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1 INTRODUCTION

Symmetries and conservation laws play a fundamental role in physics. The invariance
of a system under a continuous symmetry transformation leads to a conservation law
by Noethers’ theorem. For example, the invariance under space and time translations
results in momentum and energy conservation. Besides these continuous symmetries one
has discrete symmetries that play an important role. Particularly, three such discrete
symmetries are a topic of interest in modern particle physics. The parity transformation
P performs a reflection of the space coordinates at the origin (~r → −~r). Position and
momentum change sign, while spin is unaffected. The charge conjugation operator C
transforms a particle into its antiparticle and vice versa. All intrinsic ‘charges’ change sign,
but motion and spin are left unchanged. Time reversal T operates on the time coordinate.
Now also spin changes sign, like momentum and velocity. Composed symmetries, such as
CP and CPT , can also be considered. It was long thought that CP was an exact symmetry
in nature. In 1964 CP-violation was discovered in the neutral kaon system by Christensen,
Cronin, Fitch and Turlay. A few years later Kobayashi and Maskawa demonstrated that
a third quark generation could accommodate CP violation in the Standard Model by a
complex phase in the CKM matrix. Since then, however, CP (or T ) violation has not
been observed in any other system and we do not understand its mechanisms and rare
processes. The discovery of the b-quark in 1977 opened a new possibility to test the
Standard Model in B-mesons studies. This might answer unresolved questions in the
Standard Model or lead to new physics. With experiments that study B-meson decay one
mainly addresses the following questions:

• Is the phase of the CKM-matrix the only source of CP-violation?

• What are the exact values of the components of the CKM-matrix?

• Is there new physics in the quark region?

This introductory course is structured as follows. In chapter 2, an introduction to
quark mixing is given. In our discussions we will follow a historic route. The present
status of CP violation in the kaon system is discussed in chapter 3. Chapter 4 gives
a brief overview of CP violation in the neutral B-meson system. The merit of various
experiments for the study of CP violation in the B sector is discussed in chapter 5. The
LHCb experiment is described in somewhat more detail. Appendix A provides a set of
exercises. Solutions are presented in appendix B.
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2 Symmetries

2.1 Symmetries in Quantum Mechanics

The concept of symmetries and their associated conservation laws has proven extraordi-
nary useful in particle physics. From classical physics we know, for example, that the
demand that laws need to be invariant under translation in time, leads to conservation
of energy. In addition, one has that invariance with respect to spatial rotations leads to
conservation of angular momentum. While the conservation laws for energy, momentum
and angular momenta are always strictly valid, we know that other symmetries are bro-
ken in certain interactions. It was for example quite a surprise for physicists when it was
demonstrated that mirror symmetry is violated in the weak interaction (and only in this
interaction!); even maximally violated. Furthermore, we presently do not understand why
this is the case, or why certain other symmetries (CP, T ) are only ‘slightly violated’.

Here, we first want to summarize the quantum mechanical basis, which we will need
for our discussion of the various phenomena. A system is described by a wave function,
ψ. A physical observable is represented by a quantum mechanical operator, O, whose
expectation values are given by the eigenvalues of this operator. The eigenvalues corre-
spond to the results of measurements, and the expectation value of O in the state ψa is
defined as1

< O >=
∫
ψ∗aOψadV. (3)

Since the expectation values can be determined experimentally, they need to be real
quantities, and consequently O needs to be hermitian. When O is an operator, then its
hermitian conjugate operator O† is defined as∫

(Oψ)∗φdV =
∫
ψ∗O†φdV, (4)

and the operator O is called hermitian when one has O† = O.

The time dependence of the wave function, ψ, is given by the Schrödinger equation,

ih̄
∂ψ

∂t
= Hψ. (5)

In case the hamiltonian H is real, one also has

−ih̄∂ψ
∗

∂t
= (Hψ)∗ = ψ∗H. (6)

1When we consider two states, one can write in analog fashion

Oba =
∫
ψ∗bOψadV, (1)

and Oba is called the transition matrix element between the states a en b. The expectation value of O in
state a is the diagonal element of Oba for b = a,

< O >= Oaa. (2)

The non-diagonal elements do not directly correspond to classical observables. However, the transitions
between states a and b are related to Oba.
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For the time dependence of an observable, O, we then find

∂
∂t
< O > = ∂

∂t

∫
ψ∗OψdV

=
∫ (∂ψ∗

∂t
Oψ + ψ∗O∂ψ

∂t

)
dV

= i
h̄

∫
ψ∗(HO−OH)ψdV.

(7)

Thus, we conclude that < O > does not chance, and corresponds to a constant of motion,
in case the commutator [H, O] vanishes,

[H,O] ≡ HO−OH = 0. (8)

Consequently, a wave function can be found, that is simultaenously an eigenfunction of
O and of H,

Hψ = Eψ and Oψ = oψ, (9)

where o is eigenvalue of O in state ψ.

To illustrate the way in which conservation laws can be found, we carry out a unitary2,
time independent symmetry transformation U,

ψ′(~r, t) = Uψ(~r, t). (10)

Since ψ′ needs to obey an identical Schrödinger equation, we obtain

H = U−1HU = U†HU, (11)

and thus
[H, U] = 0. (12)

One observes that the operator for the symmetry transformation also commutes with the
hamiltonian.

In case U is also hermitian, U† = U, then an observabel is associated with U. When
this is not the case, then it is possible, as we will demonstrate in the following examples,
to define a variable associated with U. We need to distinguish between the case that U
represents a continuous or a discrete symmetry transformation. In the first case we gen-
erally will find an additive conserved quantity (such as momentum, angular momentum,
energy), while in the second case a multiplicative quantum number (for example parity)
will be found.

