
Class. Quantum Grav.15 (1998) 3339–3362. Printed in the UK PII: S0264-9381(98)90098-3

Relevance of Newtonian seismic noise for the VIRGO
interferometer sensitivity

M Beccaria†, M Bernardini†, S Braccini†, C Bradaschia†, A Bozzi†,
C Casciano†, G Cella‡¶, A Ciampa†, E Cuoco†§¶, G Curci†,
E D’Ambrosio†§, V Dattilo†, G De Carolis†, R De Salvo†, A Di Virgilio †,
A Delapierre†, D Enard†, A Errico†, G Feng†, I Ferrante§, F Fidecaro†§,
F Frasconi†, A Gaddi†, A Gennai†, G Gennaro†, A Giazotto†,
P La Penna†§, G Losurdo†‖, M Maggiore†, S Mancini†§, F Palla†,
H B Pan†, F Paoletti†, A Pasqualetti†, R Passaquieti†, D Passuello†,
R Poggiani†§, P Popolizio†, F Raffaelli†, S Rapisarda†, A Viceré† and
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Abstract. In this paper we analyse the noise level induced by changes in the mass density
distribution around the Virgo interferometric antenna. These stochastic mass density fluctuations
generate a gravitational field which couples directly to the mirrors of the optical apparatus, and
it could be relevant if the planned final sensitivity of the Virgo interferometer is to be reached.
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1. Introduction

Seismographic measurements show that the ground is in continual motion, with amplitudes
of the order of micrometres [1, 2]. Ground motion in the frequency range of 1–10 Hz is
mainly produced by phenomena such as winds, local traffic, trains and so on.

Atmospheric cyclonic systems over the oceans produce fluctuations at lower frequencies,
the so-calledmicro-seismic background. Its amplitude spectrum presents a peak which
corresponds to the period of the ocean waves (12 s) and a larger one at a doubled
frequency, while in the range of 1–10 Hz is a decreasing function which can be parametrized
approximately as a power law [3].

The energy is transferred from the atmosphere to the ocean, and thence to the ocean
floor. Next it is transmitted through the crust for long distances (∼103 km), mainly in the
form of surface waves. Near the coasts there is also the contribution of sea waves breaking
on the shore. It is important to note that the micro-seismic noise level reduces with depth,
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because it is mainly transported by surface waves, guided waves in near-surface layers and
multiple reflections in shallow layers [4, 11].

The mass density fluctuations produced by these micro-seismic waves induce a stochastic
gravitational field which couples directly to the test masses of the interferometer and induce
a noise (the so-calledNewtonian noise) which we want to estimate.

The geometry of the apparatus is shown in figure 1. The test masses are located in
the towers: in the Virgo apparatus a big effort has been spent on the isolation of these
masses from the direct influence of seismic vibrations. This is obtained by using a chain
of oscillators which reduces the amplitude of vibrations of frequencyf at the suspension
point by a factor(f/f0)

−2 at each stage, wheref0 is the frequency of a single oscillator†.

Figure 1. The schematic geometry used for the description of the interferometer.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

In the frequency range of interest we can describe the basis of a fixed attenuator as
a rigid body with three translational modes (two horizontal and one vertical) and three
rotational ones (a torsional mode around the attenuator axis and two ‘tilt’ modes). The
chain of oscillators must provide attenuation for all these background vibration modes.

The fluctuating gravitational field couples to each stage of the chain, in particular (and
this is the most relevant effect, as it bypasses all the attenuation stages) directly to the mirror
[9]. The effect of a mass density fluctuation

δρ(t) = ρ(t)− 〈ρ〉 (1)

located at a positionR relative to the mirror on its displacementx can be written in the
frequency space as

H(ω)x(ω) = F
m
= Gδρ(ω)R

R3
dV, (2)

† This is true for frequencies higher than the resonances of the chain, which is the case forf > 4 Hz, and
neglecting the internal modes of the structure which are relevant for high frequencies.
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whereH(ω) is the response function which connects the force applied to the system to its
displacement†. If we assume that the mirror can be considered as a free test mass, which
is the case far from the chain resonances, we haveH(ω) = −ω2.

The final effect we are interested in is the fluctuation of the relative difference
δh = δL/L between the optical paths in the two arms of the interferometer. This is
connected to the displacement of the mirrors by a relation which depends on the geometrical
structure of the apparatus. The simple scheme presented in figure 1 can be used to explain
this point. In this model the variation of the optical path can be written as

δL = (r0,x − r1,x)− (ry,0− ry,2), (3)

wherer1,i , r2,i are the coordinates of the mirrors andr0,i are those of the beamsplitter. Using
the motion equation (2) this gives

H(ω) δL(ω) =
(
F0x

m
− F1x

m

)
−
(
F0y

m
− F2y

m

)
(4)

and, explicitly,

H(ω) δL(ω) = Gδρ(ω)K(x, y, z)dV, (5)

K(x, y, z) =
{

(L− y)(
x2+ (L− y)2+ z2

)3/2 −
(L− x)(

(L− x)2+ y2+ z2
)3/2 +

(y − x)(
x2+ y2+ z2

)3/2

}
.

(6)

This expression is the starting point for our calculations. Note that the dependence on the
geometrical structure of the interferometer is contained in the expressionK(x, y, z). For a
given model of the background dynamics we can integrate over all the mass fluctuations
and obtain a connection between the seismic noise power spectrum (which can be measured
with relative ease) and the Newtonian noise.

In section 2 we give a detailed account of a simplified model introduced by Saulson
[5, 6], which we extend with a numerical integration procedure. A more refined model
is presented in subsection 2.1. In section 3 we write the equations which connect surface
and volume fluctuations with gravitational ones using an elastic model based on the wave
modes which are a solution of the elastic wave equation in a homogeneous half-space. The
classification of these modes is presented in appendix A. In section 4 we estimate the effect
of gravitational coupling between the mirror and some surrounding structures, and we end
with some conclusions in section 5.

2. Saulson model

In this model [5] it is assumed that the density mass fluctuations of the ground are completely
coherent over a characteristic scaleλ/2, and completely uncorrelated for larger separations.

