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Event GW150914

Chirp-signal from gravitational waves from two coalescing black holes were observed with the LIGO
detectors by the LIGO-Virgo Consortium on September 14, 2015
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The basic physics of binary black hole merger GW150914

https://arxiv.org/abs/1608.01940
The system will lose energy due to emission of gravitational waves. The black holes get closer and
their velocity speeds up. Masses and spins can be determined from this inspiral phase
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Source parameters for GW150914

Estimated masses (90% probability intervals) for the two black holes in the binary (m3°"" ¢ is the
mass of the heavier black hole). Different curves show different models. Mass and spin of the final
black hole
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Energy radiated: 3.0 + 0.5 solar masses. Peak power at merger: 200 solar masses per second

See “Properties of the Binary Black Hole Merger GW150914” http://arxiv.org/abs/1602.03840
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Combinations of component spins for GW150914

GW150914 suggests that the individual spins were either small, or they were pointed opposite from
one another, cancelling each other's effect
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See “Properties of the Binary Black Hole Merger GW150914” http://arxiv.org/abs/1602.03840
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Luminosity distance to the source

Estimated luminosity distance and binary inclination angle. An inclination of 8,y = 90° means we are
looking at the binary (approximately) edge-on. Again 90% credible level contours
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Polarization can be used to break the
degeneracy between distance and
inclination
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For this we also need Virgo



Sky localization probability maps

Sky at the time of the event, with 90% credible level contours. View is from the South Atlantic Ocean,
North at the top, with the Sun rising and the Milky Way diagonally from NW to SE
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Towards multi-messenger astronomy

Sky map for GW150914 was sent to astronomers (agreements with 74 groups), and they looked.
However, we do not expect any EM emission from binary black holes

High-energy Neutrino follow-up search of Gravitational Wave Event

GW150014 with ANTARES and IceCube
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What's next?



LVC's first observing run

Two confirmed gravitational-wave detections, and one candidate detection. All three events occurred
during the first four-month run of Advanced LIGO
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Discovery of gravitational waves
https://dcc.ligo.org/public/0124/P1600088/017/bbh-ol.pdf

Binary Black Hole Mergers in the first Advanced LIGO Observing Run
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https://dcc.ligo.org/public/0124/P1600088/017/bbh-o1.pdf
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Source properties
https://dcc.ligo.org/public/0124/P1600088/017/bbh-01.pdf

Binary Black Hole Mergers in the first Advanced LIGO Observing Run
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General Relativity passes first precision tests

Our Bayesian analysis allows combination of different events in order to improve hypothesis testing
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Limit on the mass of the graviton

Bounds on the Compton wavelength 4, = h/mgc of the graviton compared to Solar System or double
pulsar tests. Some cosmological tests are stronger (but make assumptions about dark matter)

' /——— ' The mass of the graviton is less

than 1.2 x 10722eV ¢ =2

1.0

wDc i
B =i
08F = £ ' A2(1+2) - . o theory disoersi
2 7 B, Phys Rev. D 57, 2061 (1998) Mass.lve-ggawtog t2 eory2 |iper5|on
o 2 o relation E< = p“c” + mg¢
o~ = kS
>06F 3 2
= - S We have A, = h/(myc)
:5 ()
: s
—8 X Thus frequency dependent speed
a04 X v_gzi_ﬁ,\,l h2c2/(A2E?
§ 2 gz — L+ ¢ /( g )
02 % Ag > 1013km | Yukawa-type potential
' < 10-22 2 GM
mg < 10777eV/c o) = Co)1 - exp(-1/4)

Michalis Agathos used for static Solar System bounds

0.0 ' ' '
10° 101 10 102 108 10 10 10! 10V
/lg (km)

See “Tests of general relativity with GW150914” http://arxiv.org/abs/1602.03841
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Did we observe black holes?

Our theories “predict” the existence of other objects, such as worm holes, boson stars, quark stars,
gravastars, firewalls, etc. Why do we believe we have seen black holes?

Radiated particles break
their correlations with
their infalling partners.

The energy that is
released creates a
firewall around the
black hole.
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Is a black hole created in the final state?

From the inspiral we can predict that the ringdown frequency should be about 250 Hz.
This is what we measure! (http://arxiv.org/abs/1602.03841)
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http://arxiv.org/abs/1602.03841

GW150914 theoretical physics implications

Curvature-radiation reaction time-scale phase space sampled by relevant experiments. E}, is the
characteristic gravitational binding energy and E, is the rate of change of this energy

SeaI’Ch fOI’ addltlonal rlngdown mOdeS Theoretical Physics Implications of the Binary Black-Hole Merger GW150914
(nlce tO have SNR > 100) Nicolds Yunes,! Kent Yagi,? and Frans Pretorius®
YeXtreme Gravity Institute, Department of Physics,

Montana State University, Beozeman, MT 59717, USA.
2 Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.