2A unitary transformation leads to a conserved normalization of the wave function; this means that∫
ψ∗ψdV =

∫
(Uψ)∗UψdV =

∫
ψ∗U†UψdV , and consequently U†U = 1. For a unitary operator one

thus has that U† = U−1. Unitary operators are generalisations of eiα, the complex numbers with absolute
value 1. When the operator M is represented by a matrix with elements Mik, then M∗ is the complex
conjugated matrix with elements M∗

ik, M̃ with elements Mki is the transposed matrix, and M† with
elements M∗

ki is the hermitian conjugated matrix. Furthermore, one has that (AB)† = B†A†. E = I = 1
is the unit matrix with elements Eik = δik. The matrix H is called hermitian when H∗

ki = Hik. The
matrix U is unitary when U∗

kiUik = UikU
∗
ki = δik.
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2.2 Continuous Symmetry Transformations

For an continuous transformation it is efficient to introduce an additional operator (a
so-called generator) G,

U = eiεG = 1 + iεG +
1

2!
(iεG)2 + .., (13)

where ε represents a real quantity. From unitarity of U it follows that

U†U = e−iεG
†
eiεG = 1 → G† = G, (14)

and we find that the hermitian operator G represents the conserved quantity discussed
in section 2.1.

In case U corresponds to a symmetry transformation, [H, U] = 0, we find in the limit
of an infinitesimal transformation, U = 1 + iεG, immediately the relation

H(1 + iεG)− (1 + iεG)H = 0, (15)

and thus
[H, G] = 0. (16)

Figure 1: Illustration of a continuous symmetry transformation through the translation
of the wave function of a particle.

2.2.1 Conservation of Momentum

We will elucidate the procedure with the help of a simple example. We consider in figure 1
the translation of the wave function of a particle in one dimension. We demand that for

9



an observer in the translated reference system identical physical laws need to hold3, and
thus

ψ′(x′) = ψ(x− ε) = ψ(x)− εdψ(x)
dx

+ ..

= (1 + iεG + ..)ψ(x).

(17)

With this we find

G = i
d

dx
= −1

h̄
px. (18)

The operator U commutes with the hamiltonian H, and consequently also with G. The
latter operator is proportional to the momentum operator px. The corresponding observ-
abele px is then the accompagning conserved quantity.

The translation operator

U(~a) = exp(− i

h̄
~a · ~P) (19)

generally corresponds to the following transformations (~P is the total momentum of the
system),

~r′ = U ~r U−1 = ~r − ~a : spatial coordinates

~p′ = U ~p U−1 = ~p : momenta

~s′ = U ~s U−1 = ~s : spins.

(20)

2.2.2 Charge Conservation

When electrical charge would not be conserved, then the electron could decay, for example
into a photon an an (electron) neutrino4

e→ γ + νe. (21)

Up to now this process has not been observed. The disappearance of a bound electron
would, when the hole created in this manner is filled again by a neighboring electron,
result in the emission of characteristic X rays. The relation between charge conservation
and the Pauli principle is discussed for example by L.B. Okun[9]. Experiments show
that the life time of the electron is larger than 4.3 × 1023 year. Moreover, there are
many indications that charges are integer multiples of the elementary charge (for example
Millekan’s experiment, the neutrality of atoms)

q = Qe. (22)

Therefore, we assume that the charge number is an additive conserved, discrete, quantity.
In each reaction

a+ b+ ..+ i→ c+ d+ ..+ f (23)

the sum of the corresponding charge numbers will be constant.∑
Qi =

∑
Qf . (24)

3We could, of course, just as well assume that the system was translated over the same distance in
the opposite direction.

4When we reverse the argument, then conservation of electrical charge guarantees the stability of the
lightest charged particles.
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However, what is the corresponding symmetry principle?

Assume that ψq represents the wave function of an object with charge q,

ih̄
∂ψq
∂t

= Hψq, (25)

and Q is the charge operator. When < Q > is conserved, one has

[H, Q] = 0, (26)

and ψq is simultaneously an eigenfunction of Q with eigenvalue q,

Qψ = qψ. (27)

The corresponding symmetry was discovered by Hermann Weyl[7]

ψ′q = eiεQψq. (28)

Such symmetry transformations are called gauge transformations and play an important
role in particle physics. Gauge invariance again means that the transformed wave func-
tions need to obey the same Schrödinger equation,

ih̄
∂ψ′q
∂t

= Hψ′q. (29)

In the remainder of this section we will find several other conserved quantities (baryon
number B, lepton numbers Le, Lµ en Lτ , etc.).

2.2.3 Local Gauge Symmetries

We have seen that a global gauge transformation, ε = constant 6= ε(~r, t), leads to conser-
vation of charge. However, note that we did not yet identify this charge as the electrical
charge. Electrical charge is conserved at each space-time point. Thus we are dealing with
a local conservation law. It is therefore necessary, but also esthetically attractive, to be
able to chose the phase of the wave function, eiεQ, freely at each space-time point. We
will generalize equation (28) for the wave function of a charged particle (for example a
quark, or a charged lepton) to

ψ′q = eiε(~r,t)Qψq = eiε(x)Qψq. (30)

The infinite set of phase transformations (30) constitutes a unitary group labeled U(1).
Since ε(x) is a scalar quantity, the group U(1) is called Abelian5. The local gauge trans-
formation (30) creates different phases for ψq at different locations in space-time. The
description of a free charged particle is given by equation (25) and contains derivatives of
x = (t, ~x). However, these derivatives are not invariant under local gauge transformations.
For example we find

∂ψ′q
∂t

= eiε(x)Q
∂ψq
∂t

+ eiε(x)Q
∂ε

∂t
ψ 6= eiε(x)Q

∂ψq
∂t

. (31)

5More complex phase transformations are also possible, and may be specified by non-commuting
operators. One then considers non-Abelian groups. Along these lines one has the group SU(2) as basis
of the electroweak interaction, and the group SU(3) as basis of quantum chromodynamics.
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The second term, with ∂ε/∂t, contains arbitrary functions of space-time and these func-
tions prevent the invariance of the equations. We need to add dynamics to the system,
if we are to maintain the principle of local symmetry. Local gauge invariance can be
achieved by introducing a new dynamical field, and by allowing our particle (quark or
charged lepton) to couple to this field. Before we carry out this procedure, we will make
a brief excursion to electrodynamics6.