Fixing the attention over a cubic region of(λ/2)3 volume centred on coordinates
(x̄, ȳ, z̄), we must integrate equation (4) over this region, withδM = δρ(λ/2)3 fixed.
The integral can be evaluated analytically, obtaining

H(ω) δL(ω) = GδM(ω)B(x̄, ȳ, z̄) (7)

† Note that in the general caseR is a tensor. All the formulae which follow can be easily generalized to this case.
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Figure 2. The functionS defined in the text for Saulson’s model. The full line represents the
leading order in the high-wavelength approximation (λ� L), while the broken line corresponds
to the low-wavelength approximation. The error bars are estimates of the model indeterminacy.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

where

B(x̄, ȳ, z̄) = 8

λ3

∫ x̄+λ/4

x̄−λ/4

∫ ȳ+λ/4

ȳ−λ/4

∫ z̄+λ/4

z̄−λ/4
K(x, y, z)dx dy dz (8)

is the mean value of the functionK in the cell.
To obtain the total effect due to all the regions around the interferometer we sum in

quadrature the expression (7) over all the cubes, obtaining

|H(ω)|2〈|δL(ω)|2〉 = G2
〈|δM(ω)|2〉∑

x̄,ȳ,z̄

B(x̄, ȳ, z̄)2 = G2
〈|δM(ω)|2〉 1

λ4
S

(
λ

L
,
λ

h

)
, (9)

which depends on the average of the square of the random cell fluctuationδM. We evaluate
this sum numerically, usingL = 3000 m, obtaining the results plotted in figure 2. There
is an ambiguity in the model, related to the position of the central mirror with respect to
the nearest cube, so the results are presented with error bars which give an idea of this
systematic indeterminacy.

As we can see the results interpolate well between the analytically calculable asymptotic
behaviours valid forλ� L

∑
x̄,ȳ,z̄

B(x̄, ȳ, z̄)2 ∼ θ(4h− λ)8π

h

1

λ3
+ θ(λ− 4h)

16

3
π

(
2

λ

)4[
1− 3

(
h

λ

)
+ 8

(
h

λ

)3]
, (10)
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Figure 3. Schematic view of elastic modes for a fixedω value.

whereh is the height of the mirror over the background, and forλ� L∑
x̄,ȳ,z̄

B(x̄, ȳ, z̄)2 ∼ 192

15
π

(
2L

λ

)2(2

λ

)4

. (11)

There is an evident crossover forf ∼ (cL/4L)
√

5
3† from a regime in which each mirror

sees effectively different and completely uncorrelated cubes, to another in which coherence
effects are dominant. In the large-λ limit each mirror fluctuates coherently in the same
direction, so thatδL ∼ 0. Note that the small-λ limit is evaluated by approximating the
sum with an integral, which is regularized with the small-distance cut-offrmin = λ/4. This
is the same procedure used and discussed by Saulson, we have added the effect of the
suspension pointh only.

In this simple model the connection between mass fluctuation and displacement is not
determined. We can connect the Newtonian noise to the spectrum for the displacement of
a point in the ground using the relation between the mean square of mass fluctuations and
the mean square of displacements〈|δM(ω)|2〉 = V 2

〈|δρ(ω)|2〉 = 1

16
λ6ρ2

0

(
π

λ

)2〈|δx(ω)|2〉, (12)

which is valid for a compressional wave. Here we have assumed that the size of the coherent
region is half the wavelength of the waveλ. In turn, λ is connected to the frequency by
the relation

λ = 2π
cL

ω
. (13)

† With the typical geological parameters around the interferometerf ' 1 Hz.
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Alternatively we could, for example, identify the mean square of the displacements with the
mean-square position of the centre of mass of two adjacent cells. These different procedures
give numerical differences no greater than a factor two, especially in theλ� L limit which
is of interest for us in this context.

Putting together equations (12) and (9) we obtain〈|δL(ω)|2〉 = 1

16

G2

|H(ω)|2π
2ρ2

0S

(
πcL

Lω

)〈|δx(ω)|2〉. (14)

The typical longitudinal wave speedcL in the ground of Cascina is around 1000 m s−1, so
we expect that coherence effects occur at a frequency below1

6 Hz. For higher values the
function S(λ/L) is very well approximated by its low-λ limit, so the final result is〈|δh(ω)|2〉 = 16

3

π3

L2

G2ρ2
0

|H(ω)|2
〈|δx(ω)|2〉 (15)

or numerically, substitutingH(ω) = −ω2,〈|δh(f )|2〉1/2 = 1.2× 10−11 1

f 2

〈|δx(f )|2〉1/2. (16)

2.1. A more refined model

A limitation of the Saulson model is that it does not take into account mass conservation. It
is assumed that the content of each cell can fluctuate independently, but this is not possible
because, for example, a growing mass in a cube must be connected to an incoming mass
flux from the neighbouring ones.

It is possible to improve the model using as statistical variables the mass fluxesψi
associated with the faces of the cells. The statistical independence ofψi variables is
compatible with the mass conservation, and we can write

d

dt
M(r̄) =

∑
i=x,y,z

(
ψi
(
r̄ − 1

4λni
)− ψi(r̄ + 1

4λni
))

(17)

so that the equation (7) becomes

iωH(ω) δL(ω) = GB(r̄)
∑
i=x,y,z

(
ψi
(
r̄ − 1

4λni
)− ψi(r̄ + 1

4λni
))
. (18)

If we sum over all the cells, and calculate the average of the square of the result we obtain〈|δL(ω)|2〉 = G2

ω2|H(ω)|2
〈|ψ(ω)|2〉∑

r̄ ,i

(
B
(
r̄ + 1

2λni
)− B(r̄))2

. (19)

In theλ� L limit we can approximate the sum with an integral and add in quadrature the
four contributions in equation (4), so that†∑
r̄ ,i

(
B
(
r̄ + 1

2λni
)− B(r̄))2 ∼ 8

λ

∫
1+ 3 cos2 θ sin2 φ

r6
dV = θ(4h− λ)2π

h3

1

λ

+θ(λ− 4h)
128

3
π

(
2

λ

)4[
1− 15

4

(
h

λ

)
+ 8

(
h

λ

)3]
. (20)

The average of the square of the random variableψ can be connected in a simple way to
the mean-square displacementx using the relation (17)〈|ψ(ω)|2〉 = ω2 1

6π
2ρ2

0

(
1
2λ
)4〈|δx(ω)|2〉 (21)

† We regulate the integral with the cut-offr > λ/4, as we have done in the last section.
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and we get the final result〈|δh(ω)|2〉 = 64

9

π3

L2

G2ρ2
0

ω4

〈|δx(ω)|2〉 (22)

which is slightly higher (by a factor of43) than the original estimate in equation (16), so that
we can say that the two models are equivalent. This ‘improved’ model can be described
using another point of view, by observing that the mass fluctuations in adjacent cells are
correlated,

〈δM(r) δM(r + kni)〉 =
〈
δM2

Saulson

〉(
δk,0− 1

6δk,1
)
. (23)

We recognize that the mass conservation condition is equivalent to a generalization of
Saulson’s model in which a correlation between fluctuations in different cells is introduced.

