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Searching for new physics without knowing the signal model
- Machine Learning

- Automatization
Data Derived Signal Regions
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1.
2.

Outline

Introduction:
Particle Physics (Particle DM)

situation in 2019

3

4.
5.
6.

DM searches with Deep Networks
Learning DM/HEP models

Unsupervised searches
Simulation without MC simulators

Very personal selection of topics/papers/etc.
No real overview talk...



asa --

One physicist's schematic view of particle physics in the 21st century
(Courtesy of Hitoshi Murayama)




2019 What has changed ?

- We have not seen any signs of new
physics (no SUSY and no convincing
signal of anything else !)

- We got a “toolbox” from the future



2019 What has changed ?

- We have not seen any signs of new
physics (no SUSY and no convincing
signal of anything else !)

=» Was that expected ?
=» Maybe yes ...



Higgs: You got a new toy, its a playmobil castle with a
size between 1-100 cm. Can you find it ?

\ -
\




Today: | have a new toy for you, | put it somewhere in
your room. The size is 0.1-100 cm. Can you find it ?

\ -
\

Y




Could work to implement more of automatization for
particle physics to ,scan” the full room for something interesting...

—This can help LHC, but might also work for astrophysics

—>We can embed into this “scan” our prejudice how new physics

looks like, e.g. in this case it would be ,toy” detection software
trained on all known toys...
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What is Machine Learning ?

Meaningful
Compression

Structure Image

) o Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

i istai i i Diagnostics
Visualistaion Reduction Elicitation Detection Classification 8

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
.
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

=Bl |_carning

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks

Image via Abdul Rahid
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I\/Iost |mportant example Superwsed
Learning

Computer systems “learn” with data

Actually the computer “learn/derives and fits”
a continuous estimator f(Z) for an unknown function f(x)
from 7 discrete data points x; with known function values f(x7).

i discrete data points x; with known function values f(x7).
is called the “training set”.

Determining f(x’) is called “training”.

The axis values of the &; values are called “features”.

11



e Let us now make the basis function itself

nonlinear combinations of its inputs

y@ =2 (Z (wf)yﬁ-l) 4 b(z)))

j=1
j=1 i=1

And phiis a non-linear activation function, b is called bias

(bias allows to “shift” the activation function

12



Input Signals Hidden layer Output layer

m

[0 (')(Zw(,'i)x, +b 51)] oo (')(Z W (/2)( (Z Wi x,)]]
P j=0 i=0

L ) \ J X )
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This is a 3 layer (1 hidden layer) feedforward
(multilayer) perceptron

—2>This is the “simplest network”

“Training”:
Finding the set of weights which minimize the
error function

15



Fitting pdfs without assuming the underlying function

10. Parton distributions for the LHC Run Il
NNPDF Collaboration (Richard D. Ball (U. Edinburgh, Higgs Ctr. Theor. Phys. & CERN) et al.). Oct 31, 2014. 138 pp.
Published in JHEP 1504 (2015) 040
EDINBURGH-2014-15, IFUM-1034-FT, CERN-PH-TH-2013-253, OUTP-14-11P, CAVENDISH-HEP-14-11
DOI: 10.1007/JHEP04(2015)040
e-Print: arXiv:1410.8849 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; Link to Article from SCOAP3

Detailed record - Cited by 1054 records
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Neural Networks

* Of course we can have multiple output nodes

Input layer Hidden layer Output layer

17



... or multiple hidden layers...

"Non-deep" feedforward
neural network

hidden layer

input layer

~ output layer

Multiple
Output
Nodes !

Deep neural network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

N S output layer

We often use 5-10 layers

18
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2014 First deep network in HEP (begin
2018 we had 50 on arxiv)

Searching for Exotic Particles in High-Energy Physics with Deep Learning

P. Baldi,! P. Sadowski,’ and D. Whiteson?

IDept. of Computer Science, UC Irvine, Irvine, CA 92617*
2Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle dis-
coveries. Finding these rare particles requires solving difficult signal-versus-background classification
problems, hence machine learning approaches are often used. Standard approaches have relied on
‘shallow’ machine learning models that have a limited capacity to learn complex non-linear functions
of the inputs, and rely on a pain-staking search through manually constructed non-linear features.
Progress on this problem has slowed, as a variety of techniques have shown equivalent performance.
Recent advances in the field of deep learning make it possible to learn more complex functions and
better discriminate between signal and background classes. Using benchmark datasets, we show
that deep learning methods need no manually constructed inputs and yet improve the classification
metric by as much as 8% over the best current approaches. This demonstrates that deep learning
approaches can improve the power of collider searches for exotic particles.

AUC
Technique Low-level High-level Complete
BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001)  0.816 (0.004) |mp0rta nt:
DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)
= — Input only 4 vectors !!!!