We define the vector and scalar potentials, A and φ, which obey

B = ∇×A and E = −∇φ− ∂A

∂t
. (36)

With these relations it is often possible to simplify the system of coupled equations.
However, it has been known for a long time that the fields B en E are not uniquely
defined by equation (36). In historic perspective this is the first manifestation of a gauge
symmetry, and it appears in classical electrodynamics. We observe that B and E in
equation (36) remain invariant when we replace A and φ by

A′ = A +∇ε, and φ′ = φ− ∂ε

∂t
. (37)

The quantity ε(~r, t) = ε(x) represents an arbitrary scalar function of space-time. Each
local change in the electric potential can be combined with a corresponding change in
magnetic potential, in such a way that E and B are invariant. Such redefinitions are of
no consequence for the classical fields E and B, and we conclude that classical electrody-
namics constitutes a local gauge invariant formalism. We often can exploit this freedom
in the definition of the potentials in order to obtain decoupled (or at least simplified)
differential equations for A and φ.

6Classical electrodynamics is described by Maxwell’s equations. These yield the coupled partial dif-
ferential equations between the electric, E, and magnetic, B, fields and one has

∇ · E = ρ
ε0

Coulomb′s law,

∇×B− 1
c2

∂E
∂t = µ0J Ampere′s law,

∇×E + ∂B
∂t = 0 Faraday′s law,

∇ ·B = 0 absence of magnetic monopoles.

(32)

We consider the fields in vacuum induced by the charge- and current densities ρ and J. These quantities
obey local conservation laws, that can be obtained by taking derivatives of Maxwell’s equations. One has

∂

∂t
∇ ·E =

1
ε0

∂ρ

∂t
, (33)

and
∇ · (∇×B)− 1

c2
∇·∂E

∂t
= µ0∇ · J. (34)

Next, we make use of the relations ∇ · (∇×B) = 0 and 1/c2 = µ0ε0, and find the relation between charge
and current,

∂ρ

∂t
+∇ · J = 0. (35)

This expression is valid at each arbitrary point in space and time.
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This formal treatment of the electromagnetic potentials obtains a new and important
meaning when we consider the quantum behavior of a charged particle in a gauge invariant
theory. The probability to find a particle at a given location is determined by the wave
function ψq. It is important to note that ψq does not represent the electric field of the
particle (for example an electron), but its matter field. We have seen that by demanding
local gauge symmetry of the wave function, differences in phase were created between
different space-time coordinates. We can prevent these arbitrary effects from becoming
observable by using the electromagnetic potentials as gauge fields. When we chose the
function ε(x) in equation (31) identical to the function in equations (37), then the gauge
transformation of A and φ exactly compensates the arbitrary changes in phase of the
wave function ψq. Since these phase differences need to be compensated over arbitrary

large distances, the gauge field Aµ = (A0, ~A) = (φ,A) needs to have infinite range.
The corresponding quantum, the photon, therefore needs to have a vanishing mass. In
addition, the spin of the gauge particle needs to be equal to one, since the gauge field
Aµ is a vector field. The proposed formalism for ψq, A and φ represents a theory that is
locally gauge invariant.

To demonstrate this local gauge invariance, we proceed from the equation of motion of
a free particle to that of a particle that interacts with a gauge field. For this we redefine
the energy and momentum operators,

ih̄
∂

∂t
→ ih̄

∂

∂t
− qφ, en

h̄

i
∇ → h̄

i
∇− qA, (38)

and we now can write the Schrödinger equation for a charge particle that interacts with
the gauge field Aµ as,

(
ih̄
∂

∂t
− qφ

)
ψq =

1

2m

(
h̄

i
∇− qA

)2

ψq. (39)

These substitutions are known as the minimal substitution, and lead to a locally gauge
invariant formulation of the Schrödinger equation. We have(

ih̄ ∂
∂t
− qφ′

)
ψ′q = eiεQ

(
ih̄ ∂

∂t
− qφ

)
ψq,

1
2m

(
h̄
i
∇− qA′

)2
ψ′q = eiεQ 1

2m

(
h̄
i
∇− qA

)2
ψq.

(40)

The structure of equation (39) is appearantly such that arbitrary phase changes of ψq
are canceled by the gauge behavior of A and φ. The interpretation of the parameter q
becomes apparant when we rewrite equation (39) as

ih̄
∂ψq
∂t

=
1

2m

(
h̄

i
∇− qA

)2

ψq + qφψq. (41)

We recover the familiar expression for the Schrödinger equation of a particle in an elec-
tromagnetic field, where the second term represents the electrostatic potential energy
(Coulomb energy), V = qφ. We can now identify q with the electrical charge.

In summary, we arrived at the remarkable conclusion that the demand of local gauge
invariance dictates both the existence and nature of the interaction. From this formalism
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it follows that the mass of the gauge particle, the photon, vanishes. Furthermore, it
follows that the spin of the gauge particle must be equal to one. The principle of gauge
symmetry can also be applied to the relativistic wave equation for spin-1

2
particles, the

Dirac equation. When local U(1) symmetry is imposed, this leads to a gauge invariant
theory that is known as quantum electrodynamics.

2.2.4 Conservation of Baryon Number

Experiments show that also the proton is stable. Its life time has been determined for a
large number of decay channels7 and exceeds 1030 year. Some examples are

p → e+π0 τ > 5.5× 1032 year
p → µ+π0 τ > 2.7× 1032 year
p → e+γ τ > 4.6× 1032 year
p → e+ what ever τ > 0.6× 1030 year.

(42)

Presently, a large effort is ongoing in the search for the decay of the proton, because
various theoretical models predict a finite life time τp of the proton of about 1033 years.
So far no proton decay has been demonstrated experimentally.

The above observation is one of the reasons why one, completely analogous to the
charge number Q, introduces a baryon number B. However, we would like to point
out one difference: in a field theory with local gauge symmetry one has that an exact
conserved quantity (such as electrical charge) leads to the existence of a field with a longe
range (a gauge field) that couples to this charge. However, up to now no interaction
with longe range associated with baryon number could be identified: the equivalence
principle demands that the ratio between inert and heavy masses must be equal for all
objects. That this is indeed the case has been verified for the elements Al and Pt to a
precision of about 10−12. For these elements the ratio between mass and baryon number
is considerably different, due to the differences in binding energies. From this it follows
that the coupling to baryon number is certainly weaker than the gravitational coupling
by a factor of 109.

