
I. GRAVITATIONAL WAVES FROM BINARY BLACK HOLES

Two black holes (or two neutron stars, or a neutron star and a black hole) with masses
m1 and m2 are in a circular orbit around the common center of mass (CM), with angular
frequency ω. Assume the distance R between the two is large enough that the black holes
can be viewed as point particles and that the effect of orbital energy loss through GW
emission is negligible. With respect to an observer at a distance r, the system is oriented
such at the line of sight makes an angle ι with the normal to the orbital plane.

(1.1) Pick a coordinate system (x, y, z) such that the direction to the observer is along the
z axis, and the CM of the system is at the origin (0, 0, 0). Without loss of generality we
may assume that the orbital plane is oriented in such a way that its intersection with the
(x, y) plane is in the x axis. Write an expression for the positions x1, x2 of the black holes
as a function of time.

Solution. One has

x1(t) =
m2

m1 +m2

R ê(t) =
µ

m1

R ê(t)

x2(t) = − m1

m1 +m2

R ê(t) = − µ

m2

ê(t) (1.1)

where
ê(t) = (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)) (1.2)

and in (1.1) we have introduced the reduced mass µ, given by

µ =
m1m2

m1 +m2

. (1.3)

(1.2) In the TT gauge, a gravitational wave propagating in the z-direction corresponds to a
metric perturbation

hTT
ij =

 h+ h× 0
h× −h+ 0
0 0 0


ij

, (1.4)

and in the quadrupole approximation one has

h+ =
1

r

G

c4
(M̈11 − M̈22),

h× =
2

r

G

c4
M̈12, (1.5)

where in each case the RHS is evaluated at the retarded time t− r/c. Compute the relevant
moments Mij and their double time derivatives M̈ij.

Solution. One has

M ij(t) =
1

c2

∫
d3xT 00(t,x)xixj

=

∫
d3x ρ(t,x)xixj, (1.6)
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where in the last line we approximated T 00/c2 ' ρ, with ρ the density. Since we are
effectively dealing with two point particles, this density is given by

ρ(t,x) = m1δ
3(x− µ

m1

Rê(t)) +m2δ
3(x +

µ

m2

Rê(t)). (1.7)

Substituting this into (1.6) and performing the integral, we get

M ij(t) =

[
m1

µ2

m2
1

R2 +m2
µ2

m2
2

R2

]
êi(t)êj(t)

= µR2êi(t)êj(t). (1.8)

In particular, using (1.2),

M11 = µR2 cos2(ωt),

M22 = µR2 cos2(ι) sin2(ωt),

M12 = µR2 cos(ι) cos(ωt) sin(ωt). (1.9)

The double time derivatives are (using some trigonometric identities):

M̈11 = −2µR2ω2 cos(2ωt),

M̈22 = 2µR2ω2 cos2(ι) cos(2ωt),

M̈12 = −2µR2ω2 cos(ι) sin(2ωt). (1.10)

(1.3) Substitute the results into (1.5) and evaluate at the retarded time tret to find the
gravitational wave polarizations.

Solution. We find

h+ =
4

r

GµR2ω2

c4
1 + cos2(ι)

2
cos(2ωtret + 2φ),

h× =
4

r

GµR2ω2

c4
cos(ι) sin(2ωtret + 2φ). (1.11)

With our choice of time origin, φ = π/2 in order to absorb an overall minus sign, but
infinitely many choices are possible, all leading to different phase offsets φ.

(1.4) Explain why the radiation is at twice the orbital frequency.

Solution. This is because the components of the quadrupole tensor (1.8) return to the
same value after only half a period, as they are invariant under ê → −ê. It is not difficult
to see that this property is generic for rigidly rotating systems, by considering the more
general expression (1.6). For this reason the frequency fgw = 2forb = 2ω/(2π) (where forb

is the orbital frequency) is often called the gravitational wave frequency. The name is apt
if only quadrupole radiation is being studied, but in reality also higher multipole moments
will come into play. These introduce harmonics with frequencies nforb, n = 1, 2, 3, . . .. The
harmonic with n = 2 is only the dominant contribution to the gravitational waveform.
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(1.5) If the black holes are sufficiently far apart, we can use the Newtonian centripetal force
to express the separation R in terms of ω and the component masses m1, m2. Define the
chirp mass

Mc =
(m1m2)

3/5

(m1 +m2)1/5
, (1.12)

and write h+, h× in terms of it.

Solution. Consider, e.g., the particle with mass m1. The centripetal force that keeps it on
its orbit around the CM with radius (µ/m2)R is provided by the gravitational force exerted
by m2 over a distance R, so

m1 ((µ/m1)R)2 ω2

(µ/m1)R
=
Gm1m2

R2
. (1.13)

Solving for R, we find
R = (GM)1/3ω−2/3, (1.14)

where M = m1+m2 is the total mass of the binary system. Substituting the above expression
into (1.11), we find

h+ =
4

r

GM5/3
c ω2/3

c4
1 + cos2(ι)

2
cos(2ωtret + 2φ),

h× =
4

r

GM5/3
c ω2/3

c4
cos(ι) sin(2ωtret + 2φ). (1.15)

In reality, binary black holes won’t just keep moving on a circle; gravitational waves
carry away orbital energy, causing the orbits to shrink. From Eq. (1.14), this implies an
increase in angular frequency ω. A positive power of ω appears in the amplitudes, which
will also increase monotonically. Hence both the signal amplitude and frequency increase
in a steady “chirp”. To leading order, the way the component masses m1, m2 affect the
chirping is through the chirp mass, Mc.

(1.6) What do the polarizations look like when ι = 0 (i.e., the system is seen face-on) and
when ι = π/2 (edge-on)?

Solution.

• Edge-on. If ι = π/2 so that cos(ι) = 0 then h× is identically zero, and we only have the
“plus” polarization. If only one of the two polarizations are present then the radiation
is said to be linearly polarized. In retrospect one could have expected this to be the
case here, because the observer only sees the component masses move on straight line
segments.

• Face-on. If ι = 0 to that cos(ι) = 1 then the “plus” and “cross” polarizations have
equal amplitudes but are out of phase by π/2:

h+ = A(ω, r,Mc) cos(2ωtret + 2φ),

h× = A(ω, r,Mc) sin(2ωtret + 2φ). (1.16)

This is referred to as circular polarization.
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(1.7) What is the total power emitted in gravitational waves for the Earth-Sun system?
What is the total power emitted by a system consisting of two black holes with masses
m1 = m2 = 10M� at radii of 20G(m1 +m2)/c

2 (i.e., quite close but still comforably far from
the last stable orbit)? (The mass of the Sun is 2×1030 kg and that of the Earth, 6×1024 kg.)

Solution. In terms of the gravitational wave frequency fgw, the power is

Pgw =
32

5

c5

G

(
GMcπfgw

c3

)10/3

. (1.17)

For the Earth-Sun system, fgw = 2 × 1/(365 × 24 × 3600 s) while the chirp mass is
Mc ' 9.7 × 1026 kg. Substituting into (1.17), we find P ' 8 Watts, not even enough to
power a light bulb.

For the two black holes, the specified orbital radius leads to a gravitational wave frequency
of

fgw =
1

π

(
GM

R3

)1/2

' 144 Hz, (1.18)

and the chirp mass is Mc ' 4.9× 1030. This leads to a power of Pgw ' 2.7× 1044 W.
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