: Sy SRR No knowledge about physics !!!!
Technique Low-level High-level Complete $e s
NN 2.50 3.10 3.70

19
DN 4.90 3.60 5.00




Machine Learning for Jet Physics

11 Dec 2017,01:15 — 13 Dec 2017, 18:00 US/Pacific

Q 2-100 (Lawrence Berkeley National Laboratory)

W& Benjamin Nachman, Kyle Cranmer, Matt Dolan, Timothy Cohen (Princeton/IAS)

Description There has been a recent surge of interest in developing and applying advanced machine learning techniques in HEP, and jet physics is a domain

at the forefront of the excitement. The goal of this workshop is to gather experts and new-commers to discuss progress, new ideas, and
common challenges. The workshop is open to the community; we invite contributions and will try to accommodate everyone within reason.

@ Slides

Participants Anders Andreassen Andrew Larkoski

Christine McLean Christopher Frye Eric Metodiev

Discussed in
talk by Michael Kagan

Benjamin Nachman

Felix Ringer
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Frederic Dreyer

Final Kernel =

" Poisson fluctuations

+ Mass Resolution

+ Parton Density
Functions

+ Jet Energy Scale

Then ..hyped in QCD ... jet algorithms..
... top taggers.. Showering and calorimeters

HINE LEARNING

ell...

QCD-Aware recursive neural networks

arXiv:1702.00748

ys of injecting physics knowledge into

QCD-Aware graph convolutional neural networks

NIPS2017 workshop [http://bit.ly/2AkwYRG]
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A mostly complete chart of

o= NEUral Networks ...

- Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

A Noisy Input Cell Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)
@ Hidden Cell 7: : B -
. Probablistic Hidden Cell /7: i :

@ spiking Hidden Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o Qo o Qo R~

. Output Cell -
NN SRR, SERNNL,
.Matchln t Output Cell AR RV S S0 NARSARA
e REAGA RREAGA RRERTA
. Recurrent Cell . ) *e / e ’ e
‘ Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memory Cell - A
\\ Kernel -
Q Convolution or Pool -
Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

Deconvolutional Network (DN)

el

Deep Convolutional Inverse Graphics Network (DCIGN)

(
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Generative Adversarial Network (GAN) Liquid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Network (ESN)

Deep Residual Network (DRN) Kohonen Network (KN) ~ Support Vector Machine (SVM)  Neural Turing Machine (NTM)

sssenns 20 Lo etk
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Dark Machines About

About Dark Machines

Dark Machines is a research collective of physicists and data scientists.

We are curious about the universe and want to answer cutting edge
questions about Dark Matter with the most advanced techniques that
data science provides us with.

Visit our indico page

Events Projects Researchers White paper Mailinglist Contribute Y

Dark Machines
@dark_machines

The strong lensing subgroup of the DarkMachines
project (darkmachines.org) will be holding a kick-off
video-meeting for the strong lens challenge on Tuesday,
August 7th, 7am PDT (California time).

O b Aug 3, 2018

E Dark Machines Retweeted

Gianfranco Bertone
@gfbertone

Nice summary on @nature of the challenges and
opportunities that come with the use of machine learning
at the frontiers of particle physics
nature.com/articles/s4158...

Machine learning at the energy and intensity frontiers of...

23
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Deep Convolutional Networks

Actually Alpha-go used a deep convolutional network...
What is this ?

2015-2017: First deep learning attempts

We used deep convolutional networks to analyse gamma
ray images for

Dark Matter

https://arxiv.org/abs/1708.06706

24



Convolutional Network

* Convolutional networks have convolution
layers based on “filters”, a filter (a matrix)
maps “a group of numbers” to “a number”
reducing the data = CONV layers

* There are also layers which only do a
downsampling (lower the dimensionality)
POOL or “fully connected layers” to process
the final numbers...

important paper:LeCun, Yann. "LeNet-5, convolutional
neural networks". Retrieved 16 November 2013.



“Edge detector”:

1 -1 -1
-1 8 -1
-1 -1 -1

“Convolutional” Network use “invariances” (rotation, translation) in data (e.g. images)



CONV layer

Input Volume (+pad 1) (7x7x3)
X[:,:,0]

+ adding bias vector + applying
e.g. RELU as non-linearity

0
%
0
2

Filter coefficients
learned by
backpropagation

S
o
-

Single depth slice
Followed by " 1 0 2 3

a POOLING layer X

(partition the input matrix into
Submatrices, here max POOL, i.e.