In the decay of the neutron both charge and baryon number (and lepton number) are
conserved.

n → p + e− + ν̄e

Q : 0 = 1 − 1 + 0
B : 1 = 1 + 0 + 0
Le : 0 = 0 + 1 − 1

(43)

The proton and neutron are the only ‘normal’ particles that carry baryon charge. However,
there exists a series of resonances and excited states that also have B = 1, such as N(1440),
N(1550), ..; ∆(1232), ∆(1620), ..; Λ0, Σ±, Σ0, Ξ0, Ξ−, Ω−, and so on. All these particles
are, as we presently assume, composed of three quarks, that each carry a baryon number
B = 1

3
. The corresponding antibaryons, that are composed of antiquarks, have B = −1.

7It will be clear that the decay p → 3ν, which also violates charge conservation, will be difficult to
determine experimentally. In addition, one can ask the question whether the decay p → NOTHING,
which also violates energy conservation is ‘conceivable’.
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For all nuclei we have that the baryon number is equal to the number of nucleons (A),
and thus

B = A = N + Z. (44)

In the case of leptons, e±, νe, ν̄e, µ
±, etc. and mesons, that are built from a quark-

antiquark pair, we have that B = 0. In all observed decay processes and reactions, baryon
number is always conserved. We do not know why8.

2.2.5 Conservation of Lepton Number

Also in reactions with light particles one has discovered, analogous to the case of baryons,
that these particles are created and annihilated in pairs. One has for example the reaction

γ → e+e− in the field of a nucleus. (45)

Furthermore, certain reactions are allowed while others are forbidden. To be able to
‘explain’ these observations, one has introduced a lepton number L and postulates that
this number is conserved in all interactions. To elucidate this we first consider two ordinary
β-decays,

n → p + e− + ν̄e
3H → 3He + e− + ν̄e

Le : 0 = 0 + 1 − 1.

(46)

When we assign Le = 1 to the electron9, then it follows that for the simultaneously emitted
neutrino ν̄e we have Le = −1. Therefore, we denote this particle as an antineutrino.
Later we will see that the quantum numbers, related to charge, obtain an opposite sign
for antiparticles (the charge itself for example is for a positron, the antiparticle of the
electron, positive; for an antiproton negative). With these definitions it seems natural to
introduce the following lepton numbers in the case of β-decay,

p → n + e+ + νe in nuclei

for example 35Ar → 35Cl + e+ + νe typical β+ − decay
Le : 0 = 0 − 1 + 1

or 37Ar + e− → 37Cl + νe
Le : 0 + 1 = 0 + 1 .

(47)

From the kinematics of β-decay (kurie plot) we know that the masses of νe and ν̄e are
zero (or at least that they are small, mν̄e < 10− 15 eV/c2). From conservation of angular
momentum we conclude that the spin of the neutrino is equal to 1

2
. The charges vanish and

both particles have only little interaction with matter. They can for example penetrate
the earth without being absorbed.

The question that naturally arises is: in what respect are the electron-neutrino and
electron-antineutrino different? - In their lepton number! We can experimentally demon-
strate that the lepton numbers (and their associated conservation laws) form a meaningful

8An answer like: ‘because there exists a corresponding gauge invariance’, only shifts the question!
9Here, we write Le for the electronic lepton number, since two more lepton numbers (Lµ, and Lτ ) will

be introduced (we will be forced to do this later).
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concept. One possibility is the study of neutrino reactions. However, it is not easy to
study reactions with neutrinos. Because of their extraordinary small cross section it took
more than twenty years before the existence of the (anti)neutrino, postulated by Wolfgang
Pauli in 1930, could be discovered by Cowan and Reines[8]

In the following we describe the basic ideas of this experiment. Antineutrinos can
induce in a substance that contains hydrogen, the following reactions,

ν̄e + p → n + e+

Le : −1 + 0 → 0 − 1.
(48)

As a source with sufficient intensity for ν̄e one can employ a nuclear reactor10. In the
fission of heavy nuclei primarily elements with a neutron excess are produced, which in
turn leads to various β−-decay chains. On average about six ν̄e’s are emitted in a decay
with energies ranging from 0 to 8 MeV.

Figure 2: Schematic representation of the experimental set up used by Cowan and Reines
to demonstrate the existence of the antineutrino.

Figure 2 shows the detector, consisting of a vessel filled with 200 liters of water (with
some CdCL2 added). The vessel is placed between three liquid scintillators each with a
content of 1400 liters (at that time a gigantic experiment!). The positron will rapidly slow
down and annihilate with an electron,

e+ + e− → 2γ. (49)

Both annihilation quanta are measured in coincidence with the help of the scintillators.
The produced neutrons are slowed down to thermal energies by collisions in the water, and
are finally captured11 in the 113Cd. The γ-quanta produced in this reaction are registered
in a (delayed) coincidence, which yields a clear signature of the real events. With the
reactor switched on (700 MW) an increase in the counting rate of 3.0 ± 0.2 events per
hour is measured. From this an average cross section of

< σ >= (12+7
−4)× 10−44 cm2 (50)

10At first Cowan and Reines contemplated an atomic explosion as a source for the electronic
antineutrinos

11The element 113Cd is an effective neutron absorber: the cross section has a resonance at Tn = 0.0253
eV with a maximum of σnγ = 2450± 30 barn.
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is deduced, which is in agreement with the theoretical predictions. At almost the same
time, and at the same reactor, R. Davis demonstrated that antineutrinos cannot induce
the reaction

ν̄e + 37Cl → 37Ar + e−

Le : −1 + 0 → 0 + 1!
(51)

However, later it could be shown that neutrinos originating from the sun, can indeed,
as we would expect on the basis of the lepton numbers, induce this reaction,

νe + 37Cl → 37Ar + e−

Le : 1 + 0 → 0 + 1!
(52)

However, the number of 37Ar atoms collected in this reaction over the last several decades
is about a factor 2 - 3 smaller that we would expect on the basis of solar calculations. This
is the famous problem of the solar neutrinos[10], which constitutes one of the principal
mysteries in modern nuclear and particle physics.

