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response simulated by a finite element program (COSMOS /M). This single stage
provides an attenuation of around 30dB; the agreement between the model and the
experimental measurements is extremely satisfactory.
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Off-Line Subtraction of Seismic Newtonian Noise

G. Cella

Abstract. A fundamental limit for the sensitivity of an Interferometric Gravitational Wave
detector in the low frequency region is imposed by the effect of environmental mass density
fluctuations. These fluctuations generate stochastic gravitational fields which couple directly
to the apparatus test masses, bypassing seismic isolation systems. In this paper the results of a
preliminary investigation on the possibility of reducing this kind of noise are reported. We focus
on the feasibility of off-line noise subtraction. In this approach the mass density fluctuations are
monitored by an appropriate set of measurement devices. The resulting signals are combined
linearly with the output of the interferometer (o obtain partial cancellation of the noise.

1 Introduction

Density mass fluctuations are generated continuously in the environment by a variety
of mechanisms. Examples include atmospheric pressure fluctuations, infrastructure
movements, human activities and seismic fluctuations of the ground. .

These mass fluctuations are the sources of a gravitational field which, though
very weak, couples directly to the test masses of an interferometric gravitational
wave detector. The effect of this coupling on the sensitivity curve of a gravitational
wave detector was estimated in a series of works [1-5]. The main result is that
this source of noise could be relevant, given the planned sensitivity of the current
generation interferometers, in the frequency band between 1 and 10 Hz. Below
this range it is overwhelmed rapidly by seismic noise, above by thermal noise. For
a concrete example see Fig. 1, where the more important source of noise for the
VIRGO interferometer are compared.

All these estimates are normalized to the power spectrum amplitude of seismic
motion, which, in some cases, is not known very well and probably overestimated [6].
An attempt to explore the feasibility of the reduction of this “Newtonian noise” is in
our opinion worth doing, especially in the perspective of second generation cryogenic
detectors. For these Newtonian noise could become the fundamental limitation in the
low frequency range.

In the following we will focus on seismic generated Newtonian noise. Preliminary,
unpublished results show that atmospheric generated Newtonian noise could also be
relevant, in fact, the most relevant, We expect that it will be possible to carry out a
similar analysis in this case as well.

Different strategies can be elaborated to reduce the effect of seismic originated
Newtonian noise. The more obvious is the construction of a mold of appropriate
depth around test masses, in order to isolate a sufficiently large ground volume from
seismic motion. Accurate modelling is required to estimate the effectiveness of this
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Fig. 1. Sensitivity curve for the VIRGO interferometer. The two different extimates for the
Newtonian noise correspond to two different values of the ratio between transverse and
longitudinal sound speed in the terrain considered

approach. This must take into account, for example, the effect of the diffraction of
elastic seismic waves on the mold.

It is also possible to contemplate the construction of dynamic structures which
could provide a screening effect. However this approach appears to be very tricky
and, to obtain relevant effects, these dynamical structures would probably have to be
very finely tuned.

Another important point 1s that these solutions require us to introduce permanent
modifications in the apparatus, which should be avoided as much as possible in order
not to add non-controlled, systematic effects.

In this preliminary stage of investigation it seems wiser to concentrate our attention
on a third approach, which does not require apparatus modifications. This is based
on the possibility of monitoring the environmental sources of Newtonian noise and
correcting “off-line” the output of the experiment using the information obtained.

2 Off-line subtraction: generalities

Newtonian noise, seen as a random process in the time domain, is a linear function
of the mass density fluctuations in the environment. Suppose that we know, at each

g
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point in time, the displacement of each point in the ground from its equilibrium
position u(x, ¢) The force experienced by an isolated test mass in Xq can be written
as

X — Xp

F(1)=G | o(x) V- -ulx, ndV. (2.1)

Ix — xp|°

In the general case we can write, for the Newtonian part of the output signal of an