Storing the maximum)

Feature maps

nnected

(yvou can have Red, Green and Blue matrices)
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Use case: gamma rays from galactic
center

A method to investigate the origin of an excess emission of GeV y rays in
the direction of the Galactic Center

( reported by several groups by analyzing Fermi-LAT data)

Interpretations of this excess include y rays created by the annihilation of
dark matter particles and y rays originating from a collection of
unresolved point sources, such as millisecond pulsars.

What have we done ?

Simulated Fermi-LAT images based on point and diffuse emission models
of the Galactic Center tuned to measured y ray data

=» Train and test convolutional Network on this

28



WIIVIP Astrophysms

. / Gamma-rays

_/
Y
70
X W/Z/q
WIMP Dark v
. H
Matter Particles «_./\, Ve
Ecm~100GeV T NE—
X W+/Z/g et
T Neutrinos
\. Vi
T~
VuVe
e-
+ a few p/p, d/d
Analysis Anti-matter
Chain
?? ?? ?
Dark Matter New Particle Final State Cosmic Ray Detector
Density e.g. N-body  Theory e.g. Hadronization Propogation Simulation
Simulation SUSY, Extra-dim e.g. PYTHIA and Galatic i.e. GEANT4
Simulation Interaction

i.e. GALPROP #7430



Gamma rays & the Galactic Center
excess

',.Q.‘ -

NASA press release 2014 (excess known since 2009)
The inset is a map of the galactic center with known
sources removed, which reveals the gamma-ray
excess (red, green and blue) found there. This excess
emission is consistent with annihilations from some
hypothesized forms of dark matter. Credit:
NASA/DOE/Fermi LAT Collaboration and T. Linden
(Univ. of Chicago)

Fermi-LAT Observations of High-Energy Gamma-Ray Emission Toward the Galactic Center

Fermi-LAT Collaboration (M. Ajello (Clemson U.) et al.). Nov 9, 2015. 29 pp.
e-Print: arXiv:1511.02938 [astro-ph.HE] |
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Our convolutional network (convnet)

Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps maps units units Outputs
1@120x120 64@60x60 128@30x30 128@16x16 256@8x8 256@4x4 256 512 1

Flatten Fully Fully
connected connected

Max-pooling after every convolution
Local response normalization after every other convolution

Figure 6: Visualization of the convolutional neural network. The network consists of an
input layer, 5 convolutional + pooling layers, 2 fully connected layers and finally an output
layer.

Hierarchical/compositional structure = smaller to larger structures
(reason: visible system is hierarchical as well...)

In comparison: GoogleLeNet has like 30 layers... -



Isotroplc or pomt sources A
Convolutional Network approach

Output of the 5 convolutional layers can be “visualized” per event.

CNN CNN CNN CNN CNN
layer 1 layer 2 layer 3 layer 4 layer 5

Input ....:

Prediction: 0.86
Truth: 0.82

Activations of the network. Only four filters per layers are shown for clarity, between

256 and 65 filters are used for the different layers

arXiv:1708.06706



Guess the fraction of point sources www.mydarkmachine.org

What is this fraction? This is 0.5

Your prediction: s e—

Invert image: @




What is this fraction? This is 0.5

Network can generalize over randomness

o
=
©
>
o
=]
=
(&)
@ Rest
- ' 3o-error
- - . 2g-error

1o-error
Pelrfect predictilon

1 1 | 1 |
02 03 04 05 06 07 08 09
fsre prediction of full network

(b) Prediction of the full network
versus true values.

Your prediction; s s—

_ Interpretation here is
Invert image: @

Truth: 0.052 frequentists and relles. or.1 the model
Network: 0.1230 to be correct (uncertainties
Your guess: 0.5 from toy experiments, no p-value yet)

Who is better? The network




Next steps

Categorize objects on the gamma-ray sky

Image Recognition

B s ®
( o A

Also point source detection now = see e.q. recent paper called “deepsource”
https://arxiv.org/abs/1807.02701
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Axion-like
Particles

Light bosons

Superfluid

19d Parameter space

Standard
Model v

.naditional

Neutrinos

Super- Extra-
symmetry dimensions

Littl
Dark Matter Weak Scale H‘igg:

Effective
Field
Theory

Other
Particle

Self-

interacting




Models are in reality very very complicated
We humans simplify them

Ever seen such limit plots?
Can we broaden the search strategy ?
Can we also fine the model outside of the bo

",
. Pa
A

X

i

Bob Stienen



Accelerating searches

Inputs =P Long simulations + many programs =2 Output

Train classification / regression tool to replace this
by ML

Advantages:
- Speed !
- Generality !

39



Couplmg Theory and I\/Iachme T
Learning part 1

“Learning a function” from datasets with known
labels sounds boring and old-fashioned.

However we can couple it to simulators+
experiments + phenomenology ....

