is 0.1-100 cm. Can you find it ?
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What could 1t be? Dark Matter models

19d Parameter space

Axion-like Standard
Particles Model v

.-gditional

Light bosons Neutrinos

Super- Extra-
symmetry dimensions

Littl
Dark Matter Weak Scale

c : Effective
Simplified Field

Models

Theory

‘ @ 2011: First DM

search at LHC

Superfluid | sdlb 9 my gr'OUp at
= CERN/ATLAS
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What could 1t be? Dark Matter models

19d Parameter space

Matter

eutrinos

2018 : Exhaustive Automated Search
Database of Models

TNRTI Effe.ctive
" Vioddl eld
‘ Other @
Particle .
2011: First DM

search at LHC
2> my group at
w CERN/ATLAS
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2016: ,Learn®“ DM model 2017: Scan gamma rays
for DM with Deep Networks

CNN CNN CNN CNN CNN
layer 1 layer 2 layer 3 layer 4 layer 5

. . . = ‘ Prediction: 0.86
. . . ! ‘ e

Figure 7: Activations of the different convolutional layers on a simulation. Each column
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Classify/Predict DM from 19 Scan Data with Million
parameters templates
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2018:

Automatize
searches Il B |
for anomalies : T HHnE

Collider Data: Scanning
> 30.000 data selections
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Traditional
pipeline:

Simulation

Experiment

7
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e
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What is Machine | earning ?

Meaningful
Compression

Structure Image

) e Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

i istai i i Diagnostics
Visualistaion Reduction Elicitation Detection Classification 8

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised SUPerVISed

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks

Image via Abdul Rahid
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Estimate function using
polynominals

Problem is to determine

“best” model parameters

This is done by defining an
“error function” or loss function
which is then “minimized”.

N
E =Y (y(an,w) = f(an))’

n=1

=>» Easy to solve

However: Which order
of the polynomial ?

f()s now a 1d function

of a 1d variable x

Trained function:

(linear model in the unknown parameter ).

)
y(x,w) = wo + w1z + waxr” + ...
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Example 1dim

regression

N
B = Z(y(-}?n:w) — f(-’rn»))z

n=1

=>» Higher order polynominals
Naturally fit better, but

they do not agree with the true

curve.
=» Overfitting

Can be seen in data by calculating

the error function

of an independent data set
=>» Test data error function
would be large !

=» Dataset typically split in a

“training set” and a “testing set” .

Trained function:

)
y(x,w) = wo + w1z + waxr” + ...

(linear model in the unknown parameter ).
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Neural Network - regression

* Suppose we have a trivial model:

y(x, w) = () wir)

and f is a non-linear activation function.

Let’s make the input a vector (more input variables):

y(ZF,w) = f(Y_ wizi)

l_ + bias vector (here neglected,

see NN lectures)

Inputs  Weights Net input Activation
function function

output

16




Activiati

Nn fiinc

Does not work for

o / flo) =z NN -> No non-linearities NGNS

f / 0 f 0
Binary step If(”’):{(l) fﬁiiég f():{? fﬁiﬁfo
Logistic (a.k.a. 1
SigmoidorSoft | _—— | f(z) =o(z) = e [1] f'(z) = f(z)(1 — f(=))
step)
TanH / 1) — ) — L2 = f'(z) =1 f(z)’

@ +e)

1 / 1

ArcTan / f(z) = tan™" () fle) =5 +1
l/r_A & , 1

Softsign [7IF ] fle) =17 || /@)= 1+ |=2])
Inverse square i) T 1 3
root unit )= f(z) = ( )
(ISRU)L®! | V1+az? V1+ az?
Rectified linear _JO0 forxz<0 1y J 0 forz <O
unit (ReLU)['0] / flz) = {:c forz >0 fi=z) = { 1 forz >0




Neural Networks

e Let us now make the basis function itself nonlinear
combinations of its inputs

m
o = (3 (w7l 7))

j=1

= ( (Zw z; + b )er(Q))
J=1

And phiis a non-linear activation function, b is called bias

(bias allows to “shift” the activation function

18



Neur @(,
¥

Input Signals Hidden layer Output layer

m

Of 5, O 4 50 D03 @[30,
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\ ) \ g X )
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NORNG (Z (4 + b(z)))
j=1
Neur m .
L) Z w§_2) (1) Z wg) z; +b§.1) + 3
1=1

j=1

Input Hidden Layer Output
Layer Layer

Output
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This is a 3 layer (1 hidden layer) feedforward
(multilayer) perceptron

—2This is the “simplest network”

“Training”’:

Finding the set of weights which minimize the error
function



Neural Networks

e Of course we can have multiple output nodes

Input layer Hidden layer Output layer

22



... or multiple hidden layers...