Also the measurements of double β-decay and several other experimental facts indicate
that the νe and ν̄e are different particles, and that they can be characterized by Le = +1
or Le = −1, respectively12.

In reactions, where the ‘heavy’ electrons µ± and τ± participate, often neutrinos are
produced, absorbed, or scattered. This directly poses the question whether these particles
behave in the same fashion as the now familiar electronic neutrinos νe and ν̄e. For example,
the positively charged pion mostly decays into a µ+ and only rarely into an e+,

π+ → µ+ + νµ B.R. = 0.999878
π+ → e+ + νe B.R. = 1.2× 10−4.

(53)

The antiparticles, with identical life time and identical decay probabilities, decay as fol-
lows,

π− → µ− + ν̄µ
π− → e− + ν̄e.

(54)

Also the neutrinos that play a role in the muon decay channel have a spin 1
2
, a charge

0 and most probably a rest mass that is equal to zero (mµ < 0.17 MeV/c2). In spite of
all this, they distinguish themselves from the electronic neutrinos νe and ν̄e (that is the
reason why we used different symbols to begin with). We can demonstrate the formalism

12At this point we cannot address the question whether both particles ‘only’ differ in their helicity.
When the particles would have a, however small, mass then both these states can be transformed to each
other (by a Lorentz transformation with sufficient speed).
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by investigating the following reactions.

Le :
Lµ :

νe
1
0

+
+
+

n
0
0

→
=
=

p
0
0

+
+
+

e−

1
0

} occurs

Le :
Lµ :

νµ
0
1

+
+
+

n
0
0

→
6=
6=

p
0
0

+
+
+

e−

1
0

} does not occur

Le :
Lµ :

νµ
0
1

+
+
+

n
0
0

→
=
=

p
0
0

+
+
+

µ−

0
1

} occurs

(55)

Two experiments demonstrated to high precision that the lepton families are essentially
different and that Le and Lµ are conserved separately.

• The reaction
µ− → e− + e+ + e− (56)

was studied[11] happens not to occur. The branching ratio is smaller than 10−12 and
was measured the so-called SINDRUM experiment at the Paul Scherrer Institute in
Villingen, Zwitzerland.

• Also the reactions[12]

µ− +32 S → e− +32 S, σ/σν, capture < 7× 10−11

µ− +32 S → e+ +32 Si, σ/σν, capture < 9× 10−10 (57)

show no indication for violation of lepton number conservation. Note that the second
process also violated conservation of total lepton number.
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2.3 Discrete Symmetry Transformations

2.3.1 Parity or Symmetry under Spatial Reflections

The unitary parity transformation P inverts all spatial coordinates (by reflection through
the origin) and momenta,

~r′ = P ~r P−1 = −~r
~p′ = P ~p P−1 = −~p. (58)

Angular momenta and spins do not reverse sign,

~L′ = (−~r × (−~p)) = ~L
~s′ = ~s.

(59)

We assume that all internal quantum numbers of the particle (charge, baryon number,
etc.) do not change under this transformation.

Until the year 1956 it was taken for granted that all physical laws would obey mirror
symmetry13,

[H, P] = 0. (60)

With this assumption we can again find wave functions that are simultaneously eigenstates
of both H and P,

Hψ = Eψ
Pψ = πψ.

(61)

For non-degenerate systems one then has that π = ±1. for degenerate systems one
needs to be more cautious: the hydrogen atom serves as an example. In case we consider
a spherically symmetric potential,

H(~r) = H(−~r) = H(r), (62)

one consequently finds [H,P] = 0. The wave functions

ψ(r, ϑ, ϕ) = χ(r)Y m
l (ϑ, ϕ) (63)

have a well defined parity, given by (−1)l. In case we neglect the fine structure, then the
levels are degenerate in the hydrogen atom (with the ground state as the only exception:
n = 1, l = 0). The first excited state for example, with principal quantum number n = 2,
then has the same energy for both angular momenta l = 0 and l = 1. We immediately
can write down a linear combination of wave functions, that do not have a well defined
parity, ψ(−~r) 6= ±ψ(~r).

The state of a nucleon (n or p) is an eigenstate of P, since no other object exists with
the same charge, mass, etc. The relative parity between states with different quantum
numbers Q and B is arbitrary. Due to conservation of baryon number and charge, we can
fix the eigenparity of the electron πe, the proton πp, and that of the neutron πn at +114.
It was an incredible surprise when Lee and Yang[13] pointed out in 1956, that it is not
at all evident that parity is conserved in all interactions. A short time later it became
possible to demonstrate that parity is violated in the weak interaction (even maximally
violated)15. Next, we will explain some of these experiments in more detail.

13The fact that only a single form of vitamin C exists, that helps against a cold and not the other form,
is not a counter example! No more than the fact that in all bars in the world one only finds righthanded
corkscrews.

14Since the proton and neutron form an isospindoublet, a different normalization would be unfortunate.
15Experimental physicists could have found earlier evidence for this if they would not have taken this

symmetry for granted.
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2.3.2 Parity Violation in β-decay

Parity violation was demonstrated for the first time by Wu and her collaborators[14]. The
concept of that experiment is represented in a schematic manner in figure 3.

Figure 3: Schematic representation of the experimental set up used by Wu and collabo-
rators to demonstrate the violation of parity in the β-decay of 60Co.

A polarized nucleus with spin ~J emits electrons with a momentum ~pe. On the right-
hand side of figure 3, the parity transformed experimental situation is sketched. Parity
invariance demands both situations to be indistinguishable, and the counting rates I(ϑ)
and I(π − ϑ) to be identical.