40



Couplmg Theory and I\/Iachme T
Learning part 1

“Learning a function” from datasets with known
labels sounds boring and old-fashioned.

However we can couple it to simulators+
experiments + phenomenology ....
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Couplmg Theory and I\/Iachme T
Learning part 1

“Learning a function” from datasets with known
labels sounds boring and old-fashioned.

However we can couple it to simulators+
experiments + phenomenology ....

42



SUSY-AI

Exclusion determination in 19d pMSSM

310,324 model points with known exclusion as data input

Algorithm: a collection of decision trees (Random Forest)

Idea: going from 2d slices to N-dim representations

m{T;) (GeV]

Prevent overfitting: Boosting: many trees + not subset of all features for each tree
Bagging: random picking training data -> each tree of the forest sees only 0.68*data (see extra slides)




S e e e e e e e R e e e e e e AT T T T T f T T T T T CTTCTELTLEECCCCTCETTI 33 3acwcsm== ==~

3 1 “~sssassTsaseess 3
e e e e e @ e ®® =% ee=""="""-®a_2aAa ®rTeesecaecssescescssseaesssss essssesess sdsseseddstfiasacanw>3T3IS S =z ===
L L L s ee e e~ ecee e e e e e e e e r T PR ceec e ecsceessesssen-
.....................................................

Bob Stienen, >10

S U SY‘AI SUSY'A") collaborators

) Excluded
Encoding of model

constraints with Les Houches
. . Accord File
Machine Learning

-

Not Excluded

Aim: Generic framework (all models)

Determine
Confidence Level

Testing with out-of-bag estimation (remember 0.68!)

1.0
4000 -n
q
09 Q
— 3000
S o
Q 08 O
O 2000 S
c
R= 0.7 9.‘
3 1000 )
=S 06 =
— g
A N )

7] 03 m
g Q.
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o 3
‘B ~2000 03 %
m —
.20 ‘t' 02T
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y @_& e 01 3
» ”
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= “ h, . < 4 ., & s ' % 0.0
~4000 3000 -2000 <1000 O 1000 2000 3000 ~3000 2000 -1000 © 1000 2000 3000 4000

44
Bino mass (M1 in GeV) Bino mass (M1 in GeV)



Number of model points

10

Used training data to learn classification

It determines a confidence level of
its classification using the training data.

- Need more points in regions of low
certainty

Ratio of majority class per bin

L o

Excluded

Data distribution (logarithmic)

3 Allowed
[ Excluded

Prediction

Allowed

0
0.0

0.2

0.4 0.6
Classifier output

0.8

1.0

Confidence

1.0

Probability that discrete classification is correct

0.6 |-

Excluded

!

A ; Allowed

0.5
0.0

0.2 0.4

0.6 0.8 1.0

Classifier output

0.68CL (93.25% of all data)
0.9CL (80.09% of all data)
0.95CL (70.65% of all data)

0.98CL (59.34% of all data)
— 0.99CL (51.57% of all data)
— confidence

45



Active learning

0.9675

0.9650

0.9625

0.9600

0.9575

Accuracy

0.9550

0.9525

0.9500 ‘ —— Random sampling
Active learning

20000 40000 60000 80000 100000
Training size

FIG. 5. Accuracy development on model exclusion of the
19-dimensional model for new physics (pMSSM) for random
sampling and active learning using a dropout Neural Network
with infinite pool. True labeling was provided by a machine
learning algorithm trained on model points and labels pro-
vided by ATLAS [1]. The gain of active learning with respect
to random sampling (as described by Equation 2) is 3 to 4.
The bands show the range in which all curves of that colour
lay when the experiment was repeated 7 times.

arXiv:1905.08628 , mainly
Bob Stienen

Query-by-Dropout-Committee

46


http://arxiv.org/abs/arXiv:1905.08628
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Why are you still interested in SUSY ?

Because ...

47



Use cases > How fine-tuned is Supersymmetry in the 19d MSSM ?

L T —————
Allowed & probed by:

Excluded by:

X Higgs mass
X LHC/Z-decay width
X DMDD

> Flavor exp.

10% -

Lol oyl

PICO-500

LZ

Darwin/Darkside50k

Not in reach of DMDD

10~° 10~ 10~* m—‘ 1()—’ 10-

1ol
109

Qh?

sl
10

Ll
10°

1 nl.
103

10?

10°

100

https://arxiv.org/pdf/1906.10706.pdf

van Beekveld et aI (2019)

Excluded by:

X Higgs mass

¢l X LHC/Z-decay width
H X DMDD

> Flavor exp.