3. Homogeneous elastic ground model

In order to obtain a more realistic estimate we now want to simulate the ground as a
homogeneous medium limited by thez = 0 plane. The seismic noise can be expanded in
elastic waves, which are solutions of the equation

∂2
t ui(x, t) = c2

T ∂k∂kui(x, t)+
(
c2
L − c2

T

)
∂i∂kuk(x, t). (24)

These solutions correspond in an infinite medium to longitudinal waves with speedcL and
transverse ones with speedcT . The field ui(x, t) represents the displacement of a point
from its original positionx in the directioni.

In appendix A we report a detailed classification of these elastic modes. The main result
is that these can be labelled by the frequencyω, the projectionEk of the wavenumber in
the z = 0 plane and a discrete indexµ which counts the available branches. These results
will be used in order to obtain, in a particular case, a connection between the Newtonian
noise and an easily measurable seismic noise. However there is a way to connect, in the
general case, the bulk dynamic with the surface one which avoids the classification of the
modes. Performing a Fourier transform on thex, y, t variables we reduce equation (24) to
an ordinary differential equation in thez variable. This means that there is a linear relation
between the displacementui(z) and a convenient number of boundary condition for it in
z = 0. In other words, there is a three-rows, six-columns arrayW(z) which connectsui(z)
with ui(0) and∂zui(0). We will not compute this array explicitly, because all the results we
need will be obtained as a byproduct of the mode classification, but we stress that a linear
operator which connects Newtonian noise to surface seismic noise always exists.

In this homogeneous model the mass density fluctuations are generated by two
mechanisms, which we now describe. First of all a longitudinal wave generates a volume
variation proportional to the trace of the stress tensor:

dV → dV (1+ uxx + uyy + uzz). (25)

We work in the linear approximation for the deformations, so the density fluctuation is

δρ = −ρ0(1+ uxx + uyy + uzz) (26)

and the gravitational field fluctuation in the mirror position(0, 0, h) can be written as(
δEa
δaz

)
= Gρ0

∫
z<0
(∂xux + ∂yuy + ∂zuz) 1(

x2+ y2+ (h− z)2)3/2

( Ex
z− h

)
dV, (27)
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where the integration is extended to all thez < 0 space. Using the mode classification
explicitly we obtain the expression

∂xux + ∂yuy + ∂zuz = i
ω2

c2
L

{
α(k, ω,µ)eikLz + α′(k, ω, µ)e−ikLz

}
eikx−iωt (28)

which depends on the amplitudesα, α′ of the longitudinal waves only, as only for these
modes is there a compression effect (see appendix A). All integrals can be calculated starting
from

I (hkL, hk) =
∫
z<−h

eikx+ikLz
(
x2+ y2+ z2

)−3/2
dV = 2πeihkL Ei(−hk − ihkL) (29)

and we obtain the final result in the(kx, ky, z, ω) space(
δEa
δaz

)
= 2πGρ0

(
k̂

i

)
(Aµk − iBµkL)e

−hk, (30)

whereA = α+α′ andB = α−α′. The second source of mass density fluctuations is given
by the surface oscillations, which generate a mass density excess (positive or negative) that
in the linear approximation can be written as

dm = ρ0 uz(x, y,0) dx dy. (31)

This must be integrated over all thez = 0 plane,

(δEa, δaz) = Gρ0

∫ ∫
(Ex,−h)(

x2+ y2+ h2
)3/2uz(x, y,0) dx dy. (32)

We note that here only surface quantities are involved by definition. Using the mode
classification with calculations analogous to those of the first case we obtain the final result(

δEa
δaz

)
= 2π iGρ0

(
k̂

i

)(
k2
T + k2

k2
T − k2

)
kLBµe−hk. (33)

Note that here and in the last section the heighth of the test mass suspension point plays
the role of a cut-off for small-wavelength modes.

3.1. Transfer function

One of our objectives is to understand the relation between the Newtonian noise spectrum
and the seismic one. In order to do that we must write the influence of the elastic modes of
the background over the interferometer infrastructures. We can model this effect simulating
the base of the tower as a rigid body supported by the soil. This support is coupled to the
deformations induced by the seismic waves. These alter the distances and the angles on
the soil, and we can assume them to be coupled only to the internal deformations of the
basement, so we neglect them assuming that they are decoupled from the relevant motions.
On the other hand, ifλ is large enough these can be described as a rigid motion of the
basement: first of all two horizontal translations on the plane

δEx → Eu(Ex) (34)

and the vertical motion of the soil

δz→ uz(Ex) (35)
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which give rise to the horizontal and vertical seismic noise. Next we can consider the
rotations of the basement, which can be written as

δθz = 1
2(∂xuy − ∂yux) (torsional motion) (36)

δθEx = ∂x,yuz (‘tilt’ motions). (37)

The relative contributions of the general elastic mode to these movements can easily be
written using the classification reported in appendix A. We obtain

δEx(Ek, z = 0, ω) =
∑
µ

Aµ(Ek, ω) ω2

2c2
T k

2
Ek +

∑
µ

Cµ(Ek, ω)εEk (38)

δz(Ek, z = 0, ω) =
∑
µ

Bµ(Ek, ω)ω
2

c2
T

kL

k2
T − k2

(39)

δθEx(Ek, z = 0, ω) = i
∑
µ

Bµ(Ek, ω)ω
2

c2
T

kL

k2
T − k2

Ek (40)

δθz(Ek, z = 0, ω) =
∑
µ

− 1
2iCµ(Ek, ω)k2, (41)

where we have Fourier transformed thex, y, t variables andC = γ + γ ′, the amplitudes
γ, γ ′ being defined in appendix A.

These relations can be solved with respect to the amplitudesA, B andC by separating
δEx andδθEx in a longitudinal and transverse part. The final result is∑

µ

Aµ = 2
c2
T

ω2
Ek · δEx,

∑
µ

Bµ = c2
T

ω2

(
k2
T − k2

kL

)
δz,

∑
µ

Cµ = 2i

k2
δθz,

(42)

which shows that the amplitudeA is connected to horizontal seismic noise, the amplitudeB

to the vertical seismic noise and the amplitudeC to the torsional seismic noise. From
equation (38) we can also get some relations that are model-independent kinematical
consequences of definitions (34)–(37), for example the irrotationality of the tilt noise
field, which is the gradient of theuz field. It is easy now to connect the Newtonian
acceleration to the seismic noise. Summing the volume and surface modes, which are given
by expressions (30) and (33), we can write the contribution to the Newtonian acceleration
generated by all the modes as(
δEa
δaz

)
(Ek, z = h, ω) = 2πGρ0

(
k̂

i

){
k
∑
µ

Aµ(Ek, ω)+ 2i
k2

k2
T − k2

kL
∑
µ

Bµ(Ek, ω)
}

e−hk.