B i

interferometer. N(r) = (N|B), where |B) is the state of the ground (explicitly. the
displacement field u) and (V| some linear operator which depends on the geometry of
the interferometer. Suppose now that we place a measure instrument, for example, an
accelerometer, at a point X of the ground. The part of the instrument output correlated
with seismic motion will also be a linear function of the ground fluctuations, which

we can write in the form (a(x)|B)(1).
More generally, we write the output of the interferometer in the form

e . R ——

H(t) = (N|B)(t) + h(r), with E[(N|B)k] =0 (2.2)
with the assumption that both (N|B) and h are stationary, zero-mean stochastic
processes. The E[- - - | average must be appropriately defined. For example, it could
be the usual 7 — oo limit of the ensemble average over strips of length 7. In
Eq. (2.2) h represents the fraction of the output uncorrelated with seismic motiom.
as, for example, thermal noise, shot noise, gravitational wave signals. In the same
way we write the output of an accelerometer as

1) —— —

Ai(t) = (a;|B)(1) + 71;, with El(a;INni]=0 (2.3)

and, in this case. 1 represents the intrinsic instrument noise. We assume that, if the
output of n different accelerometers is known, the maximum reduction of Newtonian
noise could be obtained by constructing a “subtracted signal” Hg that can be written
as

)
Hg(t) = H(t) — M\ w;i(t — t")(Nla;)A; (t"ydr' (2.4)
; v—00

or, in the frequency domain,

Hg(w)

H(w) =Y wi(w)(Nlaj)Ai(w)

Hw) — M wi(w)(Nla;) [(a;| B)(w) + n;(w)]. (2.5)

Here the w;(w) are a set of functions (one for each accelerometer) which must
be calculated. The factor (N|a;) is not a stochastic process, and was introduced
for convenience. It represents the coupling of the fluctuations measured by a given
accelerometer to the Newtonian noise, and depends only on the interferometer ge-
ometry and on the accelerometer position relative to it. With its aid Eq. (2.5) suggest
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that what we are doing is subtracting from H the Newtonian noise signal due to the
density fuctuation fraction controlled by our acceleration measurements.

It is also evident that, in the limit of an infinite number of accelerometers. it is
always possible to write (N|B) = M”ﬁ. w;(Nla;)a;|B), so that, in this case. the
subtraction of Newtonian noise should be complete in the absence of instrumental
noise.

If the noise is stationary, and if the processes (@;| B) are Gaussian, the subtraction
procedure (2.5) is optimal. The & dependency of the weights w; is due to the fact
that the optimal signal to subtract encodes the information about seismic dynamics,
and this means that it must have memory.

In order to determine the functions w; we have to fix a well-defined quantity that
we want to minimize. In the stationary case it is natural to use the frequency integral
of the interferometer output power spectrum density. weighted by a function g(w)
which selects the frequency band of interest,

Fwy, - cwy] = | g(w)|Hg|*dew. (2.6)

As indicated, this is a (quadratic) functional of the unknown functions w; (ew). In
order to simplify our expression we now specialize to the case ¢(w) = 8(w — axy ).
s0 that the expression to be minimized is

I''= fif;(Cij + Rij)w;(wo)w]
—fi (N;i + Zj)w] (wn) — fi (N; + Z;i)*wi (). 2.7

Summation over a repeated index, which labels the accelerometers, is understood.
Each quantity which appears in this expression admits a simple interpretation. The
factor f; = (N|a;) has been described earlier. The array C;; = E|(ay|B)(Bla;)] is
simply the statistical correlation between the outputs of i-th and j-th accelerometers,
in the absence of instrumental noise. To obtain the correlation between the outputs of
two real instruments we must add the R;; = ﬂ::ﬁ_ array, which is the correlation
of the intrinsic noises of accelerometers i and .

The vector N; = E[(N|B)(B|a;)]is the statistical correlation between the fraction
of the interferometer output and of the i-th accelerometer output of seismic origin.
Finally the vector Z; = m_mqw_ is the correlation between the intrinsic noise of
the i-th instrument and the fraction of the interferometer output uncorrelated with
Se1smic origins.