101 E

AIIowed & probed by: |

PICO-500

172

Darwin/Darkside50k
Not in reach of DMDD

1(1) ul 1 L
f(r" 10—’ 1()-'1 109 m— 10-1 1()” 101 m-

Qh?

paal ooovaal o4oaas -
10¢ 10° 108
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https://arxiv.org/pdf/1906.10706.pdf

Les Houches prOJect
SUSY-Al --> PhenoAl

* Encoding model constraints for everybody
in the full model parameter space

(e.g. LHC constraints on various high-

dimensional models)

- No simplifications of models needed !
- "model-space” can provide training data




Need to store pheno data

Remember the animated newspapers from
Harry Potter ?

L VN

Bl
9_5 da.

Satn amd mm |

50



Analyze

“ = a8 count by Higgs_mass Bino_mass S =B g =B

Within

idark project
Dutch escience
Center

Faruk Diblen
Jisk Attema

Collect model solutions in a database _
www.idarksurvey.com
Use them as target !

51
Use Machine Learning to interpolate between them = Generalization of DM searches


http://www.idarksurvey.com

DeepXs: DM Cross sections

* Running NLO code to derive SUSY cross sections can take up to 10 minutes
* Can we “learn the cross sections” and derive in a microsecond for any
model parameter set? =@ https://arxiv.org/abs/1810.08312

52
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FIG. 1: The true vs. predicted NLO cross-sections (top) and the relative error vs. true NLO cross-section with
confidence intervals (bottom) for the same 10% samples in both plots

interence at NLO with interence times that improve the Monte Carlo integration procedures that
have been available so far by a factor of ~ 6.9 million from ~ 3 minutes to ~ 26us per evaluation.
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Regression: Likelihoods

* Fitting groups derive likelihood plots for given
models

 Can we “learn the likelihoods” in return in a
microsecond for any model parameter set ?
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BSM-AI regression example... Learning GAMBIT likelihoods

-200 , , . . :
MAE = 0.7405 MSSM -7
10=0.2472
_oen| 20=46418 |
2301 55 125652 o
—300 l https://arxiv.org/abs/1705.07917
2
©
3 -350} .
ks A g Plot by Sydney Otten
o d .
-400 | I 4 1
- ’ ' -+ . rest
—4501 L7 three o error ||
two o error
one o error
-500 ' ' ' * '
-500 -450 -400 -350 -300 -250 -200
True label
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Unknown signals/ unknown labels

Typical task at the LHC is supervised discrimination
of signal and background (particle ID, Higgs search)

- Discriminator
(typically BDT/TMVA, now Deep Network)

Interesting:
What can we do if the signal is unknown ?
Related to a simpler question:

What can we do if the signal is vaguely known (i.e. a
simulation is possible) ?



Today: | have a new toy for you, | put it somewhere in
your room. The size is 0.1-100 cm. Can you find it ?

\ -
\

Y




We propose to construct an automatized
»,scan” of the full room/data for something interesting...

—>This may help LHC to find new physics

—>We can embed into this “scan” our prejudice how new physics
could look like, e.g. in the example on the previous slide this could
be done via a ,,toy” detection software trained on all known toys
with the ability to do some extrapolation and interpolation ...
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Many hypotheses ...

Searching for new physics with ,minimal/less’ assumptions on the signal

Consequences:

Less signal assumptions = more hypothesis tests (multiple testing)
- more/all channels and data selections

Implementations:

e Search with an “algorithm|: automatizing data selections and testing
* Automatize/Generalize the construction of the background model
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Automatized generic searches in HEP:
history

* Before 2000: Some (unpublished) ideas and work (e.g. by Thomas Hebbeker and M.W. Krasny) to
construct generic (non-model dependent searches) by comparing data with background
expectation in a broad class of high pt events

e 2000: First ,,automatized search without fixed model assumptions” in HEP

— Sherlock/Sleuth at DO experiment/ Tevatron (B. Knuteson and others)

1 -

0.8 [ 0.8 |

Partition of events into (many !) Voronoi regions defined Zi 06 |
by data (N=1 region, N=2 regions, etc.) o |

0.4 F

0.2 F

0 Ao, I....I....I...: 0 :....I....I....I....I....
0 0.2 0.4 0.6 0.8 I 0 0.2 0.4 0.6 0.8 1

(b)

Criteria which regions are interested (e.g. corners, high pt...)
and should be considered for hypothesis tests (p-value to test if data is consistent
with SM expectation)

—> Select region with smallest p-value
—> Problem: (Too) many trials + Needs multivariate understanding of backgrounds

62
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Automatized generic searches in HEP:
history

. 2004: General Search at H1 experiment at HERA. (2nd paper 2009)
All “HERA channels” 1-d search algorithm with smaller trial factor
-> similar/better sensitivity

v - 1ot ] —
- simpler to understand the background & e :
(4] W' .r
S w 1’ 1
L.L' 1 !D'
1’ r
10° ‘ r
[ 10 ! " ) o 2