(43)

Using equation (38) we easily obtain the desired formula(
δEa
δaz

)
(Ek, z = h, ω) = 4πGρ0

c2
T

ω2

(
k̂

i

){
kEk · δEx + ik2δz

}
e−hk (44)

which gives a connection (transfer function) between seismic displacements measurable on
the surface and the Newtonian force. This is the expected linear relation between Newtonian
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noise and surface seismic noise, that with the boundary condition we choose, depends only
on the longitudinal part of horizontal noise and on the vertical one.

If we transform back this relation in thex, y, z space we obtain an integral relation
which can be written as(
δEa
δaz

)
(Er, z = h, ω) = 2Gρ0

c2
T

ω2

∫ ( ↔
K(Er − Er ′) EK(Er − Er ′)
EK(Er − Er ′) K(Er − Er ′)

)(
δEx
δz

)
(Er ′, ω)d2r ′ (45)

where ( ↔
K(Er) EK(Er)
EK(Er) K(Er)

)
=
( −∂Er∂Er ∂Er∂h

∂Er∂h −∂h∂h
)

h(
h2+ r2

)3/2 . (46)

Equation (46) says that Newtonian noise is connected in a non-local way to the surface
seismic noise, as it is expected. It is the ‘transfer function’ between seismic and Newtonian
noise in its more general form for the elastic homogeneous model.

In order to obtain a more usable expression we need some additional information on
the spatial dependence of seismic displacements. Our model gives us little information
about this. In the general case we only know that, for a given frequency, there is a high
momentum cut-off, so that the spatial dependence of seismic noise is somewhat ‘smoothed’.

3.2. Noise power spectrum

In the last section we viewed the seismic and Newtonian noises as if they were standard
functions of the time. As they are really stochastic processes we do not expect that quantities
as their Fourier transform in the frequency domain possess any significance, without some
suitable regularization. However, we can define some quantities which preserve their validity
after removing this regularization, such as for example the two-point correlation

Cx1x2(t, Er1; t, Er2) = 〈x(t, Er1) x(t, Er2)〉. (47)

The precise definition of the〈· · ·〉 average requires a careful study of the statistical properties
of seismic noise, especially from the point of view of stationarity, and will not be given here.
For a stationary, ergodic process we can operatively estimateC as an ensemble average of
time limited measurements, and we can introduce the concept of a cross spectrumSx1x2 as
the Fourier transform in time ofCx1x2. Now if we rewrite equation (44) in the form(

δEa
δaz

)
(Ek, ω) = T (Ek, ω)

(
δEx
δz

)
(Ek, ω) (48)

and if we assume translation invariance for seismic noise correlations, we get(
SEaEa(Ek, ω) SEaaz (Ek, ω)
SazEa(Ek, ω) Sazaz (

Ek, ω)

)
= T (Ek, ω)

(
SEx Ex(Ek, ω) SExz(Ek, ω)
SzEx(Ek, ω) Szz(Ek, ω)

)
T+(Ek, ω) (49)

which relate seismic noise cross spectra to Newtonian noise ones.
Our objective is to construct a relation between the Newtonian power spectrum and the

seismic one, which is easily measurable. We can understand the information our model
gives us about ther dependence of cross spectra writing them as a function of the unknown
amplitudesA,B,C. We can discuss the main point fixing our attention on the vertical noise
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cross spectrum, which can be written as†

Szz(Er, ω) = ω4

c4
T

∫
kL

k2
T − k2

〈|Bµ(ω, Ek)|2〉 e−iEk·Er d2k

(2π)2

= ω4

c4
T

∫
kkL

k2
T − k2

〈|Bµ(ω, k)|2〉 J0(kr)
dk

2π
. (50)

As we mentioned at the end of the last section, the only general conclusion is that the cross
spectrumS is a smooth function ofr. We need to measure the spatial dependence ofS in
order to estimate theB amplitude.

A less expensive solution is to make some additional assumptions in our model, in
particular, we can suppose that the only relevant modes are the Rayleigh ones. This is
a strong statement, but it is somewhat physically motivated because surface waves are
strongly localized near the surface, so their effect is maximized. In addition, they are the
most efficient mechanism for energy transport from the far micro-seismic noise sources
location.

The main consequence of our hypothesis is that the wavenumber is fixed by the
frequency, so that equation (43) becomes(

δEa
δaz

)
= Gρ0W(ξ)

(
k̂

i

)
A4(k̂, ω)

ω

cT
exp

(
−h ω

cT
√
x

)
. (51)

where theW is a function of thecT /cL ratio (see equations (A11) and (A12))

W(ξ) = 2π

{
1√
x
+ 2

x − 2

√
1

x
− ξ

}
. (52)

We used the relation between theA andB amplitudes valid for the Rayleigh modes (see
appendix A).

Now we can evaluate the cross spectra. The key assumption of our model is that the
random amplitudes connected to different elastic modes are statistically uncorrelated. If
we also assume that the autocorrelation function is isotropic the double sum over modes
reduces to an angular integral which can be evaluated in terms of Bessel functions. In this
way it is possible to evaluate the correlations between longitudinal accelerations, or the
mixed longitudinal–transverse ones, with the final result

〈δai(x1) δaj (x2)〉 = 1

2
G2ρ2

0

(
ω

cT

)2

W 2
〈|A4(ω)|2

〉
GT
ij (Ex1, Ex2) exp

(
−2h

ω

cT
√
x

)
(53)

〈δai(x1) δaz(x2)〉 = 1

2
G2ρ2

0

(
ω

cT

)2

W 2
〈|A4(ω)|2

〉
GV
i (Ex1, Ex2) exp

(
−2h

ω

cT
√
x

)
(54)

〈δaz(x1) δaz(x2)〉 = 1

2
G2ρ2

0

(
ω

cT

)2

W 2
〈|A4(ω)|2

〉
GS(Ex1, Ex2) exp

(
−2h

ω

cT
√
x

)
. (55)

The functionsG(Ex1, Ex2) are the results of the sum over modes, and are defined in appendix B.
As we can see the effect is exponentially damped with the height of the suspension point,
with a characteristic length which is inversely proportional to the frequency.

