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Einstein gravity :

Gravity as a geometry

Space and time are physical objects

Most beautiful physical theory

8G T 

 Gravitation

– Least understood interaction

– Large world-wide intellectual activity 

– Theoretical: ART + QM, black holes, cosmology

– Experimental: Interferometers on Earth and in space, gravimagnetism (Gravity Probe B)

 Gravitational waves

– Dynamical part of gravitation, all space is filled with GW

– Ideal information carrier, almost no scattering or attenuation

– The entire universe has been transparent for GWs, all the way back 
to the Big Bang

Motivation
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Newton’s Law:

m

Newtonian gravity
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Flux Fg through surface of sphere:

In essense: 

- g  1/r2

- surface area  r2

Fg =-4GM holds for every closed surface; not 
only for that of a sphere with M at center!

M

dog
 Mass M in center of sphere

R

Gravitational flux
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Mass M enclosed by arbitrary surface

mMass m outside arbitrary surface

Gauss law
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Sphere

Volume sphere:

– Mass distribution:  kg/m3

R

– “Gauss box”: small sphere
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– symmetry: g  sphere, g(r)

g

Gauss law – example 
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Compact notation: use 
“divergence”:
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Consider locally (Gauss):

Gauss law – mathematics 
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Gravitational potential – Poisson equation
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 Einstein’s gravitation

– Spacetime is a curved pseudo-Riemannian manifold with a 

metric of signature (-,+,+,+)

– The relationship between matter and the curvature of spacetime

is given by the Einstein equations

General relativity

)(4)(2 rGr
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Units: c = 1 and often G = 1



 Consider speed of light as invariant in all reference frames

Special relativity

Coordinates of spacetime

Cartesian coordinates

denote as

superscripts

spacetime indices: greek

space indices: latin

 SR lives in special four dimensional manifold: Minkowski

spacetime (Minkowski space)

Coordinates are
Elements are events

Vectors are always fixed at an event; four vectors Abstractly

 Metric on Minkowski space as matrix

Inner product of two vectors (summation convention)

Spacetime interval Often called `the metric’

Signature: +2

Proper time Measured on travelling clock



 Spacetime diagram

Special relativity

Points are spacelike, timelike or nulllike

separated from the origin

Four-velocity

Vector        with negative norm                  is timelike

 Path through spacetime
Path is parameterized 

Path is characterized by its tangent vector            

as spacelike, timelike or null

For timelike paths: use proper time    as parameter

Calculate as

Tangent vector

Normalized

Momentum four-vector Mass

Energy is time-component

Particle rest frame
Moving frame for particle with three-velocity                      along x-axis

Small v



• SRT: when pressure of a gas increases, it is more difficult to 

accelerate the gas (inertia increases)

Volume V
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• Energy needed to accelerate gas
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additional inertia of gas pressure

Inertia of pressure

• Exert force F, accelerate to velocity v << c



• Energy needed to accelerate gas

Dependent on reference system

0 – component of four-momentum 
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• Consider `dust’

Collection of particles that are at rest wrt each other

Constant four-velocity field
)(xU 

Flux four-vector                   
 nUN 

Particle density in rest system

• Moving system

– N0 is particle density

– Ni particle flux in xi – direction

Mass density in rest system nm

Energy density in rest system
2c

• Rest system

– n and m are 0-components of four-

vectors
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  UUUmnUNpT stof The gas is pressureless!

Energy – momentum tensor: `dust’



• Perfect fluid (in rest system)

– Energy density

– Isotropic pressure P


diagonal, with

 T
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• Tensor expression (valid in all systems)

We had
  UUT stof
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2fluid
In addition

Energy – momentum: perfect fluid

• In rest system

Components of        are the flux of the       momentum component in the       direction

In GR there is no global notion of energy conservation

Einstein’s equations extent Newtonian gravity:



• Linear space – a set L is called a linear space when

– Addition of elements is defined               is element of L

– Multiplication of elements with a real number is defined

– L contains 0

– General rules from algebra are valid

Tensors – coordinate invariant description of GR

• Linear space L is n-dimensional when

– Define vector basis                   Notation:

– Each element (vector) of L can be expressed as                           or

– Components are the real numbers 

– Linear independent: none of the        can be expressed this way

– Notation: vector component: upper index; basis vectors lower index

• Change of basis

– L has infinitely many bases

– If      is basis in L, then       is also a basis in L. One has                    and

– Matrix  G  is inverse of

– In other basis, components of vector change to

– Vector   is geometric object and does not change!

i

contravariant

covariant



• 1-form

– GR works with geometric (basis-independent) objects

– Vector is an example

– Other example: real-valued function of vectors

– Imagine this as a machine with a single slot to insert vectors: real numbers result

1-forms and dual spaces

• Dual space

– Imagine set of all 1-form in L

– This set also obeys all rules for a linear space, dual space. Denote as L*

– When L is n-dimensional, also L* is n-dimensional

– For 1-form and vector      we have

– Numbers             are components of 1-form

• Basis in dual space

– Given basis       in L, define 1-form basis         in L* (called dual basis) by 

– Can write 1-form as                 , with      real numbers

– We now have

– Mathematically, looks like inner product of two vectors. However, in different spaces

– Change of basis yields                          and                       (change covariant!)