 2007: Global Searches at CDF with 1-d algorithms (one algorithm became “bumphunter” in 2011)
e 2010-2016: Start of work for LHC (several internal notes in ATLAS, one in CMS)

e 2011: First public ATLAS CONF note (4.7 fb1 with 7 TeV)

e 2011: CMS PAS note (“Music”) (MC note in 2008)

e 2011: Second ATLAS CONF note (20 fb! with 8 TeV)

e 2016-2018: ATLAS released paper to arxiv (submitted to EPJ-C), 13 TeV data, 2015 data)
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A strategy for a general search for new phenomena
using data-derived signal regions and
its application within the ATLAS experiment

Goal:

Strategy paper. Generalize previous attempts.

Define a “meta-algorithm® for

automated / generic / unsupervisedLHC searches

Show with 2015 data that this is - in principle — possible

https://arxiv.org/pdf/1807.07447.pdf
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A strategy for a general search for new phenomena
using data-derived signal regions and
its application within the ATLAS experiment

Define a 2-step approach:
First put available resources on generality
Then use available resources to test most interesting deviations...

1. General Search: Automatically testing a large set of signal regions
Observation of one or more significant deviations in some phase-space region(s)
=>» Trigger to perform dedicated and model-dependent analyses

where these ‘data-derived’ phase-space region(s) can be used as signal regions

In ATLAS > 800 channels !
> 1075 regions !
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> 30000 regions (hypothesis tests)
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Determine p-value

thresholds by asking

how many toy datasets

would give such a deviation

= A regions is interesting
if you find channels
with p-values more significant
than in 95% of the toys

Fraction of pseudo-experiments

IIlllkllllllIIII|IIII|IIII

- ATLAS Simulation
- {s=13TeV,3.21b"
- variable: m,

no. of channels with

i : pchannel < pmin i
. —e—>1

107 = —a— 22 =
E5 e AL LTS .
102 E
:I L1 1 I L1 1 1 | L1 1 1 | L1 1 :I t 11 I: | L1 1 1 | L1 1 I:

o 1. 2 3 4. 5 6. 7 8

1o 20 3o 4c 50
-|Og1 ( mln)
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A strategy for a general search for new phenomena
using data-derived signal regions and
its application within the ATLAS experiment

Define a 2-step approach:
First put available resources on generality
Then use available resources to test most interesting deviations...

1. General Search: Automatically testing a large set of signal regions
Observation of one or more significant deviations in some phase-space region(s)
=>» Trigger to perform dedicated and model-dependent analyses

where these ‘data-derived’ phase-space region(s) can be used as signal regions
2. Dedicated Search

- “Wave function collapsed” to test most interesting deviations with available
resources

- On 2nd dataset (=» Statistically independent, unbiased p-value !!)
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Dataset 1 signal regions
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Dataset 1 step 2 -> dedicated search

Dedicated
Searches --> D

(e.g. defining
control regions or
signal hypothesis)

(in the toy example the kids are counting the Lego figures and
are trying to estimate how many they had ...)

72



"Dataset 1 step 2 -> dedlcated searc

Assume two regions have

Background issues

- Dedicated search does
not confirm deviation

B -
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“step 2 -> test in mdependent dataset 2

P-value = 10-7
In independent dataset
- Publish

- Follow up with CMS
]

(in the toy example the kids are asking their father for confirmation) -



ATLAS scan 2015 data results

Table 4: List of the three channels with the smallest pchannei-values in the scan of the m;,, distributions.

Largest deviations in m;,, scan
Channel Pehannel (1073)  Ngpe Ny £ 6Ngy  Region [GeV]

EDiss 1y 3j 2.81 9  2.15+0.66 670-732
1ule4b2j 2.91 2 0.042+0.037  1227-1569
le 1b4j 3.44 160 105+ 14 726-809

Table 5: List of the three channels with the smallest pchannel-values in the scan of the meg distributions.

Largest deviations in mg scan
Channel Pehannel ((1073)  Ngps Ny £ 6Nsyv  Region [GeV]

1uledb2j 2.66 2 0.040+0.036  992-1227
1uly5j 3.98 4  045+0.18 750-895
3b1j 4.87 4 042+024  3401-3923

No deviation above treshhold ...

- No data-derived signal region yet
75



' Need better variables, *

” regions.. Better background model
Reinforcement learning task ?

smarter
- Need community effort to help

(4

?

Supervised ? Unsupervised

= Need > 1 algorithm !(and comparison)

ks

o

]
Ein

.
A




New |deas for searches W|th unknown

signal -> Selection of recent
developments in 2017/2018 !