"Non-deep" feedforward
neural network

Deep neural network
hidden layer

. hidden layer 1  hidden layer 2 hidden layer 3
input layer

input layer

i output layer

Multiple
Output
Nodes !

We often use 5-10 layers

23



2014 First deep network in HEP (begin
2018 we had 50 on arxiv)

Searching for Exotic Particles in High-Energy Physics with Deep Learning

P. Baldi,! P. Sadowski,’ and D. Whiteson?

IDept. of Computer Science, UC Irvine, Irvine, CA 92617*
2Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle dis-
coveries. Finding these rare particles requires solving difficult signal-versus-background classification
problems, hence machine learning approaches are often used. Standard approaches have relied on
‘shallow’ machine learning models that have a limited capacity to learn complex non-linear functions
of the inputs, and rely on a pain-staking search through manually constructed non-linear features.
Progress on this problem has slowed, as a variety of techniques have shown equivalent performance.
Recent advances in the field of deep learning make it possible to learn more complex functions and
better discriminate between signal and background classes. Using benchmark datasets, we show
that deep learning methods need no manually constructed inputs and yet improve the classification
metric by as much as 8% over the best current approaches. This demonstrates that deep learning
approaches can improve the power of collider searches for exotic particles.

AUC
Technique Low-level High-level Complete
BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001)  0.816 (0.004) Importa nt:
DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)
= — Input only 4 vectors !!!!

: Ty R No knowledge about physics !!!!
Technique Low-level High-level Complete S
NN 2.50 3.10 3.70

24
DN 4.90 3.60 5.00




@ Backfed Input Cell
z Input Cell
B Noisy Input Cell

@ Hidden Cell

. Probablistic Hidden Cell
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell
‘ Recurrent Cell

’ Memory Cell

‘ Different Memory Cell

" Kernel

O Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

Deep Convolutional Network (DCN)

)

DB O |
| X X
/

(

Generative Adversarial Network (GAN)

KX haX ek
L OREN

Deep Residual Network (DRN)

sasasiens s .
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A mostly complete chart of

Neural Networks .......o.

©2016 Fjodor van Veen - asimovinstitute.org

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

=

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)
[ )] [ [

9,
I
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Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE)
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Sparse AE (SAE)

Deep Belief Network (DBN)

A

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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)

~
O
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X 07

Liquid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Network (ESN)

Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)
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6 Backfed Input Cell
Input Cell
A Noisy Input Cell
() Hidden Cell
. Probablistic Hidden Cell
@ spiking Hidden Cell
. Output Cell
. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Different Memory Cell

PN

Kernel
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Convolution or Pool

4
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Markov Chain (MC)

Hopfield Network (HN) Boltzmann Machine (BM)

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org
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Training methods

Supervised Unsupervised Reinforcement

Learning Learning Generating data
known unknown

patterns patterns Learning patterns

Unsupervised Learning

Original unclustered data Clustered data

|
= =) = N w S v o

1 |
N = =) = N w & w o
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... there is also e.g. semi-supervised using labeled + unlabeled data






Dark Matter data gathering pillars

observea
T 7
s Y
.(r
§¥
*® r

expected

from
- — _ luminous disk

M33 rotatic-

Gravitational
interactions

Indirect Detection

Production
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Deep Convolutional Networks

Actually Alpha-go used a deep convolutional network...
What is this ?

We recently used deep convolutional networks to
analyse gamma ray images for

Dark Matter

https://arxiv.org/abs/1708.06706



Convolutional Networks

* Convolutional networks have convolution layers
based on “filters”, a filter (a matrix) maps “a group

of numbers” to “a number” reducing the data 2
CONYV layers

* There are also layers which only do a
downsampling (lower the dimensionality) POOL or
“fully connected layers” to process the final
numbers...

important paper:LeCun, Yann. "LeNet-5, convolutional
neural networks". Retrieved 16 November 2013.



Filters (Matrix)

* Unity
0 0 0
0 1 0
0 0 0.

“Edge detector”:

“Convolutional” Network use “invariances” (rotation, translation) in data (e.g. images)



WIMP Astrophysics

/ Gamma-rays

WIMP Dark Vy
Matter Particles 4_./,:, v
Ecm~100GeV TS
X WH/Z/q et
T Neutrinos
\ Vu
—~
w

+afew p/p, d/d

Analysis Anti-matter
Chain
7 ?7? ?
Dark Malter New Particle Final State Cosmic Ray Detector
Densily e.g. N-body  Theory e.g. Hadronization Propogation Simulation
Simulation SUSY, Extra-dim e.g. PYTHIA and Galatic i.e. GEANT4
Simulation Interaction