The experiment was carried out with the isotope 60Co. This nucleus has a spin Jπ = 5+

and decays with a half life time of τ 1
2

= 5.2 year preferably (> 99 %) to an excited state

(with Jπ = 4+) of 60Ni. The 60Co nuclei can be polarized by placing them in a strong

magnetic field ~B and by lowering the temperature. The reason is that states with different
magnetic quantum number M , where −J ≤M ≤ J , have different energies in a magnetic
field,

E(M) = E0 − gµNBM. (64)

The relative occupancy of state M ′ is given by the Boltzmann-factor,

n(M ′)

n(M)
=
e−E(M ′)/kT

e−E(M)/kT
= e

(M−M′)gµN B

kT . (65)

Only the lowest level will be occupied for kT � gµNB and the nuclei become completely
polarized (dependent on the sign of g, the vector ~J is then aligned parallel or antiparallel

to ~B). The 60Co source is placed in a crystal of cerium magnesium nitrate. When this
material is placed in a relatively weak external magnetic field (≈ 0.05 T), a local magnetic
field in the order of 10 - 100 T will be generated by the electronic moments. The 60Co then
becomes polarized due to the hyperfine interaction at a temperature of about 10 mK16.

16This technique is known as adiabatic nuclear demagnetization of a paramagnetic salt.
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The nuclear polarization can be measured by detecting the radiation from the decay of
60Ni to its ground state. For an E2 transition the angular distribution is given by W (θ) =∑2
n=0 a2n × cos2n θ. One measures the γ-anisotropy coefficient [W (π/2)−W (0)]/W (π/2)

with two NaI detectors.

Figure 4: (a) Experimental set up used bu Wu and collaborators to demonstrate the
violation of parity in β-decay of 60Co; (b) Schematic representation of 60Co Gamow-
Teller decay; (c) Photon asymmetry measured with detector A (•) and detector B (◦) as
function of time as the crystal warms; the difference between the curves is a measure of
the net polarization of the nuclei; (d) β-asymmetry in the counting rates measured with
the anthracene crystal for two directions of the magnetic field (•, down ↓; ◦, up ↑).

Figure 4 shows the principle of the experimental set up and the result for the β-
asymmetry. One measures the counting rate of the emitted electrons with an anthracene
crystal for two different orientations of the applied external magnetic field. At sufficiently
low temperatures one indeed observes an asymmetry that proves the existence of par-
ity violation. As the radioactive material heats up, the asymmetry vanishes, since the
polarization decreases (this latter fact constitutes an important systematic check).
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2.3.3 Helicity of Leptons

In section 2.3.2 we have analyzed the asymmetry in electron emission for the weak decay
of polarized nuclei. The pseudoscalar quantity

A =< ~pe · ~J >, (66)

where ~pe represents the momentum of the electron (or positron) and ~J is the spin of the
mother nucleus, changes sign under a parity transformation. Therefore, in the case of
mirror symmetry, observables cannot depend on A. However, we have seen that mirror
symmetry does not hold in the weak interaction (we will discuss the electromagnetic and
strong interactions later).

Figure 5: Helicity of particles that are emitted by an unpolarized source. The figure on
the right-hand side shows the situation after a parity transformation.

Figure 5 shows another pseudoscalar quantity that should vanish for particle decay,
in case parity is conserved: the helicity of particles that are emitted by a non polarized
source,

h =< p̂ · σ̂ > . (67)

Here, p̂ represents a unit vector in the direction of motion of the particle and σ̂ repre-
sents the spin direction of the particle. For spins aligned along the direction of motion
(righthanded circularly polarized), one has < h >= +1. For completely lefthanded
circularly polarized particles one has < h >= −1.

In a brilliant experiment[15] of Goldhaber, Grodzins and Sunyar it could already in
1958 be demonstrated that the helicity of the neutrino, emitted in the weak decay of
152Eu, is negative. It was found that < hνe >= −1.0± 0.3.

Figure 6 shows the experimental set up and the data. After the capture of a K-
electron in 152Eu, first a neutrino νe with energy Eν = 840 keV is emitted. The decay
goes to an excited state of 152Sm with a life time of about τ 1

2
= 2 × 10−14 s. This

state decays through the emission of a γ-quantum to the ground state. In the discussion
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Figure 6: Experimental set up used by Goldhaber, Grodzins and Sunyar to demonstrate
that the helicity of neutrinos, emitted in the decay of 152Eu, is negative. The analyzer
magnet selects the circular polarization of the photons, The Sm2O3 scatters through
nuclear fluoresence radiation to the NaI detector.

of this experiment, we first make the assumption that the neutrino is emitted in the
‘upward’ direction (positive z-axis) and that the γ-quantum is emitted ‘downwards’. From
conservation of angular momentum in the z-direction it then follows that the γ-quantum
must be lefthanded circularly polarized, when the helicity of the νe is negative (and vice
versa). The γ-quantum traverses a piece of magnetized iron (with the magnetic field

direction of ~B parallel or antiparallel to the z-direction). The absorption is different for
right- and lefthanded circularly polarized γ-quanta. It turns out that indeed σγ = −1
and consequently that σν = −1

2
. However, how can we ascertain our initial assumption

that the neutrino was emitted in the ‘upward’ direction and that its helicity is negative?
This is possible by resonance scattering from a 152Sm scatterer. Only when the neutrino
is emitted in the upward direction, and the excited nucleus travels downward, the energy
of the γ-quantum has exactly the right value to excite the 961 keV level.

Since 1958 a large number of experiments has been carried out, that all reveal the
helicity of the leptons emitted in β-decay of nuclei to be always as follows:

• all neutrinos (νe, but also νµ and ντ ) have a helicity -1, and all antineutrinos (ν̄e,
ν̄µ, ν̄τ ) have a helicity +1.

• The charged leptons (e−) emitted in β-decay have a helicity −v/c, while the an-
tiparticles (e+) have helicity +v/c.

23



These observations are in agreement with the standard model of the electroweak in-
teraction. Every deviation would be a sensation, because it would be an indication that
besides the usual lefthanded vector bosons (W±

L ) also righthanded particles (W±
R ) would

exist. Because of their larger mass these particles would not have been produced so far
with the existing particle accelerators.

Figure 7: Schematic representation of the helicities in the decay of a positively charged
pion into a muon and muon neutrino.

Next, we want to discuss the interesting case of the helicity suppressed decay of charged
pions, for example

π+ → µ+ + νµ, B.R. = 0.999878
π+ → e+ + νe, B.R. = 1.2× 10−4.

