Recent developments in the LIGO Input Optics

R. Adhikari¹⁾, J. Camp²⁾, P. Fritschel¹⁾, J. Heefner²⁾, B. Kells²⁾, N. Mavalvala²⁾, G. Mueller³⁾, D. Ouimette²⁾, D. Reitze³⁾, M. Rakhmanov²⁾, H. Rong²⁾, Q. Shu³⁾, D. Sigg⁴⁾, D. Tanner³⁾, S. Yoshida³⁾, M. Zucker¹⁾

1) MIT 2)Caltech

3) University of Florida

4) LIGO Hanford, WA observatory

Outline

- IOO overview
- Mode Cleaner
- Mode Matching measurement
- Faraday Isolator
- Summary

Requirements

	requirement	measurement
polarization	100:1	170:1
power loss by	5%	3%
Faraday isolator*		
RFAM at EOM**	$1 \ge 10^{-3}$	~10 ⁻⁴
(intensity)		

*coupling loss caused by thermal wavefront distortion.

** static RFAM

Mode cleaner

	2 km	4 km
Plane mirror transmittance	0.002	0.002
Curved mirror transmittance	$1 \ge 10^{-5}$	$1 \ge 10^{-5}$
Finess	1550	1550
Free spectral range	9.829 (MHz)	12.246 (MHz)
Cavity full width half max	6.26 (kHz)	7.83 (kHz)
Cavity optical half length	15.240 (m)	12.24 (m)
Curved mirror radius of curvature	21.5 (m)	17.25 (m)
g = 1 - L/R factor	0.291	0.290
Waist size	1.818 (mm)	1.629 (mm)
Beam divergence	186 (µrad)	208 (µrad)

Wrong Beam Size:

 $\hat{U}_{00} = U_{00} + \frac{\delta w}{\hat{w}} U_{10}$

Wrong Waist Position:

$$\hat{U}_{00} = U_{00} + i \frac{\delta z}{2\hat{z}_R} U_{10}$$

compare Y. Hefetz et.al. J. Opt. Soc. Am. B 14, 1597 (1997)

SPATIAL PM-SPECTROSCOPY

 ϕ : Gouy-phase between Cavity and Detector

 $I_{AC}(x,y) = \sin(\Omega t) * \left(\underbrace{\Im\{r_{FP}\} * |U_{00}(x,y)|^2}_{+ \underbrace{\Im\{(1-r_{FP}) * U_{00}(x,y) * U_{10}^*(x,y) * \varepsilon * e^{2i\varphi}\}}_{\text{mode matching}} \right)$

BULLSEYE DETECTOR

Distance of Bullseyes:

Demodulated signals:

$$D_1 \propto \varepsilon' \propto \frac{\delta w}{\hat{w}}$$
$$D_2 \propto \varepsilon'' \propto \frac{\delta z}{2\hat{z}_R}$$

EXPERIMENT

RESULTS

Thermal wavefront distortion in EOM

Thermal lens before and after long exposure

$$\Delta OPL(r) \approx 0.07741 \frac{P_{abs}L}{k_{th}} \left(\frac{dn}{dT} + an \left(\frac{r^2}{w^2} + 0.4\frac{r}{w}\right)^{-1}\right)$$

1) Justin Mansell, private communication (1997)

PSL beam size measurement

Measured and calculated spot size of a cw, Nd:YAG beam transmitted through EOM

RF amplitude modulation (intensity)

Residual intensity modulation caused by angular misalignment.

Measurement

f (MHz)	@ 6 W	note
26.7	5.94 x 10 ⁻⁵	Mode Cleaner align (Γ =0.1)
29.4	9.25 x 10 ⁻⁵	Core optics align (Γ =0.5)
68.8	1.75×10^{-4}	Recycling mirror align (Γ =0.05)
35.5	1.38 x 10 ⁻⁵	PSL pre-MC side band
40	1.55×10^{-4}	PSL AOM

(): required modulation depth. Measurement was made at Γ =0.5 for 29.4 MHz and 68.8 MHz EOM, and at Γ =0.1 for 26.7 MHz EOM.

Faraday isolator

Thermal depolarization (single pass isolation)

Faraday isolator with 1/2 wave plate

Angle dependence

Birefringence in $\frac{1}{2}$ w plate and TGG

Fig.1 zero-order HWP and an analyzer cross-polarized to slightly elliptical output polarization.

Fig.2 Thermally induced birefringence in TGG

Thermal lens in Faraday rotator

Effective focal length

Current status

- UF
- ≻ Bullseye detector tested on tabletop
- LHO 2-km interferometer

≻ All IOO components installed, aligned

≻ Mode Cleaner locked

Visibility (reflection)	97%
Length adjustment	15.2396 (m) (0.4 mm short)

- Faraday Isolator and Mode Matching telescope aligned
- LLO
- ➤ Mechanical installation underway