1-N0E

i.e. GALPROP #7450



Gamma rays & the Galactic Center
excess

J‘ T

NASA press release 2014 (excess known since 2009)
The inset is a map of the galactic center with known
sources removed, which reveals the gamma-ray
excess (red, green and blue) found there. This excess
emission is consistent with annihilations from some
hypothesized forms of dark matter. Credit:
NASA/DOE/Fermi LAT Collaboration and T. Linden
(Univ. of Chicago)

Fermi-LAT Observations of High-Energy Gamma-Ray Emission Toward the Galactic Center

Fermi-LAT Collaboration (M. Ajello (Clemson U.) ef al.). Nov 9, 2015. 29 pp.
e-Print: arXiv:1511.02938 [astro-ph.HE] |




Our convolutional network
(convnet)

Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps maps units units Outputs
1@120x120 64@60x60 128@30x30 128@16x16 256@8x8 256@4x4 256 512 1

Flatten Fully Fully
connected connected

Max-pooling after every convolution
Local response normalization after every other convolution

Figure 6: Visualization of the convolutional neural network. The network consists of an
input layer, 5 convolutional + pooling layers, 2 fully connected layers and finally an output
layer.

Hierarchical/compositional structure = smaller to larger structures
(reason: visible system is hierarchical as well...)

In comparison: GoogleLeNet has like 30 layers... -



|sotropic or point sources: A Deep
Convolutional Network approach

Output of the 5 convolutional layers can be “visualized” per event.

CNN CNN CNN CNN CNN
layer 1 layer 2 layer 3 layer 4 layer 5

Input

Prediction: 0.86
Truth: 0.82

Activations of the network. Only four filters per layers are shown for clarity, between

256 and 65 filters are used for the different layers

arXiv:1708.06706



Guess the fraction of point sources www.mydarkmachine.org

What is this fraction? This is 0.5

Your prediction: s e—

Invert image: @




What is this fraction? This is 0.5

Rest
' 3o-error

- - . 2g-error
1g-error

Pelrfect prediction

@
=
©
>
o}
=2
bt
=
Q
2
vl
o

| |

02 03 04 05 06 07 08 09
fsre prediction of full network

(b) Prediction of the full network
versus true values.

rourrtp_rediCﬁO': ——— Interpretation here is

nvert image: . .

Truth: 0,052 frequentists and relles. or.l the model
Network: 0.1230 to be correct (uncertainties

Your guess: 0.5 from toy experiments, no p-value yet)

Who is better? The network




Main message: Parameter determination of
the physical model with a Neural Network

* Finally our goal is to determine the model
parameters from 1 image (“real data”)

* We do this by training the network on “simulation”
(“simulated data”)

* We need to ensure that simulation agrees with data:
Is the true image in the simulation parameter space of
images ? If not DM parameters maybe wrong !

In simple words we do a “fit” to the image including all kinds of “unknown correlations”

using a deep convolutional network trained on simulations




Next st

S
- Categorize O%J‘[e)cts on the gamma-ray sky

Image Recognition

Also point source detection now = see e.g. recent paper called “deepsource”
https://arxiv.org/abs/1807.02701
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Can we S|mulate the most )
‘elementary interactions of our
Universe with machlne learning?

Sydney Otten,!> 2 M Sascha Caron,b 3 [ Wieske de Sw art,’ Melissa van Beekveld,! I Luc
Hendriks,! Caspar van Leeuwen, 4 Damian Podareanu,* and Roberto Ruiz de Austri®

L Institute for Mathematics, Astro- and Particle Physics IMAPP
Radboud Universiteit, Nigmegen, The Netherlands
2GRAPPA, University of Amsterdam, The Netherlands
3 Nikhef, Amsterdam, The Netherlands
YSURFsara, Amsterdam, The Netherlands
®Instituto de Fisica Corpuscular, IFIC-UV/CSIC







Collisions at the

Bunch crossing every 25 ns.. many collisions per
bunch crossing




ke this...

¥

Most events look |

LI

Run Number: 266904, Event Number: 25884352

Date: 2015-06-03 13:41:54 CEST

Event from LHC run-2



1 1n >1000 billion events looks
like this

Higgs to Z2 photon candidate with mass of 125 GeV



Analysis

pipeline:
>days

Physical . . .
» Experiment
Model

< 1 msec

ML- tool scan
model-independently
(unsupervised)

for new physics




Accelerating simulations

« SUSY-AI (www.susg—ai.org) : Good or
bad model from 19 parameters

>

* DeepXs : Calculating frequency of new
physics events

>

This project with surfsara:
Generate and simulate full events !


http://www.susy-ai.org/

Simulation: Traditional

Energy and angles of reconstructed particles

Input:
Random numbers



Simulation: Us

Energy and angles of reconstructed particles
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Input:
Random numbers




Random numbers...

