
ATLAS Internal Note

ATL-D-ES-0006

Version 1.10

2 February 2021

A package for the allocation of contiguous

memory on Linux systems

Author : M. Joos

Comments and queries to Markus Joos, CERN

+41 22 767 2364

Markus.Joos@cern.ch

Abstract
This note describes a software package (Linux driver and library) for the allocation of

contiguous buffers from user processes on standard Linux kernels.

1 Introduction
The purpose of this Linux driver and library is to provide the user with a means of

allocating buffers of contiguous memory for DMA operations and other purposes.

Linux offers several methods for the allocation of contiguous memory that all have their

advantages and disadvantages. An evaluation of CMA (contiguous memory allocation) in

2018 has concluded that this solution does not (yet) meet the requirements of the FELIX

project (partially because the support provided by IT and RedHat was poor and

documentation missing). The cmem_rcc package, that is well established in ATLAS, will

therefore be the baseline solution for the time to come.

Internally cmem_rcc is based on the system calls alloc_pages_node() and

alloc_pages() that allow to allocate contiguous buffers from a defined NUMA node

or without taking NUMA into account.

The main limitation of alloc_pages(_node) is it cannot allocate memory buffers

above a certain size. For current kernels, this limit is 4 MB. Even though this limit can be

changed via a kernel configuration parameter, it is not recommended to do so and getting

buffers in the GB range is not possible anyway.

cmem_rcc uses alloc_pages(_node) in two different ways. The user can (via library

and driver) call alloc_pages(_node) at run-time to get individual buffers of up to 4

MB.

Alternatively, an algorithm based on alloc_pages_node can be used at the time of

loading the driver to allocate pages until a contiguous area of memory with a user-defined

size has been found. Applications can then obtain fragments of this large buffer.

The cmem_rcc driver has been developed paying special attention to issues that may arise

on SMP systems and mechanisms such as spinlocks were used in order to prevent race

conditions. The driver and library support 64-bit CPUs and Linux kernels.

A number of special cases have been taken into account by the user:

- The allocation of RAM accessible with 32bit PCI addresses (i.e. below the 4GB

limit) is possible. This feature has been added for the use on VMEbus SBCs that

are based on the Universe ASIC

- The allocation of buffers from a defined NUMA ID is supported. For technical

reasons it is not possible to pre-allocate at driver load time a buffer that is larger

than the size of one NUMA zone.

- The memory can be mapped alternatively in a way that makes it usable to RDM

drivers (as used in FELIX)

2 Application Program Interface

2.1 Overview
The following list is an overview of the functions provided by the cmem_rcc API:

 CMEM_Open, CMEM_Open_Nopage

 CMEM_SegmentAllocate, CMEM_SegmentAllocateNuma

 CMEM_GFPBPASegmentAllocate, CMEM_BPASegmentAllocate,

CMEM_NumaSegmentAllocate

 CMEM_SegmentFree, CMEM_BPASegmentFree,

CMEM_GFPBPASegmentFree, CMEM_SegmentUnlockAndFree

 CMEM_SegmentSize

 CMEM_SegmentLock, CMEM_SegmentUnlock

 CMEM_SegmentGet

 CMEM_SegmentVirtualAddress

 CMEM_SegmentPhysicalAddress

 CMEM_Dump

 CMEM_Close

The following remarks apply to all functions defined in the API:

 This package is based on the “rcc_error” error handling package. The rcc_error

package basically is a renamed copy of the iom_error[4] package

 All functions of this package return CMEM_RCC_SUCCESS on success.

 The type (CMEM_Error_code_t) of the function return value defaults to

“unsigned int”.

3 The API

CMEM_Open()

Synopsis
#include <cmem_rcc.h>

CMEM_ErrorCode_t CMEM_Open(void);

Parameters

None

Description

This function opens the package and the device file (/dev/cmem_rcc) of the driver. Linux

knows several methods for the provision of user virtual addresses. If you are using this

function to open the library, these addresses will be obtained via the remap_pfn_range()

system call. This is the “traditional” method of cmem_rcc.

