JPMTAnalogueSignalProce ssor

PMT analogue signal processor in Jpp

M. de Jong

Introduction (1/1)

Introduction (2/3)

3

Introduction (3/3)

calibration

Model (1/6)

• Leading edge == Gaussiaian • $f(x) = e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}$ • Trailing edge = exponent • $g(x) = e^{\frac{1}{2} \left(\frac{\lambda}{\sigma}\right)^2} \times e^{-x/\lambda}$ • Specification: • Specification: $T_{1pe} \equiv 26.4 \text{ ns}$ • $T_{\bullet} = g_{\bullet}^{-1}(y_0) - f^{-1}(y_0)$ • relates σ and λ constraints • constraints σ

Model (2/6)

peak	ns
1	27
2	35
3	42
4	49
5	56
6	62

Model (3/6)

• kink is equivalent of alipping of woltage at amplifier output $\Rightarrow T \propto \text{charge}$

determination of transition point
 determination of transition point
 requires iterative procedure
 few steps suffices

[¶] See next slides.

Model (4/6)

Model for given number of photo-electrons

Model (5/6)

• Saturation

•
$$x' = x \times \frac{c}{time-over \pi the reshold}$$

• $x \equiv time-over-threshold$

Model (6/6)

• Saturation

- $c \cong 210 \text{ ns}$
 - good agreement
 - good agreement

Results (1/4)

- input KM3NeT_0000014_00005282.root (L0 data)
- old = Jpp trunk (11531)
- new = this analysis

Results (2/4)

Results (3/4)

Results (4/4)

L1 data selection¹ (1/1)

[¶] KM3NeT_00000014_00005009.root

Comparison L0 – L1 data (1/3)

Comparison L0 – L1 data (2/3)

Comparison L0 – L1 data (3/3)

Backward compatibility (1/2)

✓ New model has less parameters than old model

 QE; gain; gain spread; rise time; TTS; threshold; offset; slope; curvature; and saturation

I/O of model parameters backward compatible (PMT efficiency file)
 QE; gain; gain spread; rise time; TTS and threshold

Backward compatibility (2/2)

• Some parameters of new model should have different values¹ • threshold ~ 0.3 pe pe • risectime ~8.5 ns ns

- Future proofness
 Future proofness

 Future proofness
 A. convert existing files by hand[§]
 A. convert existing files by hand[§]
 B. overwrite threshold and rise time upon reading file
 - B. overwrite threshold and rise time upon reading file

[¶] Rise times in current PMT files exceeds maximal value.

[§] Tool could be provided.

Summary & Outlook (1/2)

- ARCA2 data were taken with too low HVs on various PMTs
 - causes a deficiency, most notably culprit(s) in analysis of depth dependence of atmospheric muons
- To measure gain [and gain spread] of PMT, one needs to <u>model</u> time-over-threshold distribution
 - new model seems to reliably work for any gain
 - can be applied to L0 as well as L1 data

Summary & Outlook (2/2)

- Next steps (in this order)
 - 1. implement the new model as default in Jpp
 - 2. tune common parameters (threshold, rise time and fit range)
 - 3. test fits on large number of PMTs and runs (à la QE fits)
 - 4. measure gain per PMT (new)
 - 5. re-measure QE per PMT (as before, but will yield different values)
 - 6. simulate detector response (JTriggerEfficiency)
 - 7. redo data Monte Carlo comparisons