

Eric Hennes, 18 oktober 2007

Hoi Jo en Thomas,

Hier twee FEM-analyses inclusief animaties van:

1. Stationaire 2d Rayleigh wave Model: geometrie: 4 km breed, 8 km diep materiaal: isotroop met E=1e11Pa,Poisson 0.25,rho=2500 kg/m3) boundary conditions:bodem ux=uy=0 ux_left=ux_right uv_left=uv_right ux (hoekpunt) = .04227 sin(2πft) uv (hoekpunt) = .06204 cos(2πft) f= 0.92 Hz f zo gekozen dat golflengte = 4km u-v (hoekpunt) amplitude-verhouding ~ 2:3 is nodig om zuivere Rayleigh golf te krijgen

Resultaten:

- gevonden frequentie 0.92 klopt met analytische waarde
- Fasesprong in horizontale beweging op 770 m, klopt met theorie (0.192 λ) (zie plots hieronder). Aan weerskanten van deze diepte is de fase voor iedere x constant
- Amplitude als functie van de diepte: ook overeenkomst in exponentieel gedrag

2. Idem, nu transient analyse met puntbron die vanaf t=0 met 1 Hz een ellips draait (met Ax/Ay ~ 2/3).
Model : als model 1 , breedte nu 32 km

Resultaten:

- Vanuit het excitatiepunt gaan golven naar rechts en links, maar die naar rechts heeft een veel grotere amplitude, zoals verwacht (vanwege draairichting ellipsbeweging)
- Inspectie van een punt op het oppervlak rechts levert inderdaad een roterende beweging op, al is deze niet ellipsvormig maar cirkelvormig (?).
- Golflengte als verwacht: 3.7 km

Analysis data for Rayleigh wave

input	Young modulus	E	1.00E+11	Pa	
	mass density	ρ	2500	kg/m ³	
	wavelength	λ	4000	m	
	wave speed factor	а	0.9194		
	attenuation factors	b 1	0.3933		
		b ₂	0.8475		
	amplitude factors	Ax ₁	-0.5773		
		Ax ₂	1		
		Az 1	1.4679		
		Az ₂	-0.8475		
	x-displacement at z=0	ux ₀	0.04227	m	
	test depth	Z	4000	m	
output	Lame modulus	μ	4.00E+10	Pa	2E/5
	wave speed	C _R	3678	m/s	$a(\mu/\rho)^{-1/2}$
	frequency	f	0.9194	Hz	c _R /λ
	wave number	k	0.001571	/m	$2\pi/\lambda$
	global amplitude factor	D	0.1		$ux_0/(Ax_1+Ax_2)$
	z-amplitude at z=0	uz ₀	0.146771		$D(Az_1+Az_2)/(Ax_1+Ax_2)$
	x-amplitude at z	u _x	-8.99E-06	m	$D(Ax_1 exp(-b_1 kz)+Ax_2 exp(-b_2 kz))$
	z-amplitude at z	U _z	0.008276	m	$D(Az_1 exp(-b_1 kz)+Az_2 exp(-b_2 kz))$

Harmonic analysis FEM:

Transient analysis FEM:

Л

Displacement X Node 13577 (x.01)