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Tim van der Hagen
Delft University of Technology

vision from 1939

Sustainable Nuclear Energy
What are the scientific and technological challenges

of safe, clean and abundant nuclear energy?
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# NPPs within 500 km
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• 1932: Discovery of the neutron (Chadwick)

• 1939: Demonstration of nuclear fission
(Meitner, Hahn, Strassman)

• 1942 (Dec. 2): First controlled chain reaction in CP1 (Enrico Fermi)

HistoryHistory

• 1951 (Dec. 20): First ‘nuclear’ electricity, EBR-1, Idaho

• 1955 (Jan. 17): First nuclear submarine at sea, Nautilus

• 1954 (June 26): First NPP, Obninsk, USSR (5 MWe)

• 1956: (Aug. 27): First NPP, Calder Hall, UK (50 MWe)

• 1957 (Dec. 2): First PWR, Shipping Port, USA (60 MWe)
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1954: Launching of Nautilus1954: Launching of Nautilus
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Nautilus passes the poleNautilus passes the pole
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Fissioning of 1 gram uranium yields as much energy as
burning 2500 liters petrol
or 3000 kilograms coal

radioactive

Nuclear fissionNuclear fission

no CO2
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• all electricity in the Netherlands nuclear:
0.4 gram uranium fissioned (=waste)                 
per family per year

• in a human life: a volume of 1 billiard ball

• ‘Borssele’ produces 1.3 m3 highly radioactive 
waste per year, but ‘prevents’ the emission of
2 billion kilograms CO2 per year

• a radioactive material emits radiation 
it clears itself (the more radioactive, the quicker)

Small volumes of material neededSmall volumes of material needed
strategic stock possible
low amounts of waste



7-11-2010

Challenge the future

Delft
University of
Technology

NNV Section Subatomic Physics; November 5, 2010; Lunteren 10

239Pu

neutron energy / eV

#
 n

eu
tr

on
s

chain reaction 
possible

# neutrons released# neutrons released
per absorption of 1 neutronper absorption of 1 neutron

1 neutron
extra!

Neutrons available for
• scientific research (Delft)
• production of medical isotopes (Petten)
• breeding of fuel
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Cross sectionsCross sections
(interaction probability)(interaction probability)

Neutrons have to be slowed down (moderated)
to keep the chain reaction going

235U 238U

fission

capture

total

fission

total

capture

Neutron energy / eV Neutron energy / eV

(moderator: water, graphite)
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• Fissile isotopes (can be fissioned by neutron absorption):
233U, 235U, 239Pu, 241Pu (rare)

• Fissionable isotopes (threshold in neutron energy):
232Th, 233Th, 234U , 236U , 238U , 239U , 240Pu, 242Pu …

• Fertile isotopes (can be turned into a fissile isotope):
232Th, 238U

fissile fissile –– fissionable fissionable –– fertilefertile
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Production of fissile isotopes (conversion)

extra neutron needed

232 233 233 233
90 90 91 9222 3 27

β β
. min dTh Th Pa Un − −

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→+ →

238 239 239 239
92 92 93 9423 5 2 3

β β
. min . dU U Np Pun − −

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→+ →
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If more fissile isotopes are produced 
from fertile isotopes than were 
destroyed in the chain reaction: 

breeding
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Moderator

U-238

U-239

Pu-239

Np-239

U-235

Moderator

U-238 Pu-239

U-235

neutron
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Fuel tabletsFuel tablets

Composition of:

5% 235U

95% 238U
(0.7% 235U in natural ore)
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FuelFuel assemblyassembly of a PWRof a PWR
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Energy balance (Energy balance (Life Cycle AnalysisLife Cycle Analysis))
(1000 MWe PWR, 80% availability, 40 years of operation)

enrichment with centrifuges:
input / output = 1.7 %

energy input (centrifuge)
input / output = 1,7 %
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CoNi

UTh

AuPt
Pb

Sn
Ag

Fe Cu

CSi
O

Element abundance in earth's crustElement abundance in earth's crust
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• The earth’s crust contains 40 x as much uranium as silver;
as much uranium as tin

• Cheap uranium (up to 130$ per kg): 5.5 million tons;
enough for 80 years (0.1 ct/kWh)

• For the double price:
10 times as much; enough for 800 years
using fast reactors: 80,000 years