Using the relation (4) we can write the spectrum of the noise generated by the Newtonian
forces for the simple interferometer geometry depicted in figure 1 as〈|δL(ω)|2〉 = 1

|H(ω)|2
〈|δax(0)+ δay(2)− δax(1)− δay(0)|2〉 (56)

† The last equality is true if we assume isotropy.
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Figure 4. (a) The geometrical factorG for the simple interferometer geometry considered. (b)
The cut-off frequency dependence on theξ ratio, for a fixed longitudinal speed of 1000 m s−1.

which can be expanded as a sum of two-point correlation functions and rewritten in the
final form as

〈|δL(ω)|2〉 = 2π
G2ρ2

0

|H(ω)|2
(
ω

cT

)2

|W |2〈|A4(ω)|2
〉
exp

(
− 2hω

cT
√
x

)
G
(
ωL

cT
√
x

)
(57)

with

G(t) = 1− J0(t)− J2(t)− 1
2J2

(
t
√

2
)
. (58)
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This geometric factor is depicted in figure 4(a). The correlations of seismic displacements
can be evaluated in the same way. We can rewrite the relations (38) as

δEx = ω
√
x

2cT
A4(ω, k̂)k̂ = ω

cT
uX A4(ω, k̂) k̂ (59)

δz = i
ω

cT

√
x(1− xξ)
(2− x) A4(ω, k̂) = ω

cT
uZ A4(ω, k̂) (60)

δθEx = −ω
2

c2
T

√
1− xξ
(2− x) A4(ω, k̂)k̂ =

(
ω

cT

)2

uθ A4(ω, k̂) k̂ (61)

δθz = 0. (62)

The quantitiesuX, uZ, uθ defined by the relations above, are likeW constants which depend
only on the longitudinal and transverse sound speed. Squaring and summing over all the
directions we find

〈δxi(x1) δxj (x2)〉 = π
(
ω

cT

)2

|uX|2
〈|A4(ω)|2

〉
GT
ij (Ex1, Ex2) (63)

〈δz(x1) δz(x2)〉 = π
(
ω

cT

)2

|uZ|2
〈|A4(ω)|2

〉
GS(Ex1, Ex2) (64)

〈δθi(x1) δθj (x2)〉 = π
(
ω

cT

)4

|uθ |2
〈|A4(ω)|2

〉
GT
ij (Ex1, Ex2) (65)

and the mixed correlations

〈δxi(x1) δz(x2)〉 = π
(
ω

cT

)2

Re(u?XuZ)
〈|A4(ω)|2

〉
GV
i (Ex1, Ex2) (66)

〈δxi(x1) δθj (x2)〉 = π
(
ω

cT

)3

Re(u?Xuθ )
〈|A4(ω)|2

〉
GT
ij (Ex1, Ex2) (67)

〈δθi(x1) δz(x2)〉 = π
(
ω

cT

)3

Re(u?Zuθ )
〈|A4(ω)|2

〉
GV
i (Ex1, Ex2). (68)

Note that, owing to the presence of the Rayleigh modes only and the isotropy hypothesis, the
spatial dependence of the correlations are completely fixed by their transformation properties
under rotations.

The unknown function
〈|A4(ω)|2

〉
, which sets the scale for the different noises in our

model, can be eliminated by expressing all the quantities we are interested in with respect
to one of them. We choose the transverse seismic power spectrum noise, which can be
easily measured, and we write〈|A4(ω)|2

〉 = 2

π

(
cT

ω

)2 1

|uX|2
〈
δxi(ω)

2
〉
. (69)

Using equation (57) we can write the relation which connects the Newtonian noise spectrum
to the seismic one〈|δL(ω)|2〉 = 4G2ρ2

0

|H(ω)|2
|W |2
|uX|2 exp

(
− 2hω

cT
√
x

)
G
(
ωL

cT
√
x

)〈
δxi(ω)

2
〉
. (70)

The exponential term cuts the Newtonian noise at high frequencies, and becomes relevant
when the inverse wavelength of the seismic modes is comparable with the mirror–
background distanceh. In terms of the frequency the cut-off is effective when

ω > ωcut-off = cL

h

√
xξ. (71)
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For a fixed longitudinal wave speedωcut-off depends on the speed of transverse wavescT
as represented in figure 4(b). We see that the cut-off cannot be greater that 80 Hz, and is
smaller for materials with a low transverse shear module.

The factorG is connected to the apparatus geometry, and describes the coherence
effects. It is a function that initially grows as a fourth power at low frequency, and next is
approximately one for frequencies greater than 10−3fcut-off (see figure 4(a)). It is generated
by the interference of the noises at different mirrors, which for an inverse wavelength of
the elastic mode comparable with the interferometer length is coherent and does not couple
to the difference between the optical paths in the arms of the interferometer.

The ratio between the square amplitudes|W |2 and|uX|2 depends on the speeds of sound
for transverse and longitudinal waves (see table 1), and is included in the range between
∼130 (low-shear modulus) and∼ 26 (high-shear modulus).

Table 1. The amplitudes of different noise sources for selected values ofξ , in the model with
only Rayleigh modes.

ξ x |uX|2 |uZ |2 |uθ |2 |W |2

0.05 0.906 341 0.056 6463 0.723 415 0.798 17 26.965 3
0.10 0.899 137 0.056 1961 0.675 216 0.750 959 23.600 9
0.15 0.890 805 0.055 6753 0.627 299 0.704 193 20.391 7
0.20 0.881 076 0.055 0673 0.579 731 0.657 98 17.352 9
0.25 0.869 605 0.054 3503 0.532 599 0.612 461 14.502 4
0.30 0.855 931 0.053 4957 0.486 017 0.567 823 11.859 8
0.35 0.839 449 0.052 4655 0.440 138 0.524 318 9.447 16
0.40 0.819 359 0.051 2099 0.395 16 0.482 28 7.288 24
0.45 0.794 622 0.049 6639 0.351 345 0.442 153 5.406 82
0.50 0.763 932 0.047 7458 0.309 017 0.404 508 3.823 89

We are now in the position to discuss our final results. In figure 5 we have plotted the
numerical values of the ratio between the transverse seismic noise spectral amplitude and
the Newtonian noise spectral amplitude for the elastic and Saulson models, defined as the
square root of the following quantity:

Shh

Sxx
(ω) =

∣∣∣∣δL(ω)L

∣∣∣∣2〈δxi(ω)2〉−1
. (72)

As a preliminary comment note that all the curves are constructed assuming that the
mirror can be described as a free test mass, i.e. they are normalized toH(ω) = −ω2. This
is certainly not the case in the low-frequency region, but the effect ofH(ω) is factorized
(see, for example, equation (70)) and more detailed predictions can be easily obtained.

It is apparent that in the 0.1–50 Hz frequency range all the models give estimates of
the same order of magnitude, with a transfer function which scales as the inverse square of
the frequency. Our elastic model estimate is somewhat larger than Saulson’s in this region.