Return Values

CMEM_RCC_ERROR_FAIL Failed to open the rcc_error package

CMEM_RCC_FILE Failed to open the file /dev/cmem_rcc

CMEM_OpenNopage()

Synopsis
#include <cmem_rcc.h>

CMEM_ErrorCode_t CMEM_OpenNopage(void);

Parameters

None

Description

This function opens the package and the device file (/dev/cmem_rcc_2) of the driver. In

contrast to CMEM_Open, this function uses the “nopage” algorithm to create user virtual

addresses. It has been added to support RDMA data transfers with Mellanox NICs in the

FELIX project but may also be useful for other use cases.

Return Values

CMEM_RCC_ERROR_FAIL Failed to open the rcc_error package

CMEM_RCC_FILE Failed to open the file /dev/cmem_rcc_2

CMEM_Close()

Synopsis
#include <cmem_rcc.h>

CMEM_ErrorCode_t CMEM_Close(void);

Parameters

None

Description

This function closes the package and releases the access to the device file. Segments that

have not been freed will be de-allocated unless they have been locked.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_SegmentAllocate()

Synopsis
#include <cmem_rcc.h>

CMEM_ErrorCode_t CMEM_SegmentAllocate(u_int size, char

*name, int *segment_identifier);

Parameters

u_int size in The size of the contiguous buffer in bytes

char *name in The name of the buffer. The string must not contain more than

CMEM_MAX_NAME characters (see cmem_rcc.h)

int *segment_identifier out A handle to the buffer. To be used with the functions described

below

Description

This function allocates a contiguous buffer by means of the alloc_pages() system

call. The size of the buffer has to be specified via the value of size. The function

guarantees that the buffer will at least be size bytes long; it may, however, be larger. See

also Appendix A.

Please note: This function allocates memory from the pool managed by Linux. As it

uses the alloc_pages() system call it inherits the limitations of this call.

Depending on the kernel, the size is therefore limited to 2 or 4 MB. If you need a

larger, contiguous buffer, use the function CMEM_GFPBPASegmentAllocate().

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates also

that no memory has been allocated

CMEM_RCC_MMAP The buffer was allocated but no user virtual address could

be assigned

CMEM_RCC_TOOBIG A buffer of the requested size can never be allocated (see

appendix A)

CMEM_RCC_NOSIZE The parameter size is zero

CMEM_SegmentAllocateNuma()

Synopsis
#include <cmem_rcc.h>

CMEM_ErrorCode_t CMEM_SegmentAllocateNuma(u_int size, u_int

numa_id, char *name, int *segment_identifier);

Parameters

u_int size in The size of the contiguous buffer in bytes

u_int numa_id in The ID of the NUMA segment from which the memory is to be

allocated

char *name in The name of the buffer. The string must not contain more than

CMEM_MAX_NAME characters (see cmem_rcc.h)

int *segment_identifier out A handle to the buffer. To be used with the functions described

below

Description

This function works like CMEM_SegmentAllocate() in the sense that is

dynamically allocates a contiguous buffer but it uses the alloc_pages_node()

system call and therefore operates on a defined NUMA zone. The size of the buffer has to

be specified via the value of size. The function guarantees that the buffer will at least be

size bytes long; it may, however, be larger. See also Appendix A.

Caveat: Don’t confuse this function with CMEM_NumaSegmentAllocate()

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates also

that no memory has been allocated

CMEM_RCC_MMAP The buffer was allocated but no user virtual address could

be assigned

CMEM_RCC_TOOBIG A buffer of the requested size can never be allocated (see

appendix A)

CMEM_RCC_NOSIZE The parameter size is zero

CMEM_GFPBPASegmentAllocate()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_GFPBPASegmentAllocate(u_int size,

char *name, int *segment_identifier);

Parameters

u_int size in The size of the contiguous buffer in bytes

char *name in The name of the buffer. The string must not contain more than

CMEM_MAX_NAME characters (see cmem_rcc.h)

int *segment_identifier out A handle to the buffer. To be used with the functions described

below

Description

This function allocates a contiguous buffer from a pre-allocated memory pool.