• Uranium as byproduct from phosphate deposits
(22 Mt recoverable)

• Uranium from seawater (450$ per kg): 4 billion tons;
enough for 6,000,000 years

Uranium resources:Uranium resources:

Source: OECD NEA & IAEA, “Uranium 2007: Resources, Production and Demand“
("Red Book").
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Source: OECD, “Projected Costs of Generating Electricity”, 2010

Costs of electricity productionCosts of electricity production

assumptions:
5% discount rate
CO2 price: 30 USD/tonne (plant level, without transport and storage)
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Breakdown of costs ofBreakdown of costs of
nuclear electricity productionnuclear electricity production

0,1 ct/kWhe

0,1 ct/kWhe



7-11-2010

Challenge the future

Delft
University of
Technology

NNV Section Subatomic Physics; November 5, 2010; Lunteren 25

Netherlands

in total 441 NPPs

375 GWe

Nuclear Power Plants in operation
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NuclearNuclear Power Power PlantsPlants
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Status nuclear power plansStatus nuclear power plans
January 2008January 2008
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Core cooling is always needed, also after shutdown !

Safety issue:Safety issue:
decay heat per MW nominal powerdecay heat per MW nominal power
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Fuel (pellet and cladding)

Primary system (steel)

Containments
(2x concrete + steel)

Safety of nuclear power plantsSafety of nuclear power plants
multiple barriers to keep radioactive nuclides inside 
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spent fuel

95%

4%

1%

uranium

plutonium

fission
products

Spent fuel: only 4% is wasteSpent fuel: only 4% is waste
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FastFast reactors can fission actinides,reactors can fission actinides,
like plutoniumlike plutonium
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Radioactive wasteRadioactive waste

450 
kg

130 
kg

6 kg

uranium
13000 kg

plutonium

fission
products

other 
actinides

numbers: yearly production Borssele

Two routes possible:

1) Without reprocessing:
● ‘lifetime’ rest products 220,000 year

2) With reprocessing + fast reactors:
● ‘lifetime’ waste 500-5,000 years
● volume reduced to 4%
● up to 100x better use of base material
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Early Prototype
Reactors

Generation I

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- LWR-PWR, BWR
- CANDU
- VVER/RBMK

1950 1960 1970 1980 1990 2000 2010 2020 2030

Generation IV

- Highly 
Economical

- Enhanced 
Safety

- Minimal 
Waste

- Proliferation 
Resistant

- ABWR
- System 80+
- AP600
- EPR

Advanced
LWRs

Generation III

Gen I Gen II Gen III Gen IV

Evolutionary 
Designs Offering 
Improved 
Economics

Generations of nuclear reactorsGenerations of nuclear reactors
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Advanced reactors, Generation IIIAdvanced reactors, Generation III

reliable and safe due to:

• redundancy
• separation
• diversification
• less and shorter pipelines
• large water volumes

ABWR (in operation since 1995), EPR, ACR1000,
System-80+, BWR-90+, KNGR, VVER-91, ...
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reacto
r 

vesse
l 

turbine buildingreactor building

4 safety buildings
4 x 100%

European Pressurized Water ReactorEuropean Pressurized Water Reactor
4500 MWth
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– Concrete –
– Steel –

– Concrete –

Resistant against 
the impact of

a large airplane

Double containmentDouble containment
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cooling water

Passively cooled Passively cooled ‘‘Core CatcherCore Catcher’’
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Advanced, evolutionary designs Advanced, evolutionary designs 
(Generation III(Generation III++))

with ‘passive’ components:

• natural circulation core cooling
• convection cooling of the containment
• heat removal by radiation

AP1000, ESBWR, SWR-1000, PBMR, HTRM, GT-MHR,
APWR, EP-1000, AC-600, MS-600, V-407, V-392, JSBWR,
JSPWR, HSBWR, CANDU-6, CANDU-9, AHWR, ...
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AdvancedAdvanced PassivePassive PWRPWR
1117 MWe (Westinghouse – VS)
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Passive emergency coolingPassive emergency cooling
of the containmentof the containment
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Passive safety due to fewer Passive safety due to fewer 
components and less pipingcomponents and less piping
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High Temperature ReactorHigh Temperature Reactor generation IIIgeneration III++