– Index notation by Schouten

– Dual of dual space: L** = L



Tensors

• Tensors

– So far, two geometric objects: vectors and 1-forms

– Tensor: linear function of n vectors and m 1-forms (picture machine again)

– Imagine (n,m) tensor T

– Where      live in L and       in L*

– Expand objects in corresponding spaces:                     and

– Insert into T yields

– with tensor components

– In a new basis

– Mathematics to construct tensors from tensors: tensor product, contraction. This will 

be discussed when needed



Derivate of scalar field

tangent vector
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Magnitude of derivative of f in direction of

Derivative of scalar field      along tangent vector

Curvilinear coordinates



Position vector

Natural basis

Non orthonormal

Base vectors

Metric is known

Inverse transformation

Dual basis

Transformation

Example



Derivative of a vector  is 0 - 3

Set  to 0

Notation

Covariant derivative

with components

Tensor calculus



Calculate

Calculate Christoffel symbols Divergence and Laplace operators

Polar coordinates



In cartesian coordinates and Euclidian space

This  tensor equation is valid for all coordinates

Covariant derivatives

Take covariant derivative of 

Directly follows from                     in cartesian coordinates!

The components of the same tensor          for arbitrary coordinates are

Exercise: proof the following

Connection coefficients contain 

derivatives of the metric

Christoffel symbols and metric



Next,we discuss curved spacetime

At each event P in spacetime we can choose a LLF:
- we are free-falling (no gravity effects according to  equivalence principle (EP))

- in LLF one has Minkowski metric

LLF in curved spacetime

At each point        tangent space is flat

Locally Euclidian

Local Lorentz frame – LLF



Parallel lines can intersect in a curved space 

(Euclidian fifth postulate is invalid)

Parallel transport of a vector
- project vector after each step to local tangent plane

- rotation depends on curve and size of loop

Mathematical description
- interval PQ is curve with parameter

- vector field        exists on this curve

- vector tangent to the curve is

- we demand that in a LLF its components  

must be constant

Parallel transport

Curvature and parallel transport



Spacetime determines 

the motion of matter

Parallel transport

Geodesic: line, as straight as possible

Components of four-velocity

Geodesic equation

Four ordinary second-order differential equations for the  

coordinates                                  and

Coupled through the connection coefficients

Two boundary conditions

Geodesics



Commutator is a measure for non-closure

Consider vector fields       and

Transport      along

Vector      changes by

Transport       along

Components of the commutator

Curvature tensor of Riemann measures the non-closure of double gradients

Consider vector field

Riemann tensor



Metric tensor contains all information about intrinsic curvature

Properties Riemann tensor

Antisymmetry

Symmetry

Bianchi identities

Independent components: 20

Curvature tensor of Ricci

Ricci curvature (scalar)

Exercise: demonstrate all this for the 

description of the surface of a sphere

Riemann tensor – properties 



Drop a test particle. Observer in LLF: no 

sign of gravity

Gravitational tidal tensor

Drop two test particles. Observer in LLF: differential

gravitational acceleration: tidal force

According to Newton

Define

Tidal forces



Two test particles move initially parallel

U

t

P

x

0t
Q

1t
Spacetime curvature causes them to 

move towards each other

At             one has
Initially at rest

Second-order derivative                      

does not vanish because of curvature

One has Follows from

Describes relative acceleration

Newton

Einstein equations



Perhaps we expect

However, not a tensor equation (valid in LLF)

tensor scalar

Perhaps one has

Einstein 1912 – wrong

Set of 10 p.d.e. for 10 components of

Problem:

Free choice:

Einstein tensor Bianchi identities

Energy – momentum tensor Einstein equations

Matter tells spacetime

how to curve

Einstein equations



GR becomes SRT in a LLF

Without gravitation one has Minkowski metric

For weak gravitational fields one has

Assume a stationary metric

Assume a slow moving particle

Worldline of free-falling particle

Christoffel symbol

Stationary metric

Newton
Newtonian limit of GR

Earth

Sun

White dwarf

Weak gravitational fields



Spacetime curvature involves curvature of time

Clock at rest

Time interval between two ticks

Spacetime interval
Describes trajectories of 

particles in spacetime

Trajectories of ball and bullet

Spatial curvature is very 

different

Curvature of time



h

l
R

8

2



h

l

In reality, the trajectories 

(geodesics) are completely 

straight, but spacetime is curved

Curvature in spacetime