The function only works if the driver was loaded with appropriate parameters (see

chapter 4)

The size of the buffer has to be specified via the value of size. The function guarantees

that the buffer will at least be size bytes long; it may, however, be larger. See also

Appendix A.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates also

that no memory has been allocated

CMEM_RCC_MMAP The buffer was allocated but no user virtual address could

be assigned

CMEM_NumaSegmentAllocate()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_NumaSegmentAllocate(u_int size, u_int

numa_id, char *name, int *segment_identifier);

Parameters

u_int size in The size of the contiguous buffer in bytes

u_int numa_id in The ID of the NUMA node from which the memory is to be

allocated

char *name in The name of the buffer. The string must not contain more than

CMEM_MAX_NAME characters (see cmem_rcc.h)

int *segment_identifier out A handle to the buffer. To be used with the functions described

below

Description

This function allocates a contiguous buffer from a pre-allocated memory pool of a

defined NUMA node.

The function only works if the driver was loaded with appropriate parameters (see

chapter 4)

The size of the buffer has to be specified via the value of size. The function guarantees

that the buffer will at least be size bytes long; it may, however, be larger. See also

Appendix A.

Caveat: Don’t confuse this function with CMEM_SegmentAllocateNuma()

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates also

that no memory has been allocated

CMEM_RCC_MMAP The buffer was allocated but no user virtual address could

be assigned

CMEM_BPASegmentAllocate()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_BPASegmentAllocate(u_int size,

char *name, int *segment_identifier);

Parameters

u_int size in The size of the contiguous buffer in bytes

char *name in The name of the buffer. The string must not contain more than

CMEM_MAX_NAME characters (see cmem_rcc.h)

int *segment_identifier out A handle to the buffer. To be used with the functions described

below

Description

This function is provided for compatibility purposes. It maps directly onto

CMEM_GFPBPASegmentAllocate().

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates also

that no memory has been allocated

CMEM_RCC_MMAP The buffer was allocated but no user virtual address could

be assigned

CMEM_SegmentFree(), CMEM_BPASegmentFree(),

CMEM_GFPBPASegmentFree()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentFree(int segment_identifier);

CMEM_ErrorCode_t CMEM_GFPBPASegmentFree(int

segment_identifier);

CMEM_ErrorCode_t CMEM_BPASegmentFree(int

segment_identifier);

Parameters

int segment_identifier in The handle describing the buffer to be returned

Description

These functions return a buffer to the pool of free memory.

It does not matter which function has been used to allocate that buffer. The actual job is

done by CMEM_SegmentFree(). The other two functions have become obsolete but

are kept in the API for compatibility with applications that still use them.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_MUNMAP The user virtual address could not be de-allocated

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates

that the memory could not be freed

CMEM_RCC_GETP The value passed for segment_identifier does not refer to a

known buffer

CMEM_RCC_OVERFLOW The library has been compiled without support for BPA

CMEM_SegmentUnlockAndFree(char* name)

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentUnlockAndFree(char* name)

Parameters

char* name in The name of the buffer to be returned

Description

This function returns a buffer to the pool of free memory. The buffer is identified by the

name rather than descriptor.

Note: The only constraint that cmem_rcc puts on the names of buffers is that they must

be at most 40 characters long. It is possible to give the same name to several buffers.