Gotz, Karl Otto: Statistisch-metrischer
Versuch 4:2:2:1, Entwurf Sommer 1959



Random input -> Art

Tinguely, Meta Matics



Network simulations 7

Generative Adversarial Networks state of the art:

Training set V Discriminator

U] g ..

B / - E{Fake

¢

Generator —/ /Fake image
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Distributions of Particle
Collision “Events® with GANs

Histogram of energy conservation

16000 -

14000 -

12000 -

10000 -

8000 A

6000 A

4000 A

2000 A

[ Particle 1
(1 Particle 2

Good:

GAN “learns”

special relativity !
- Right events

-0.2 0.0 0.2
(E?2-p™2-m™2)/E"2

0.4



Distributions of Particle
Collision “Events® with GANs

Distribution of the angles of generated events

300 A
(] Theta
1 Phi
250 -
200 -+ BAD:
150 4 GAN does not
make
events of different
1007 types with right
frequencies !
50 -
0




Autoencoders

Input image Reconstructed image

Latent Space Lot
"~._ Representation P

“bottleneck” ' ~.<.

We actually use a better version:
,Dutch® Autoencoder
(Variational Autoencoder by Dederik Kingma and Max Welling)



number of events (normalized to 1)

Distributions of Particle
Collision “Events® with
variational autoencoders

0.20}-{1 VAE w/o density

[ Monte Carlo
[ VAE w density

2
pr of leading lepton

1. . .
theta of leading lepton

BAD:
Autoencoder typically does not

-1 0 1
¢ of leading lepton

make events of different types with right
frequencies !




Autoencoder
(+ event 1nfo 1n latent space )

Use/Store some
Input image

. Reconstructed image
latent Space info of ructed imag

original events to sample

Latent Space Lot
"~._ Representation P

“bottleneck” ' ~.<.
10d

20d 20d

We actually use a better version:
,Dutch® Autoencoder
(Variational Autoencoder by Dederik Kingma and Max Welling)



number of events (normalized to 1)

number of events (normalized to 1)

0.05 0.10 :

[ Monte Carlo | ’

VAE w density
0.04
0.03
0.02 0.04
0.01 0.02
0.00 0.00
0 100 200 300 400 500 -6 -4 -2 0 2 4
pr of leading jet n of leading jet
0.07 0.035
0.06 0.030
0.05 0.025
0.04 0.020
0.03 0.015
0.02 0.010
0.01 0.005
0.00 0.000
0 500 1000 1500 2000 0 100 200 300 400
M;,, of two leading jets MET

Distributions of Particle
Collision “Events® with
ydensity®“ variational

autoencoders

500

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

10°

101

102

-3 -2 -1 0 1 2 3
¢ of leading jet

vy -2 0 2 4
M;,, of leading jet (momentum conservation)



Why is this useful ?

Can ,,store“ events in lower
dimensional latent space and
interpolate between them

>New events (by interpolation and
compression/decompression)

—->New concepts (by interpolation)
—->New models (by interpolation)
—->Better random number sampling

->Ultrafast (Million events per second
compared to 1 event per minute ..)



Concept of a latent space
of sofas and chairs

34 22

arxiv 1610.07584



Top top Latent space PCA1 vs

&

PCA2
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FIG. 7: Visualization of the first two components of a principal component analysis of encoded Monte Carlo events 63

in latent space. This shows an 8 x 8 grid of event displays following the red dots in Figure 6l These 64 points chosen



New Physics ?
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/ New Physics ?




Problem at the Large Hadron Collider is to find new
over-densities in the data

compared with the SM expectation
not necessary a new cluster or outliers...

... but maybe also outliers...



Our recent ATLAS approach

* Look everywhere for new overdensities
 Compare data to the SM using a test statistics
and a scan algorithm

9 e.g. General Search (on arxiv now: https://arxiv.org/abs/1807.07447)

c L B L B L R B R A L B
8 42 __ATLAS ® Data2015 ZTotalSM Automatize:
- {s=13Tev,32f%" RO — MCstat, == EXp-syst® 3 . . .
% = Eientcla:s: ET* 13 gQéAZQ‘I5+066 su MC stat MC stat. - >16OO dIStrIbUtIOnS
— - - U processes: I
Lﬁ 10 = H Po-VALUE 0.0028 EE,WW(Y) Etszy*t-jets = >800 Channels
- +y +jets 3 )
B % % + + =git;1/::boson [Jsingle top 7 >10/\5 reglons
1 E
10- Bl Which quantity is optimal ?
o 4 E How to determine background ?
= g 3 How many hypothesis tests are optimal?
&1 st M /]
a ’ : “ N gy s rrervirer %
%00 1000 1500 2000 2500 3000

67

m,, [GeV]