Below 0.1 Hz the coherence effects are apparent. For Saulson’s model the transfer
function scales as the inverse first power of the frequency (see also figure 2), while in the
elastic model theω−2 factor which comes from the free mass dynamics is compensated by
theω2 low-frequency behaviour of the geometrical factor.

In the high-frequency region (f > 50 Hz) the behaviour of the transfer function is
determined by the height of the mirror’s suspension point. However, for Saulson’s model
the influence ofh is small, and generates only a small increase of the curve slope which
starts to scale asω−5/2. For the elastic model the effect is much more important, and
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Figure 5. The ratio between the Newtonian noise spectral amplitudeS
1/2
hh and the horizontal

seismic noise spectral amplitudeS1/2
xx . We assume that the test masses behave as a free mass, so

thatH(ω) = −ω2. The four full curves are the predictions of the elastic homogeneous model,
the slanted curves are the predictions of Saulson’s model.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

produces the exponential damping visible in the figure, starting from a frequency which can
be determined from figure 4(b).
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3.3. Seismic model validation

The assumptions we made in order to simplify our model have some consequences which
can be verified experimentally in an easy enough way. From the isotropy hypothesis only,
it follows, for example, that the seismic cross power spectra are zero in the vectorial case,
for example,

〈
δxi(r) δz(r)

〉 = 0. A similar conclusion is true in the tensorial case for
correlations between displacements in perpendicular directions.

If only Rayleigh modes are present we get some quantitative relations between different
correlations, which can be easily extracted from equations (63)–(68). In particular, we can
write 〈

δx2
〉 = 1

2

|uX|2
|uZ|2

〈
δz2
〉
. (73)

In order to give a rough estimation of the validity of this relation we have evaluated the
power spectra of horizontal and vertical noise using some preliminary measurements in
the [0–15] Hz range. The ratio of the two mediated power spectra is plotted versus the
frequency in figure 6. As can be seen the ratio is roughly constant forf < 6 Hz, while for
higher frequencies it rises approximately linearly. We have verified that in this range there
is little dependence on the time of the measurement, so we are tempted to conclude that
human activity is relevant for seismic noise only for higher frequencies. However these

Figure 6. Experimental estimate of the ratio between the horizontal noise power spectrum and
the vertical one.
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are only very preliminary results. We stress that in order to give a clear validation of our
model we need information about cross spectra at a finite distance.

4. Effect of the apparatus infrastructure

In this section we want to make some comments about the effect of the direct gravitational
coupling of the mirror to the massive infrastructure of the interferometer.

We start by giving a crude estimate of some of these effects, in particular, of the
gravitational coupling to the basement ring and to the tower. Our results will be parametrized
in the form of a ratio between the seismic spectrum and the Newtonian noise spectrum. Note
that this ratio is not additive with the one obtained in the previous section, because it is
strongly correlated with it. The correct procedure would be first to add accelerations and
then compute the power spectrum. However, we will not go into these details here, because
as we will see the effect of the apparatus infrastructure is an order of magnitude smaller
than the direct coupling to the background.

The inverted pendulum was designed as a pre-isolator stage for the horizontal motion
[7]: a horizontal table is supported by three elastic legs, which in turn are supported by a
rigid common base. The table supports the super-attenuator chain (see figure 7).

4.1. Effect of the basement ring

We assume that the basement of the legs can be modelled as a ring, which can be
parametrized in a cylindrical coordinate system as

x = R cosθ + δx + z0 δθy − R sinθ δθz
y = R sinθ + δy − z0 δθx + R cosθ δθz
z = z0+ δz+ R sinθ δθx − R cosθ δθy

(74)

whereδx, δy andδz are the horizontal and vertical seismic displacements,δθx andδθy the
tilt angular fluctuations andδθz the torsional one. We put the origin of the reference frame
in the basement of the tower, and we also assume that the internal modes of the structures
are not excited by the seismic motion. For low enough frequencies this will be true, and
the structures could be considered as bodies in rigid motion, as in equation (74). Now
we evaluate the direct gravitational action of the ring on the mirror suspended in the point
(0, 0, h) as the first-order term in the fluctuations of the integral

(δax, δay, δaz) = GMring

∫
(x, y, z− h)[

x2+ y2+ (z− h)2]3/2

dθ

2π
(75)

which givesδaxδay
δaz

 = GMring[
R2+ (z0− h)2

]5/2

[(z0− h)2− 1
2R

2
] δx

δy

−δz


+[R2

(
z0− 3

2h
)+ z0(z0− h)2

] δθy
−δθx

0

 . (76)

It is interesting to note that the effect of the ring depends qualitatively on its position relative
to the mirror. In the case whereR2 < 2(z0 − h)2 the Newtonian acceleration is in phase
with the horizontal seismic displacement, while in the other case it is of opposite sign. This
suggests that it is possible to choose the geometry parameters in such a way as to minimize
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Figure 7. Schematic view of the superattenuator tower.

the Newtonian effect, if needed. In particular, if we takeR2 = 2(z0 − h)2 the horizontal
and vertical seismic displacement of the ring give no Newtonian noise to first order.
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Using the parameters of the final design [8] we obtain the numerical estimateδaxδay
δaz

 = c1

 δx

δy

−δz

+ c2

 δθy
−δθx

0

 with c1 = 0.25× 10−7, c2 = 0.77× 10−7,

(77)

which can be easily converted to the transfer function for the elastic model〈|δh(ω)|2〉 = 4

L2|H(ω)|2
[
c2

1 + c2
2
|uθ |2
|uX|2

(
ω

cT

)2

+ 2c1c2
Re(u?Xuθ )

|uX|2
(
ω

cT

)]
×G

(
ωL

cT
√
x

)〈
δxi(ω)

2
〉
. (78)

It is interesting to note that the importance of tilt seismic noise grows with the frequency:
using the parameters listed in table 1 we see that the transfer function scales asf −2 at low
frequencies, but start to be proportional tof −1 somewhere between 10 Hz (in the low-shear
modulus case) and 50 Hz. However, the effect is small: in the low-shear modulus case we
can write

Shh

Sxx
= 4.22× 10−13

f 2

√
1+ 1.3× 10−1f + 4.15× 10−3f 2 (79)

which is more that one order of magnitude smaller than the bulk effect (cf figure 5) in the
relevant frequency range.

4.2. Effect of the tower

The tower is composed of two main parts: a higher tower for the implementation of the
suspensions and a lower one which houses the payload. The lower tower is a cylindrical
tank ofR = 1 m in radius, 2.74 m in height and 15 mm in thickness. The higher part is
constituted by a series of rings ofR = 1 m in radius and a cupola of 1000 kg in weight,
which define the vacuum tank of the suspension. A complete tower is 10.441 m in height
and 22 990 kg in weight. Suppose we can model the tower as a cylinderh = 10.5 m in
height,R = 1 m in radius, 22 000 kg in weight ande = 0.01 m in thickness; we neglect
the effect of the cupola.