Whenever possible, a buffer should be returned by handle (see functions above) because

the handle identifies the buffer in an unambiguous way. If several buffers with the same

name exist, this function will return the one with the lowest handle. In case a buffer has

been locked, it will be automatically unlocked. The function will can be called in a loop

to return buffers with the same name. The error code “CMEM_RCC_ILLNAME” will be

returned if no more buffers of the specified name exist.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_MUNMAP The user virtual address could not be de-allocated

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This indicates that

the memory could not be freed

CMEM_RCC_ILLNAME A buffer with the specified name did not exist

CMEM_SegmentVirtualAddress()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentVirtualAddress(int

segment_identifier, u_long *virtual_address);

Parameters

int segment_identifier in A handle describing a buffer

u_long *virtual_address out The user virtual address of the first byte of the buffer

Description

This function returns the “user-space virtual address” of a buffer.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_GETP The value passed for segment_identifier does not point to an

open buffer

CMEM_SegmentSize()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentSize(int segment_identifier,

u_int *actual_size);

Parameters

int segment_identifier in A handle describing a buffer

u_int *actual_size out The actual size of the buffer in bytes

Description

This function returns the actual size of a buffer. The actual size may be larger then the

requested size due to buffer granularity. See CMEM_[BPA]SegmentAllocate().

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_GETP The value passed for segment_identifier does not point to an

open buffer

CMEM_SegmentPhysicalAddress()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentPhysicalAddress(int

segment_identifier, u_long *physical_address);

Parameters

int segment_identifier in A handle describing a buffer

u_long *physical_address out The physical address of the first byte of the buffer

Description

This function returns the physical address of the first word of a buffer. This address is

identical to the PCI address of the buffer.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_GETP The value passed for segment_identifier does not point to an

open buffer

CMEM_Dump()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_Dump(void);

Parameters

None.

Description

This function dumps the system parameters of all currently open buffers. You can get the

same information with the command “more /proc/cmem_rcc”.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver

CMEM_SegmentLock ()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentLock(int segment_identifier);

Parameters

int segment_identifier in A handle describing a buffer

Description

This function locks a buffer. Once a buffer is locked it can no longer be freed with the

CMEM_BPASegmentFree() or CMEM_BPASegmentFree() functions. It also does not

get de-allocated by the garbage collector in the driver if the application that created the

buffer exits. Usually buffers should not be locked as this may lead to memory leaks. This

function is provided for the rare case were, e.g. during the boot process, one application

has to allocate a buffer that will be used by other applications later on.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This could

indicate that segment_identifier does not refer to a currently

open buffer

CMEM_SegmentUnlock()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentUnlock(int

segment_identifier);

Parameters

int segment_identifier in A handle describing a buffer

Description

This function unlocks a buffer.

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This could

indicate that segment_identifier does not refer to a currently

open buffer

CMEM_SegmentGet ()

Synopsis
#include <cmem_rcc.h>;

CMEM_ErrorCode_t CMEM_SegmentGet (int segment_identifier,

cmem_rcc_t *params);

Parameters

int segment_identifier in A handle describing a buffer

cmem_rcc_t *params out A structure with the parameters of s buffer

Description

This function can be used to retrieve the parameters of one buffer. The structure

cmem_rcc_t is defined in cmem_rcc_common.h:

typedef struct

{

 unsigned int paddr; //The physical address the buffer

 unsigned int uaddr; //The used virtual address the buffer

 unsigned long kaddr; //The kernel virtual address the buffer

 unsigned int size; //The size of the buffer

 unsigned int order; //The encoded size of GFP buffers

 unsigned int locked; //A flag indicating if the buffer is locked

 unsigned int type; //The type of the buffer (TYPE_BPA or TYPE_GFP)

 unsigned int handle; //The segment identifier

 char name[CMEM_MAX_NAME]; //The name of the buffer

} cmem_rcc_t;

Return Values

CMEM_RCC_NOTOPEN The package has not yet been opened

CMEM_RCC_IOCTL Error from a call to the cmem_rcc driver. This could

indicate that segment_identifier does not refer to a currently

open buffer

4 Software distribution and installation

The source code of the cmem_rcc library can be found in the ATLAS TDAQ package

“cmem_rcc”. It is located in the TDAQ repository at https://gitlab.cern.ch/atlas-tdaq-

software/cmem_rcc. The driver can be found in the package ROSRCDdrivers at

https://gitlab.cern.ch/atlas-tdaq-software/ROSRCDdrivers/

The source code in the cmem_rcc package allows building the library and some test

programs.