Minimizing I" we easily find the optimal weights

w;" (wo) = £ (Cij + Rij) "\ (N; + Z))* (2.8)
and the reduction of noise power spectrum in wy
[HI* — |Hs|? = (Cij + Rij) " (N: + Zi)(N; + Z,)*. (2.9)

This last expression is a nonlinear function of the position and orientation of each
accelerometer. Our objective is to optimize these parameters for a given number of
instruments, to understand what is the best result we can achieve. -
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The quantities Cj; and N; depend on the properties of seismic noise. which are
connected in turn to the dynamics of the background motion. While it is relatively
easy lo measure C;;, to obtain experimental information on N; we need the sensitivity
of the complete interferometer. However both C; j and N can be calculated starting
from a theoretical model of the ground seismic motion. Some of these calculations
can be found in [3], and a detailed account will be published elsewhere [7, 8]. For what
concerns the terms connected with instrumental noise we note that the non-diagonal
part of the R;; matrix and the vector Z; should be negligible.

An intuitive understanding of the result of the optimization procedure can be
obtained by looking at Eq. (2.9). In order to maximize this expression we can try to
move all the accelerometers to the position which is maximally coupled to Newtonian
noise. In this way the N; terms grow. However the accelerometers cannot become
l00 near to each other, because in this case the C;; terms grow as well. The optimal
configuration is obtained by balancing these two factors. Note that if. the intrinsic
noise R;; is large, the C; terms become less important, and all the accelerometers
will try to cluster in similar positions and orientations. in such a way as to improve
the statistics.

3 Some results

We studied Eq. (2.9) numerically, finding the optimal configurations for a fixed
number of accelerometers. The starting point was knowing C;; and N; as functions
of the positions of the accelerometers. Next we minimized numerically the optimal
weight subtracted power spectrum by adjusting the accelerometer positions. In Fig. 3
we show the convergence of the mininization algorithm, plotting the relative power
spectrum reduction against the iterative procedure step. The three different curves
are the results for three different initial conditions. In particular the case with the
best initial condition corresponds to a regularly spaced lattice of accelerometers. It
s apparent that this configuration is also quite suboptimal. It is also evident that the
final result is independent on the initial condition. In some cases (large number of
accelerometers) this result can be achieved. avoiding local minima, with a simulated
annealing procedure.

In Fig. 3 we plot the results obtained for two simple models. The first is the
model used by Saulson to obtain an early estimate of Newtonian noise [1]. Its main
assumption is that seismic motion can be modelled by a partition of the ground
into cubic cells which oscillate coherently, but are completely uncorrelated to each
other. The second is a slight modification of Saulson’s model (which we will call
the coherent model) which takes mass conservation into account. From our point of
view this means that the motions of nearby cells are no longer uncorrelated [3].

A first observation is that the subtraction procedure is less effective at higher
frequencies. This fact has a simple explanation, because the coherenice length of the
seismic motion (the cell dimension of Saulson's model) is proportional to the inverse
of the frequency. In order to control a given volume at some specified level, we need
a number of accelerometers which grows as the third power of the frequency.

-
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Fig. 2. Convergence of the algorithm for the minimization of the best weight subtracted
power spectrum. The position of the accelerometers is adjusted, starting from some initial
conditions, until the relative reduction of power spectrum converges. Organization of the
accelerometers into a somewhat regular configuration can be observed. This configuration
1s model dependent and also frequency dependent

Another point is that we can use only accelerometers located on the surface without
making worse the overall performance of our procedure, as long as the number
of accelerometers is not too big (less than 40 for the Saulson’s model). Note that
the importance of underground measurements is greater for Saulson’s model. This
15 a consequence of the fact that, in this case, surface measurements give us no
information at all on the dynamics below the level of the first cell.

The performance of the subtraction procedure is not exceptional: for a reasonable
number of accelerometers we can expect a relative reduction of an order of magnitude.
We can see that a more coherent seismic dynamics improves the result, and that the
two simple models we have used probably underestimate the coherence of the real
dynamics. In addition they do not model the contributions to Newtonian noise due
to the surface discontinuity, and it turns out that these are the most relevant ones.