* Fit a ML based background model to be less sensitive on MC prediction
(gaussian processes in arXiv:1709.05681 )

e Autoencoders as “filters” for SM events 1808.08992
* Unsupervised techniques (clustering as hypothesis test...)

K- Nearest Neighbour to estimate the point density of two samples, KL-test
statistics to compare the samples

* Classification without Labels (CWOLA) arXiv:1805.02664:

Here the idea is to train a NN to seperate signal region + sideband region (as two
samples) --> this can be possible due to a signal in the signal region ...

“Novelty detection algorithm® arXiv:1807.10261 ,

e unsupervised KL divergence arXiv:1807.06038

Self-organzing maps...outlier detection with autoencoders ...

e ...various more !!l (can‘t catch up anymore, can you ?)

Which one is good ? Which one to use ? Need comparison !!! 77



http://arxiv.org/abs/arXiv:1709.05681
https://arxiv.org/pdf/1808.08992.pdf
http://arxiv.org/abs/arXiv:1805.02664
http://arxiv.org/abs/arXiv:1807.10261
http://arxiv.org/abs/arXiv:1807.06038

different approaches

e.g. in ,unsupervised searches” group of darkmachines
(Amir Farbin, Erzebet Merenyi, Andrea di Simone, Maurizio Pierini)
e.g. in ATLAS with General Search as prototype data ?

Dark Machines About  News  Events  Projects  Researchers ~ White paper  Mailinglist ~ Contribute ¥

About Dark Machines 0 Dark Machines

@dark_machines
The strong lensing subgroup of the DarkMachines

project (darkmachines.org) will be holding a kick-off
Dark Machines is a research collective of physicists and data scientists. video-meeting for the strong lens challenge on Tuesday

We are curious about the universe and want to answer cutting edge August 7th, 7am PDT (California time).
questions about Dark Matter with the most advanced techniques that
data science provides us with.

O b Aug 3, 2018

E Dark Machines Retweeted

Gianfranco Bertone
@gfbertone

Nice summary on @nature of the challenges and
opportunities that come with the use of machine learning
at the frontiers of particle physics
nature.com/articles/s4158...

Visit our indico page

Machine learning at the energy and intensity frontiers of...
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Question: Can we make physical
(collider, astroparticle, etc) events
with a generative model ?
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Shower

Hard
SubProcess

Distributions

. Minimum Bias
Collisions

Input:
Random numbers
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Gotz, Karl Otto: Statistisch-metrischer
Versuch 4:2:2:1, Entwurf Sommer 1959



Tinguely, Meta Matics
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Network simulations 7?7

Generative Adversarial Networks state of the art:

Training set l/
//
/

Random /A
noise i

Discriminator

AN
- ) {Fa ke

/

Generator —/ /Fake image
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DlStPlbuthnS oF’Pdfflcle“
Collision “Events® with GANs

16000 -

14000 -

12000 A

10000 -

8000 A

6000 A

4000 A

2000 A

Histogram of energy conservation

[ Particle 1
(] Particle 2

Good:

GAN “learns”

special relativity !
- Right events

-0.4

-0.2 0.0 0.2
(E?2-p™2-m™2)/E"2

0.4



DlStPlbuthnS oF Pdrtlcle

Collision “Events

300 4
250 A
200 A
150 -

100 -

Distribution of the angles of generated events

[ Theta
(1 Phi

with GANs

BAD:

GAN does not

NELE

events of different
types with right
frequencies !




Okin
Okin VS. optimizer steps for LSGAN
2201
210 /V /\
7 /" \.
| SR \
200 \/

1901 \
£ \
< \

pS) \

1801 \

\\

\

1704 \

\\

\

1601 \
1501

25000 50000 75000 10000-0 . 125000 150000 175000

number of optimizer steps

éde

cal 8 P
1 2 by

Okin VS. 64e for GAN models

Our GAN attempt

Tried 5 different
GAN architectures

Training highly unstable

Not able to sample 25d
density
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Densities with GANSs

http://proceedings.mlr.press/v70/arjovsky17a/

arjovskyl7a.pdf

KDE

Standard GAN

Samples

KDE

Unrolled GAN
steps =5

Samples

KDE

Wasserstein GAN
N_critic=5

Samples

Epoch 0

Epoch 1

Epoch §

Epoch 10

Epoch 20 Epoch 50

Epoch 100
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http://proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf

Autoencoders

Input image Reconstructed image

I~ . Latent Space ot
~._ Representation P

“bottleneck”

Can find new physics
with reconstruction Loss
We actually use a better version:
,Dutch® Autoencoder
(Variational Autoencoder by Dederik Kingma and Max Welling)



Variational Autoenc

Input image

I~ . Latent Space ot
~._ Representation P

“bottleneck”

Encoder output is the mean and the variance

of d Gaussians
Decoder inputis z: a sample drawn from

these d Gaussians

We proposed to use 1
L=—SN(1-B)-MSE+ B-Dgy.