We can use equation (76) directly, integrating overz0 from 0 to htower after the
substitution

Mring→ Mtower
dz0

htower
(80)

obtainingδaxδay
δaz

 = −GMtower

htower


[

(htower− h)
2
(
R2+ (htower− h)2

)3/2 +
h

2
(
R2+ h2

)3/2

] δx

δy

−δz


+
[
R2+ (htower− h)2+ h(htower− h)/2(

R2+ (htower− h)2
)3/2 − R2− h2/2(

R2+ h2
)3/2

] δθy
−δθx

0

 .
(81)

Numerically this means, with the parametrization in equation (77),c1 = −2.51× 10−8,
c2 = 0.934× 10−8. This relation has the same structure as equation (77), with smaller
coefficients so we can conclude that this effect is also negligible. We note that in this case
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we know the lowest frequency of the internal modes of the tower, which has been calculated
with a finite-element approximation (see [8]) to be around 15 Hz, so we expect our estimate
to be realistically below that.

5. Discussion and conclusions

The first point we want to stress is that the conclusions about the amplitude of the Newtonian
noise is remarkably model independent over a wide range of frequency: looking at figure 5
we see that between 10−1 and 102 Hz the different numerical estimates are all of the same
order of magnitude. This is important because we do not expect a particular model of
seismic motion to capture all the aspects which are potentially relevant.

In some sense the elastic model and Saulson’s one can be seen as two extreme
possibilities: the first is well founded from a physical point of view, but it assumes a
homogeneous medium for the seismic waves, and owing to that cannot take into account
coherence loss effects, which can be induced by scattering effects on medium defects.
On the other hand, Saulson’s model gives strongly uncorrelated ground modes, and it is
probably inefficient in accounting for coherence effects.

More refined models are certainly possible, in particular, it is possible to study the
modifications of the elastic model induced by inhomogeneities of the medium, but probably
the results will not justify the effort. In our opinion the first step is the validation of
the models, in particular of the elastic one, which gives a lot of predictions about spatial
correlations of linear and angular seismic displacements. In particular, it will be important
to test the surface mode dominance approximation we have used, which, as we noted, gives
for example a prediction about the absence of torsional noise.

All the power spectra of equations (63)–(68) can be measured potentially at different
space separations, and some of these measurements are actually in progress.

What is the relevance of the Newtonian noise from an experimental point of view? The
seismic noise spectral amplitude (for coincident points) measured in the interferometer’s
site can be roughly parametrized, in the frequency range of interest, as〈

δxi(f )
2
〉1/2 ' 10−6

f 2
m Hz−1/2 (82)

which, combined with the elastic transfer function we have evaluated, give a Newtonian
spectral amplitude of〈|δh(f )|2〉1/2 ' 3× 10−17 1

f 4
(83)

which is well below the actual sensitivity curve of the VIRGO interferometer, but can
become the relevant limitation in the low-frequency range (below 10 Hz) in the final
improvement stage.

If the Newtonian noise will become dangerous for the advanced interferometer we
stress the concrete possibility of its reduction. An interesting possibility which we have
noted in the previous section is to use massive infrastructures of an appropriate geometry to
compensate the gravitational fluctuating fields. In our opinion this is an interesting approach
which is worth further investigation.

We conclude with two observations.
We have seen that the effect of the direct coupling with the interferometer structures

is negligible. In our considerations we limited ourselves to direct coupling of the mirror.
This is very reasonable because couplings to other stages are damped by the superattenuator
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stages. A possible exception is the marionetta, which is located at a very small distance
from the tower structures. The only attenuation of this direct action is provided by the wires
which suspend the mirror, so the final effect could be relevant.

Another point is connected to the approximation we have used for the mechanism of
coupling between the ground and the interferometer structures. We have imagined the base
as a rigid body which follows the ‘rigid’ part of the surface motion, neglecting the effect
of the weight of the structures and the details of the coupling between the base and the
ground, which is probably inaccurate.

We will address these questions in a future work.

Acknowledgments

During the last revision of this manuscript we realized that Kip S Thorne and Scott A Hughes
[12] were writing a paper on a similar subject. We thank them for sharing their work with
us, which contains a more general model applicable for the general case of a multilayered
background, and for helpful and interesting discussions.

Appendix A. Classification of seismic background waves

In order to obtain an estimate of the seismic noise we want now to simulate the ground as
a homogeneous medium limited by thez = 0 plane. The general free ground motion can
be expanded in elastic waves, which are solutions of the equation [10]

∂2
t ui(x, t) = c2

T ∂k∂kui(x, t)+
(
c2
L − c2

T

)
∂i∂kuk(x, t). (A1)

These solutions represent longitudinal waves with speedcL and transverse ones with speed
cT . The fieldui(x, t) represents the displacement of a point from its original positionx in
direction i.

We take advantage of the symmetries of the problem by separating the displacement
field u in the componentEu parallel to thez = 0 plane and in the componentuz perpendicular
to it, and by Fourier transforming in thex, y, t variables.

The boundary conditions are appropriate for a free surface, so that for the stress tensor
σij must be

σxz(x, y,0) = σyz(x, y,0) = σzz(x, y,0) = 0. (A2)

We can satisfy these conditions over-imposing some plane-wave solutions with the same
frequencyω and the same projectionEk = (kx, ky) of the wavevector in the planez = 0.
The most general combination with these properties can be written as

u(Ek, z, ω) =
( Eu
uz

)
= ε(L,+)eikLz + ε(T ,+)eikT z + ε(L,−)e−ikLz + ε(T ,−)e−ikT z (A3)

with

k2+ k2
T =

ω2

c2
T

, k2+ k2
L =

ω2

c2
L

. (A4)

We use the parametrization

ε(L,+) = α
( Ek
kL

)
, ε(T ,+) = β

(−kT k̂
|k|

)
+ γ

(
εEk
0

)
,

ε(L,−) = α′
( Ek
−kL

)
, ε(T ,−) = β ′

(
kT k̂

|k|
)
+ γ ′

(
εEk
0

)
,

(A5)
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whereα, β, γ, α′, β ′, γ ′ are complex amplitudes, and only the real part of equation (A3)
is of physical significance. The polarizationsε(L,+) and ε(L,−) label the two longitudinal
modes, and are parallel to the wavevector, whileε(T ,+) andε(T ,−) label the four transverse
modes and are perpendicular to the wavevector.