AVR (Germany, 1967-1988) – HTTR (Japan, 1999) – HTR10 (China, 2000) 

gas 
turbine

process heat:
hydrogen production
water desalination ...

helium as 
coolant

inherently safe
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VHTRVHTR: nuclear e: nuclear e-- plus hydrogen productionplus hydrogen production
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Commercial Power
Reactors

Early Prototype
Reactors

Generation I

- Shippingport
- Dresden, Fermi I
- Magnox

Generation II

- LWR-PWR, BWR
- CANDU
- VVER/RBMK

1950 1960 1970 1980 1990 2000 2010 2020 2030

Generation IV

- Highly 
Economical

- Enhanced 
Safety

- Minimal 
Waste

- Proliferation 
Resistant

- ABWR
- System 80+
- AP600
- EPR

Advanced
LWRs

Generation III

Gen I Gen II Gen III Gen IV

Evolutionary 
Designs Offering 
Improved 
Economics

Generations of nuclear reactorsGenerations of nuclear reactors



7-11-2010

Challenge the future

Delft
University of
Technology

NNV Section Subatomic Physics; November 5, 2010; Lunteren 46

Gen-IV Roadmap

(2002, 97 pages)
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Sustainable Nuclear Energy 

Technology Platform

Strategic Research Agenda

(2009, 87 pages)
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The 6 selected reactor concepts

Hydrogen production:

• Very High Temperature Gas Cooled Reactor

Evolution of Light Water Reactors:

• Supercritical Water Cooled Reactor (thermal/fast)

Waste reduction and high efficiency:

• Gas Cooled Fast Reactor

• Sodium Cooled Fast Reactor

• Lead Cooled Fast Reactor

Very innovative:

• Molten Salt Reactor (epithermal)

The The GenerationGeneration--IVIV InitiativeInitiative: sustainable nuclear energy
Argentine, Brazil, Canada, France, Japan, South Africa, South Korea,
Switzerland, United Kingdom, United States and the European Union

closed
fuel cycle
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U.S. DOE initiativesU.S. DOE initiativesU.S. DOE initiatives
Advanced Fuel Cycle Initiative

• Recovery of energy value from SNF
• Reduce the inventory of civilian Pu
• Reduce the toxicity & heat of waste
• More effective use of the repository

Nuclear Hydrogen Initiative

Develop technologies for economic,
commercial-scale generation of 
hydrogen

Nuclear Power 2010

• Explore new sites
• Develop business case
• Develop Generation III+ technologies
• Demonstrate new licensing process

Generation IV 
Better, safer, more economic nuclear
power plants with improvements in
• safety & reliability
• proliferation resistance &

physical protection
• economic competitiveness
• sustainability

Source:  US DOE
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AFCI Approach to Spent Fuel ManagementAFCI Approach to Spent Fuel Management

Once Through
Fuel Cycle

Direct 
Disposal

Spent
Fuel

U and Pu
Actinides
Fission Products

Repository

Conventional
Reprocessing

PUREX

Pu Uranium
MOX

LWRs/ALWRs

Interim Storage

less U and Pu
Actinides

Fission Products

Current
European/Japanese

Fuel Cycle

Advanced  Recycling
Closed Fuel Cycle

+ ADS Transmuter?

Trace U and Pu
Trace Actinides !
less Fission Products

Repository

Gen IV Fast Reactors

Advanced  Recycling
Closed Fuel Cycle

Gen IV Fuel Fabrication

LWR/ALWR/HTGR

Advanced Separations 
Technologies

Source:  US DOE

Spent Fuel From
Commercial Plants
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Research themes GenResearch themes Gen--IVIV

• fuel (fast reactors, transmutation, high burn-up, thorium cycle …)

• materials (corrosion, embrittlement, radiation damage, high temperatures) 

• heat transport

• multiphase flows

• neutron data (cross sections of materials)

• chemical treatment of spent fuel

• core design

• system design (safety, efficiency, flexibility, …)

• safety (decay heat removal)

• coupling nuclear heat – process heat (hydrogen production)

• gas turbines
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• large scale

• no CO2, no air pollution

• security of supply

• economical competitive

Positive Negative

• radioactive waste

• acceptance (safety)

• large investment

• proliferation

ResumResuméé nuclear energynuclear energy

savings, clean fossil and nuclear energy are now necessary 
to give renewables a chance
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