B-VAE (B<<1) M &

oders

Reconstructed image




o o o o o
o L |l N N
w o wv o wv

number of events (normalized to 1)

©
o
S

Distributions of Particle
Collision “Events®“ with
variational autoencoders

[ Monte Carlo
[ VAE w density

H [ VAE w/o density

10 20 30
pr of leading lepton

40

50

0.06

0.05

0.04

0.03

0.02

0.01f+

0.0 0.5 1.0 1.5 2.0 2.5 3.0
theta of leading lepton

Autoencoder typically does not

0.06 —

0.05 -

0.04

0.03 |

0.02 |

0.01

0.00

-3 -2 -1 0 1 2 3
¢ of leading lepton

make events of different types with right

frequencies !



Autoencoder'
(+ event info 1n latent space )

Use/Store some
latent Space info of
original events to sample

Input image Reconstructed image

™ . Latent Space Lot
~._ Representation P

“bottleneck”

20d
24d 24d
VAE: p(z) is typically from d dimensional gauss,
VAE with buffer: 1
Po.x, ( Z% z|z)p(x") with p(x') = -

https://arxiv.org/abs/1901.00875 , mainly Sydney Otten (ex RWTH)



https://arxiv.org/abs/1901.00875

TecrscecscccTETYs

‘.""!i!i

denas
= ;22

5 3 Training data
£. g 100k
bof Iea&jmg Jet1 ’ I ¢of Ieadmg Jet ’ ‘ ) 2d projection

- Ijj of density
g, Monte Carlo
3 5 1M events

| ¢ of Ieadmg Jet ¢ of Ieadlng Jet
i 3 B-VAE
- I 5" 1M events

| ¢ of Ieadmg Jet e . ¢)o‘f Ieadmg Jet ° B
5 B-VAE
: 12M events

1 0 1 2 “20 22 4 FI)
¢ of leading jet ¢ of leading jet

a) full range b) zoom in on [2,3] x (2, 3]



J [ | “q i 1 1| Sampling top top -> 6 particles

:1 g Ti J 11 ;r: b | nttps://arxiv.org/abs/1901.00875

i —— | h— | ha— J L 1d distributions :
| ’ | Bl | Red: B-VAE
©__ @Grey: MC (Madgraph+Delphes)

Rank | (dim(z), B,a = 1,7) Okin Ode

(20,107°,1,0.01) 483.5 0.0067
(20,1077,1,0.01) 481.2 0.0068
(16,107, 1,0.01) 471.8 0.0081

| 11 | L »H L I N Model Srim 5

‘ —n | | i —1 |1 L KDE 249.0 0.4931
GMM, 50 279.9 1.4457

‘ — i GMM, 100 291.2 1.5141
} ' [ ; i LLL .| : | GMDM, 1000 307.1 1.5232
L i : 5% Smearing 505.3 0.1316
S « F 1 [ = \ 10 % Smearing 442.6 0.3186

WiN| —

N i LA . -."' TABLE I: KDE and GMM model performanc
1 ! ‘ L ‘ evaluated on figures of merit §;, and 4.



Noise input vs True events input -> B-VAE
as anomaly detector

FIG. 1: Input vs. Reconstruction of uniform noise z ~ U(0,1) (first four columns) and real events (last four

columns) for a VAE with dim(z) = 20 and B = 1079,




Why is this useful ?

Can ,,store“ events in lower dimensional

latent space and interpolate between
them

—>New events Sby interpolation and
compression/decompression)

—>New concepts (by interpolation)
—->New models (by interpolation)
—->Better random number sampling

~>Ultrafast (Million events per second
compared to 1 event per minute ..)



oncept of a atent space
of sofas and chairs

arxiv 1610.07584
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FIG. 7: Visualization of the first two components of a principal component analysis of encoded Monte Carlo events
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in latent space. This shows an 8 x 8 grid of event displays following the red dots in Figure [6] These 64 points chosen



Summary

1. Automatization

2. Data derived signal regions
3. Learn the model space

4. Learn the simulator

Use this for your search
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Extra Slides
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physical model with a Neural Network

* Finally our goal is to determine the model
parameters from 1 image (“real data”)

* We do this by training the network on
“simulation” (“simulated data”)

* We need to ensure that simulation agrees with
data: /s the true image in the simulation
parameter space of images ? If not DM
parameters maybe wrong !

In simple words we do a “fit” to the image including all kinds of “unknown correlations”

using a deep convolutional network trained on simulations
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