The conditions (A2) rewritten for the displacement field become

ikuz + ∂zux = 0

∂zuy = 0

c2
L∂zuz + ik

(
c2
L − 2c2

T

)
ux = 0

(A6)

where without loss of generality we tookEk = kx̂. Using the parametrization (A5) we obtain
the conditions

kkT (γ − γ ′) = 0

2kkL(α − α′)+
(
k2− k2

T

)
(β + β ′) = 0(

k2
(
c2
L − 2c2

T

)+ c2
Lk

2
L

)
(α + α′)+ 2c2

T kkT (β − β ′) = 0.

(A7)

In the particular casek = 0 these conditions simplify,

β + β ′ = 0, α + α′ = 0 (A8)

and the combination (A3) decomposes in two independent modes: a longitudinal wave and
a transverse one with a wavevector perpendicular to the plane, completely reflected by it.

In the k 6= 0 case we can use the conditions (A7) to reduce the independent parameters
of the general solution (A3). It is convenient to rewrite it in the form( Eu(Ek, z, ω)
uz(Ek, z, ω)

)
=
∑
µ

{
Aµ(Ek, ω)

(Ek coskLz− kT f2k̂ coskT z

ikL sinkLz+ ikf2 sinkT z

)

+Bµ(Ek, ω)
(

iEk sinkLz− ikT f1k̂ sinkT z

kL coskLz+ kf1 coskT z

)
+Cµ(Ek, ω)

(
εEk coskT z

0

)}
. (A9)

Here we have introduced the convenient parametrizationA = α + α′, B = α − α′ and
C = γ + γ ′, while the parametersf1, f2 are defined as

f1 = 2kkL
k2
T − k2

, f2 =
(
2c2
T − c2

L

)
k2− c2

Lk
2
L

2c2
T kkT

. (A10)

This is not the end of the story, because we must impose the regularity of the solution in
the z→−∞ case.

If k2 < ω2/c2
L < ω2/c2

T bothkL andkT are real, so there are no additional constraints and
we get three independent modes. The piece proportional toC gives a purely transverse mode
which is the superposition of an incident and a completely reflected wave, fork2 = ω2/c2

T

the total wavevector becomes completely parallel to thez = 0 plane end. With reference to
figure 3 we label this mode withµ = 0. The pieces proportional toA andB represent two
independent superpositions of transverse and longitudinal modes which can be separated in
the following convenient way.

(i) A purely longitudinal incident wave, which is reflected by thez = 0 plane as a
superposition of a transverse and a longitudinal wave. The absence of the longitudinal
incident wave (β = 0) gives the constraintAµ = −(f1/f2)Bµ. We label this mode with
µ = 1.
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(ii) A purely transverse incident wave. As in the first case, the outgoing wave is the
superposition of a longitudinal and a transverse wave, and we get the constraint
Aµ = −Bµ (α = 0). We label this mode withµ = 2.

If ω2/c2
L < k2 < ω2/c2

T kT is real butkL is imaginary. In order to exclude the unphysical
exponentially growing solution we need the additional conditionAµ = −Bµ. The pieces
proportional toA andB are no longer independent and we get only a mode, which we label
with µ = 3, which can be described as a purely transverse incident wave which is reflected
as a superposition of a transverse outgoing wave and a surface wave exponentially damped
with the depth. TheC piece is independent ofkL, so theµ = 0 mode is admissible in this
interval, for a total of two independent modes.

The last case corresponds toω2/c2
T < k2. Both kL and kT are imaginary, so we need

the two additional conditionsα = 0 andβ = 0 (which meansAµ = −Bµ andf1 = f2).
The system (A7) becomes homogeneous inα, β, and is soluble if its determinant is zero,
which gives the condition

x3− 8x2+ 8x(3− 2ξ)+ 16(ξ − 1) = 0, 0< x < 1, x = ω2

k2c2
T

, (A11)

whereξ is the square of the ratio between the transverse and longitudinal speed of the wave

ξ = c2
T

c2
L

, 0< ξ < 1
2. (A12)

There is only one solution of equation (A11), for a given value ofξ , which corresponds to
a surface wave superposition of a longitudinal and a transverse mode, both exponentially
damped with the depth (Rayleigh waves).

As discussed in the text this is probably the more important mode from a practical point
of view, and we label it withµ = 4. The transverse mode proportional toC is clearly not
admissible (see figure 3 for reference).

The key point of our work is that the Newtonian accelerations can also be expressed as
linear functions of the amplitudesAµ, Bµ andCµ, so if we express these as functions of
the seismic displacements we can obtain a ‘transfer function’ which connects seismic and
Newtonian noise.

We are particularly interested in theµ = 4 mode, so we specialize to this case. The
modulus of the vectorEk is fixed in a unique way byω, so at fixed frequency we sum only
over the directionŝk, obtaining

Eu(x, ω) =
∑
k̂

A4(k̂, ω)k̂

(
keikLz − 2k

kLkT

k2
T − k2

eikT z

)
eiEkEx (A13)

uz(x, ω) =
∑
k̂

A4(k̂, ω)

(
kLeikLz + 2kL

k2

k2
T − k2

eikT z

)
eiEkEx (A14)

with

k = ω

cT

√
1

x
, kL = −i

ω

cT

√
1

x
− ξ, kT = −i

ω

cT

√
1

x
− 1. (A15)

Appendix B. Sum over modes

If we restrict the sum over modes to the surface ones only, it is possible to evaluate it in
closed form if we assume isotropy of the correlation functions. The result can be expressed
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in terms of Bessel functions as follows:

GS(Ex1, Ex2) = J0

(
ω

cT
√
x
|x1− x2|

)
(B1)

GV
x (Ex1, Ex2) = J1

(
ω

cT
√
x
|x1− x2|

)
cos(θ12) (B2)

GV
y (Ex1, Ex2) = J1

(
ω

cT
√
x
|x1− x2|

)
sin(θ12) (B3)

GT
xx(Ex1, Ex2) = 1

2
J0

(
ω

cT
√
x
|x1− x2|

)
− 1

2
J2

(
ω

cT
√
x
|x1− x2|

)
cos(2θ12) (B4)

GT
yy(Ex1, Ex2) = 1

2
J0

(
ω

cT
√
x
|x1− x2|

)
+ 1

2
J2

(
ω

cT
√
x
|x1− x2|

)
cos(2θ12) (B5)

GT
xy(Ex1, Ex2) = −1

2
J2

(
ω

cT
√
x
|x1− x2|

)
sin(2θ12). (B6)

Here we have defined the angleθ12 which is the direction of the vectorEx1− Ex2 in the chosen
reference frame. The spatial dependence of a correlation function is completely determined
by its transformation properties under rotation.
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