(68)

The charged leptons have, because of conservation of angular momentum, in a sense the
‘wrong’ helicity (see figure 7). Next, we calculate the decay rates while only taking the
phase space factors into account. We assume that the matrix elements are equal in both
cases. However, in this way we obtain an incorrect result,

λe
λµ

=
1 + (me/mπ)

2

1 + (mµ/mπ)2
· 1− (me/mπ)

2

1− (mµ/mπ)2
' 3.5( incorrect!). (69)

Only when we multiply the above expression with the correction factor

f =
1− ve/c

1− vµ/c
=
m2
e

m2
µ

1 + (mµ/mπ)
2

1 + (me/mπ)2
= 3.7× 10−5, (70)

do we obtain the correct result. This implies that this exception confirms the rule, or
formulated more precisely, the fact that the corrected result agrees so well with the mea-
sured value, indeed represents and important test for the nature of the interaction (a pure
V - A coupling, as demanded by the standard model with only lefthanded W±) that lies
at the basis of the decay.

2.3.4 Conservation of Parity in the Strong Interaction

Conservation of parity in the strong interaction has been verified in a great number of ex-
periments. One of the most precise experiments[16] was performed using the experimental
set up outlined in figure 8.

The injector cyclotron delivers a transverse polarized proton beam with an energy
of Tp = 50 MeV, an intensity of about 5 µA and a polarization Py of 0.8. With spin
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Figure 8: Experimental set up for the measurement of parity violation in proton-proton
scattering. Longitudinal polarized protons with an energy of 50 MeV are scattered from
hydrogen.

precession in various magnetic fields one obtains a longitudinally polarized beam, that is
subsequently scattered from a hydrogen target. Conservation of parity demands that the
cross section for protons with positive helicity σ+ is equal to that of protons with negative
helicity σ−. The experiment yields the result

σ+ − σ−

σ+ + σ−
= (−1.5± 0.2)× 10−7. (71)

The small deviation from zero is of the same order as we would expect on theoretical
grounds. The quarks and thus also the nucleons experience in addition to the strong
force also a weak interaction, and this latter interaction maximally violates parity. The
corresponding strength is about 10−7 weaker compared to the dominant strong interaction.

Turning the argument around we sometimes can exploit the fact that parity is con-
served in the strong interaction in order to determine the intrinsic parity of a particle.
As an example we discuss the manner in which the parity of the negatively charged pion,
Pπ, can be determined using the reaction

π− + d→ n+ n. (72)

We assume that we know the spins of all particles participating in the reaction,

Jπ = 0, Jd = 1, Jn =
1

2
. (73)

In addition, we know the intrinsic parity of the deuteron17, Pd = +1.

17The deuteron consists of a proton and a neutron, that are bound mainly in an S-state with orbital
angular momentum lpn = 0.
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When the π− is captured by a deuterium nucleus, then at first states with orbital
angular momentum lπd 6= 0 will be occupied. However, the pionic deuterium will rapidly
decay to a state with lπd = 0, where characteristic Röntgen radiation will be emitted. It
is possible to detect these photons and in this way to experimentally determine that after
the capture of a negative pion in an S-state, the above discussed reaction indeed occurs.
The total angular momentum then amounts to

| ~Jtot| = |~lπd + ~Jπ + ~Jd| = 1 = |~lnn + ~Jn + ~Jn|, (74)

and the parity is Ptot = Pπ · Pd · (−1)lπd = Pπ = (Pn)2 (−1)lnn .
Since the wave function of both neutrons needs to be antisymmetric, the reaction only

proceeds through a 3P1-state with lnn = 1. Consequently, we find that Pπ = −1. Also
both other partner pions, π+ en π0, of the same isospintriplet (Tπ = 1) have a negative
intrinsic parity.

2.4 Charge Symmetry

2.4.1 Particles and Antiparticles, CPT -Theorem

Starting from the relativistic relation between energy and momentum of a particle, E2 =
p2c2 +m2c4, we can write the corresponding relativistic wave equation18 by substituting
the following operators

p→ h̄

i
∇ en E → ih̄

∂

∂t
. (75)

We find the so-called Klein-Gordon equation[
2 +

(
mc

h̄

)2
]
ψ(~r, t) = 0, (76)

where

2 ≡ 1

c2
∂2

∂t2
−∆, met ∆ = ∇ · ∇. (77)

We find two solutions for the energy,

E± = ±
√
m2c4 + p2c2. (78)

It turns out that the solution with the negative sign cannot just be wiped ‘unter den Tep-
pich’, as was originally planned by for example Schrödinger. Paul Dirac[18] had already in
1930 postulated that this second solution represents the motion of an antiparticle. The ex-
istence of the antiparticle of the electron, the positron, was demonstrated experimentally
in 1933 by Anderson[19].

Next, we discuss a simplified heuristic train of thought with the intention to show how
one can arrive at an interpretation. The wave function with positive energy,

ψ+(x, t) = exp
{
i

h̄
(px− E+t)

}
, (79)

18This yields the so-called Klein-Gordon equation which is valid for spinless particles. Note that the
fundamental building blocks of the subatomic world all have spin-1

2 .
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represents a wave with positive phase velocity

v+
p =

E+

p
. (80)

The maximum of the wave (we mean here the particle)19 travels along the positive x-axis
for increasing time t.
For the solution with negative energy we can write

ψ−(x, t) = exp
{
i
h̄
(px− E−t)

}
= exp

{
i
h̄
(px− E+(−t))

}
.

(81)

When we reverse the direction of time[20], t→ −t, we can easily convince ourselves, that
the same result would be obtained in case we would reverse the charge. Therefore, it
seems that second solution represents the normal motion of an antiparticle.

Figure 9: Motion of a particle and antiparticle in the Feynman diagram for photon-
electron scattering.

For the scattering of a γ-quantum from an electron, we can interpret the Feynman
diagram sketched in figure 9 as follows.

• For t < ta we see an electron and photon approaching each other.

• At time t = ta an electron-positron pair is created.