We expect to obtain better results with more realistic models. We have evaluated
Ci; and N; for the elastic wave model used in [3] to predict Newtonian noise am-
plitude and extensive numerical simulations are currently in progress. However we
do not expect that a relative reduction of Newtonian noise amplitude of greater than
two orders of magnitude can be obtained.
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Fig. 3. Relative reduction of noise amplitude for Saulson's model (left) and the coherent
model (right). The empty circles are for fo = 1Hz, the filled for fi = 4 Hz. The plots with
dotted lines were obtained by constraining the accelerometers to the surface

There 1s a general comment that can be made about the calculation of the func-
tions C; and N;. For any reasonable model of background seismic motion in the
frequency range considered, it is important to consider the effect of dissipation on
elastic modes. The main consequence is a modification of the correlation functions
Cij which becomes exponentially damped for large separation between points, with
a finite coherence length &. Experimental measurements lead to the conclusion that
§ could also be of the order of magnitude of wavelength. This means that the local
seismic noise level in the frequency band investigated is strongly influenced by local
sources (wind, human activities, scattering processes} and an important assumption
1s that the frequency spectrum of these sources is wide-band.

In other words the typical expression for the amplitude of a given elastic mode, in
the presence of dissipative effects, can be written as the convolution between a model
dependent kernel and a source strength function. We can normalize all quantities to
this unknown source strength if the convolution integral is dominated by the poles of
the kernel. If this is not the case, then the structure of the excitation process becomes
important (imagine, for example, a very narrow peak in the spectral distribution of
the forces connected to the wind) and must be modeled.

By using this assumption the effect of dissipation can be included in the model for
seismic dynamics and the seismic correlation functions can be evaluated in closed
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form for the case of a homogeneous ground. Detailed results will be presented else-
where [B].

4 Conclusions and perspectives

The estimation of the feasibility of off-line subtraction of Newtonian noise is based
on modellling the seismic dynamics. From a practical point of view an important
issue is that we understand the effect of a wrong model on the performance of the
subtraction procedure. The functions w; optimized for a given model can give poor
performance if used in a different situation. Some effects are not easy to model,
in particular, the dissipative nature of the terrain and the seismic wave scattering
generated by the presence of inhomogeneities. Both could be relevant. as they alter
the coherence length of seismic motion and can couple otherwise independent normal
modes.

A particular model can be a good approximation only in special conditions, for
example, only in a particular frequency band, orin a particular atmospheric condition,
or when the level of human activity is low. The validation of a model is a Very
important point that can be achieved with an extensive set of seismic correlation
measurements.

Another possible approach is that of “model-independent” subtraction. The main
point is the optimization of the functions w; by the direct experimental estimation and
minimization of the Newtonian noise power spectrum. This can be seen as the training
problem for a M-adaline network with delays [9], and can be solved with standard
adaptive techniques. Numerical simulations are in progress to test the effectiveness
of this method. Note that experimentally it is easy to adapt the functions wy, but it
Is not easy to adapt the positions and the orientations of the accelerometers. This
means that a good theoretical model is in any case important in order to guess a good
configuration for the instruments.

Our method for the determination of the optimal subtraction procedure is based on
the assumption that the stochastic processes in which we are interested are stationary.
If this is not true, then the main point is the precise determination of the quantity
which we want to minimize, as the noise power spectrum is longer a useful concepl.
In some simple cases our formalism requires only minor modifications. for example,
the redefinition of the E[- - - ] average. Further investigations are needed.

As a final comment we stress that our method is independent on the particular
instrument used to monitor density fluctuations. We have used accelerometers. but
there are many alternative possibilities which can be investigated using the same
formalism. A good instrument has a strong overlap N; with the seismic modes which
are maximally coupled to Newtonian noise, and an accurate choice can allow us to
obtain major improvements.
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