Address topics as (Dated: March i1, 2016)
* Is a horizon formed? ArXiv 1603.08955v1

« BBH or gravastars, wormholes, firewalls

* Test no-hair theorem

« Cosmic censorship hypotheses R P Bt B B B B B B
* Naked singularities N\ 7
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Spacetime volume probed by LVC

Plausible time-line for how LIGO and Virgo detectors will operate over the coming decade. The
colored bars correspond to observing runs, with the colors matching those in the sensitivity plots
above. Between observing runs, we work on tuning our detectors to improve their sensitivity, and
have engineering runs where we test the instruments Advanced LIGO
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Spacetime volume probed by LVC

The percentage chance of making 0, 10, 35 and 70 more detections of binary black holes as time
goes on and detector sensitivity improves (based upon our data so far)

ﬂ 100% = 1000 - ] | L Ll | Ll | 1 ] I T | s
o D 3 I -
> 3] ] I -
(] o) | B
1 [ i

= 80% 2
s £ 100 1 =
= (D] 3 —
= o . I =
g o i ] i
©  60% 0
£ 2 I 1 -
= 810 - _
> 3 : :
0 40% > ] N
Q - I
(@] =3 T B
Y o I
° — I 4 =5 = o =
b 20% o] ] - I : -
= = ] | C
E I !
e £ I 01 02 03 T
Ot 0% Z 0‘1 1 ! I I LI I T 1 T L |

1 10 100 1 10 100

Increase in spacetime volume Increase in spacetime volume

relative to the first 16 days of O1 relative to the first 16 days of O1



Binary Neutron Stars (BNS)

We have observed about 1600 pulsars (NS) in our Milky Way. Thus NS exist and there are probably
billions of NS per galaxy

We also discovered 9 binary neutron stars (BNS), e.g. Hulse Taylor BNS
These systems undergo strong quadrupole-type acceleration
After a certain time, both NS will collide

In the process a black hole may be created
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Astrophysics: probing the interior structure of neutron stars

Data on BNS mergers can be used to probe the neutron star equation of state. The EOS of neutron
stars is currently unknown: theoretical prediction of P(p) differ by an order of magnitude

Neutron star represents a rich system

Demonstrating the feasibility of probing the neutron star equation of state with
second-generation gravitational wave detectors

Walter Del Pozzo,* Tjonnie G.F. Li,} Michalis Agathos? Chris Van Den Broeck?
Nikhef - National Institute for Subatomic Physics,
Seience Park 105, 1098 XG Amsterdam, The Netherlands

Salvatore Vitale¥
Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 USA
Nikhef - National Institute for Subatomic Physics,
Seience Park 105, 1098 XG Amsterdam, The Netherlands
(Dated: today)

Fisher matrix and related studies have suggested that with second-generation gravitational wave
detectors, it may be possible to infer the equation of state of neutron stars using tidal effects in binary
inspiral. Here we present the first fully Bayesian investigation of this problem. We simulate a realistic
data analysis setting by performing a series of numerical experiments of binary neutron star signals
hidden in detector noise, assuming the projected final design sensitivity of the Advanced LIGO-
Virgo network. With an astrophysical distribution of events (in particular, uniform in co-moving
volume), we find that only a few tens of detections will be required to arrive at strong constraints,
even for some of the softest equations of state in the literature. Thus, direct gravitational wave
detection will provide a unique probe of nentron star strueture.

PACS numbers: 26.60.Kp,95.85.5z
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Sebastiano Bernuzzi
Nikhef will start an activity on numerical relativity (Vidi, ERC-STG, postdoc and PhD)

Full Einstein equations + hydrodynamics
No symmetries

Multi-scales

Spin and tidal interactions

High-performance computing

First numerical relativity group in the Netherlands




Cosmology with BNS

Employ BNS as self-calibrating “standard sirens”: no need for a cosmic distance ladder. Bayesian

analysis allows combining events to increase accuracy
Topics
* Hubble parameter with Advanced LIGO and Virgo

« Cosmological parameters with Einstein Telescope:
e.g. time evolution of EOS parameter for dark energy
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Meaus
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Inference of the cosmological parameters from gravitational waves: application to
rcond generation interferometers

Walter Del Pozzo!?
L Nikhef, National Institute for Subatomic Physics,
Science Park 105, 1098 XG Amsterdam, The Netherlands® and
28chool of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
(Dated: today)
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Determination of Dark Energy by the Einstein Telescope: Comparing with

CMB, BAO and SNIa Observations

W. Zhao,'! C. Van Den Broeck,? D. Baskaran,! and T.G.F. Li®

1School of Physics and Astrenomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom

2 Nikhef — Nat: [ Institute for Sub Physies,

Seience Park 105, 1098 XG Amsterdam, The Netherlands
(Dated: October 28, 2013)

Abstract

A design study is currently in progress for a third-generation gravitational-wave (GW) detector called

Eins

in Telescope (ET). An important kind of source for ET will be the inspiral and merger of hinary

neutron stars (BNS) np to = ~ 2. If BNS mergers are the progenitors of short-hard ~-ray bursts, then some

fraction of them will be scen both electromagnetically and through GW, so that the luminosity distance and

the redshift of the source can he determined separately. An important property of these ‘standard sirens’ is

that they are self-calibrating: the luminesity distance can be inferred directly from the GW signal, with no

need for a cosmic distance ladder. Thus, standard sirens will provide a powerful independent check of the

ACDM model. In previous work, estimates were made of how well ET would be able to measure a subset of

the cosmological parameters (such as the dark energy parameter wp) it will have access to, assuming that

the others had heen determined to great aceuracy by alternative means. Here we perform a more careful

analysis by explicitly using the potential Planck cosmic microwave background data as prior information for

these other parameters. We find t]

at ET will be able to constrain wg and w, with accuracies Auwg = 0.099

and Aw, = 0.302, respectively. These results are compared with projected accuracies for the JOEM Baryon

Acoustic Oscillations project and the SNAP Type T supernovae observations.




Rich physics

Many more questions can be addressed

Topics

« Astrophysics, astronomy

« Dark matter, dark energy, Hubble constant

« Scalar-Tensor-Vector Gravity (MOG)
- Alternative theory without DM

* Mass of the graviton

Gravitational wave source counts at high redshift and in models with extra dimensions

Juan Carcia-Bellido,* Savvas Neaseris,! and Manuel Trashorrast
Institute de Fisica Tedrica UAM-CSIC, Universidad Awtondrma de Madrid, Cantoblance, 88049 Madrid, Spain

Cravitational wave (GW) source counts have been recently shown to be able to test how graw-
itational radiation propagates with the distance from the source. Here, we extend this formalism
to cosmological seales, ie. the high redshift regime, and we alzo allow for models with large or
compactified extra dimensions like in the Kaluza-Klein (KK) model. We found that in the high
redshift regime one would potentially expect two windows where cbhearvations above the minimum
signal-to-noize thrashold can be made, assuming there are no higher order corrections in the red-
shift dependence of the signal-to-noise 5/N(z) for the expected prediction. Furthermore, we also
considered the case of intermediate redshifts, i.e. 0 < 2z £ 1, where we show it i possible to find an
analytical approximation for the mource counts %Nﬁ in terms of the cosmological parameters, like
the matter density (. o in the coemological constant model and also the ceemopraphic paramesters
(g0, 40, 20) for = general dark energy mode. We then forecast the sensitivity of future observations
in constraining GW physics but alzo the underlying coemology by simulating sources distributed
over & finite range of signal-to-necize with = number of zources ranging from 10 to =2 many ==z 500
sources =z axpacted from future detectors. We find that with 800 events it will be possible to pro-
vide constrainte on {ln o on the order of a few percent and with the precision growing fast with the
number of events. In the case of extra dimensions we find that depending on the degeneracies of the
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Abstract

The nature of gravitational waves in a generalized gravitation theory is investigated. T
field equations and the metric tensor quadrupole moment power and the decreasze in radi
spiralling binary system of two compact objects are derived. The generalized Kerr metric
spinning black hole is determined by ite mass M and the spin parameter o = oS/Gw M2, Us
alizad gravitational theory (MOG), the gravitational wave source GW 150014 data iz fithed
black hele system with the masses wy ~ 10Mg and mp ~ BMy,, compared with the masses o
the LIGO-Virgo collaberation using general relativity, mey ~ 36Mg and mg ~ 20M;. Itis
the smaller binary black hole masses accommodated by the generslized theory are in agreem
current electromagnetic, observed X-ray binary upper bound for a black hole mass, M ~ 1
final quisscent black hole mass after the ringdown phase will be M ~ 17My, compared with
relativity prediction M ~ 82Mg, after energy loss from gravitational radiation. The final &
ters for the binary components are expected to be & 5 0.7, The reduced masses of the inspi
holes are conziztent with the obzarved black hole masses identified through electromagnatic o

model, with B00 events it maybe possible to provide stringent limits on the existence of the extra
dimensions if the aforementioned degeneracies can be EroEen.
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The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a
binary black hole system sets new limits on the merging rates of massive primordial black holes
(PBH) that could be a significant fraction or even the totality of the dark matter i the Universe.
alLIGO opens the way to the determination of the distribution and clustering of such massive PBH.
If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find
merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence
of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto

PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems.
Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance
and mass distribution of PBH in the range [5 - 200] Mg to 10% accuracy.
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