The installation of the driver should be performed with the script “drivers_tdaq” from the

ROSRCDdrivers package which is meant to be copied to /etc/rc.d/init.d and called via a

link from e.g. /etc/rc.d/rc[3/5].d/S95drivers_tdaq. At ATLAS P1 the drivers are installed

with a script called “atlas_tdaq_drivers” which is under the control of the sysadmins.

Depending on which technique will be used for the pre-allocation of memory, the driver

needs additional parameters.

Pre-allocation with __alloc_pages_node:

Parameter name: gfpbpa_size

Description: The amount of RAM in MB that will be used for the internal-BPA.

On systems with more than one NUMA zone, the value of

gfpbpa_size is limited a (somewhat less) than the size of a single

NUMA zone.

Parameter name: gfpbpa_quantum

Description: The size (in MB) of a page allocated via

alloc_pages_node() for the internal-BPA. This parameter is

optional. The default quantum is 1 MB

Parameter name: numa_zones

Description: This parameter must be set to the number of NUMA zones that are

present in the computer. A buffer of size “gfpbpa_size” will be

allocated from each of these NUMA zones.

Examples:

Allocate 32 MB with alloc_pages_node:

 /sbin/insmod cmem_rcc-2.6.9-55.EL.cern.ko gfpbpa_size=32

You can display the definition of the driver parameters with “/sbin/modinfo <driver>”.

E.g.:

 /sbin/modinfo cmem_rcc-2.6.9-55.EL.cern.ko

Once the driver is running, users can monitor its activity via the file /proc/cmem_rcc.

Appendix A: Parametrization

The number of buffers (of either type) is limited by the size of some tables in the driver.

The dimension of these tables is set by the parameter MAX_BUFFS in cmem_rcc_drv.h.

If the default value (currently 1000) is not sufficient it can be increased to the required

number of buffers. A change to this parameter requires a re-compilation of the entire

package.

Directly in the source code of the driver two additional parameters are located that may

have to be adapted to the target system. The parameter MAX_GFPBPA_SIZE (currently

set to 256 GB) has to larger or equal than the amount of memory installed in the target

computer. The second parameter, MAX_NUMA_ZONES (currently set to 4) defines how

many NUMA IDs the driver can handle.

Appendix B: Properties of alloc_pages(_node)

This chapter gives some background information on the implementation of the

CMEM_RCC API based on the alloc_pages(_node) system calls [5] of Linux. As

it inherits some limitations (buffer granularity and max. size) from this lowest level of

memory allocation, it is necessary to understand some of the details in order to develop

efficient code.

This functions CMEM_SegmantAllocate(Numa) pass the “size” parameter to the

driver where it is converted to an “order” which is defined as the base two logarithm of

the number of pages to be allocated. The default page size of Linux is 4KB. Examples:

Range of size Resulting value of order Resulting actual buffer size [in bytes]

1..4096 bytes 0 4096

4097..8192 bytes 1 8192

8193..16348 bytes 2 16348

> 2 Mbytes out of range 0

The maximum value of order for current kernels is 10 (corresponding to 1024 pages = 4

MB). The command “more /proc/buddyinfo” tells you how many blocks of each order are

available. The conversion from size to order guarantees that the buffer will at least be size

bytes long; it may, however, be larger. The function will fail for size > 4 MB but can also

fail for smaller values if a contiguous buffer of the requested size cannot be found.

5 References
[1] http://atddoc.cern.ch/Atlas/Notes/153/Note153-1.html

[2] http://www.polyware.nl/~middelin/En/hob-v4l.html#bigphysarea

[3] http://atddoc.cern.ch/Atlas/Notes/136/Note136-1.html

[4] http://atddoc.cern.ch/Atlas/Notes/051/Note051-1.html

[5] http://www.xml.com/ldd/chapter/book/index.html