• During the period ta < t < tb two electrons and one positron exist. Note that the
total charge did not change.

• At time t = tb the electron-positron pair annihilates.

• For t > ta we see the scattered electron and photon moving apart.

19In order to make the discussion more explicit, one should introduce a wave packet at this point and
work with the group velocity.
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One can easily verify that when only electromagnetic forces are acting, always the
same law of motion is valid (because it is invariant for the operations P, C, and T ).
However, we know that the operation P is violated in the weak interaction. Also for this
interaction we can obtain ‘an almost’ invariant law of motion after carrying out a CP-
transformation20. It can be shown that under quite general assumptions the combined
operation CPT always commutes with H, for all interactions. From this it follows that
a particle and an antiparticle always need to have exactly the same mass and life time.
However, for all additive quantum numbers (see tabel 1), a reverse of sign occurs.

Table 1: Relation between the most important properties and quantum numbers for
particles and their associated antiparticles.

Quantity Particle Antiparticle
Mass m m
Life time τ τ
Spin J J
Isospin T T

Isospin (z-component) Tz −Tz
Charge Q −Q
Strangeness S −S
Charm, etc. C̃ −C̃
Intrinsic parity (fermion) π −π
Intrinsic parity (boson) π π
Baryon number B −B
Lepton number Le, Lµ, Lτ −Le, − Lµ, − Lτ

Presently, for almost all particles the corresponding antiparticle is known. The exis-
tence of the antiproton was demonstrated in 1955 in Berkeley, after searching in vain in
cosmic radiation. Also it proved possible (see figure 10) to demonstrate[21] the existence
of exotic particles like the anti-Ω. The mechanism of the production is as follows (the
difficulty is hopefully clear: one needs to produce a particle with strangeness S = 3!)

K+ + d → Ω
+

+ Λ + Λ + p + π+ + π−

B : 0 + 2 → −1 + 1 + 1 + 1 + 0 + 0
S : 1 + 0 → 3 − 1 − 1 + 0 + 0 + 0.

(82)

The Ω− mainly decays into a Λ and a K−. In this decay the strangeness changes by
∆S = 1. The decay of the Ω

+
, as indicated in figure 10, proceeds as follows

Ω
+ → Λ +K+. (83)

Both decays are induced by the weak interaction. The strangeness changes and the life
time of the anti-Ω is remarkably large, τ ∼ 8.2× 10−11 s.

20We will discuss this small violation of CP in great detail later. It has been observed in the decay of
neutral K-mesons.
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Figure 10: Sketch (left) and bubble chamber picture (right) for the reaction K+d →
ΩΛΛpπ+π− observed in the study of K+d-interactions at a momentum of 12 GeV/c using
the two-mile linear accelerator of the Stanford Linear Accelerator Center.

Each of these examples shows how fruitful the concept of antiparticle is. In the fol-
lowing we use the operator C to transform a particle into its corresponding antiparticle
(note that now not only the charge changes sign). One has

C|u >= |ū >, C|d >= |d̄ > . (84)

For a small number of particles (for example γ and π0) all values, that under a C-
operation would change sign, are equal to zero. In these cases one cannot distinguish
particle and antiparticle, and consequently they are the same object. When we act with
the operator for charge conjugation on a charged pion,

C|π+ >→ |π− > 6= η|π+ >, (85)

we clearly do not obtain an eigenstate. However, for the neutral pion the situation is
different

C|π′ >= η|π′ > . (86)

When we act a second time with C, we again obtain the initial state. From this it follows
that η2 = 1 and thus η = ±1. Therefore, the quantity η is denoted as C-parity in analogous
fashion to the normal parity. Also there we did already conclude that some states have a
well defined parity, while other do not.
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For a situation with only electromagnetic fields a change of sign occurs under a C-
transformation: therefore the photon has negative C-parity,

C|γ >= −|γ > . (87)

The neutral pion decays with a life time of 8.4 × 10−6 s into two photons. The decay
π0 → 3γ does not occur (B.R. < 3.1 × 10−8). This indicates that the electromagnetic
interaction is C-invariant. Since C-parity yields a multiplicative quantum number, the
C-parity of the π0-meson needs to be positive, C |π0 >= +|π0 >. An entire series of
follow-up experiments reveal that the strong and the electromagnetic interactions are C-
invariant. In contrary, we find that the weak interaction is almost invariant under the
combined operation CP (apart from small deviations that we will discuss later). Since P
is maximally violated in the weak interaction, also C needs to be maximally violated.

2.4.2 Charge Symmetry of the Strong Interaction

It has been known for a long time in nuclear physics that the proton and the neutron
are similar particles, when one neglects the electromagnetic interaction. First it strikes
us that both masses are almost equal,

mn −mp

mn +mp
= 7× 10−4. (88)

Furthermore, we know that so-called mirror nuclei (these are nuclei where all neutrons
are transformed into protons and vice versa) have similar properties, such as similar level
schemes, good agreement between binding energies after we correct for the electromagnetic
interaction, and so on.

In addition, the cross sections for mirror reactions, such as

σ(n +3 He → ..) ' σ(p+3 H → ..)
σ(d+ d → n +3 He) ' σ(d+ d → p+3 H)

(89)

are almost equal. It seems natural to introduce an operator Cs (for charge symmetry),
that changes a proton into a neutron and the other way around. However, it is more
efficient to define the actions of Cs for quark states.

Cs|u > = −|d >, Cs|d > = +|u >

Cs|ū > = −|d̄ >, Cs|d̄ > = +|ū > .
(90)

If Cs is indeed a good symmetry of the strong interaction, then it should be possible,
on the basis of the above assumptions, to predict the equality of decay rates and cross
sections for reactions involving exotic particles. To illustrate this concept we start with
the reaction

π− + p→ Λ +K0. (91)

When we carry out a charge symmetry transformation, we obtain

Cs|π− > = Cs|ūd > = − |d̄u > = − |π+ >
Cs|p > = Cs|uud > = |ddu > = |n >
Cs|Λ > = Cs|uds > = − |dus > = − |Λ >
Cs|K0 > = Cs|ds̄ > = |us̄ > = |K+ >,

(92)
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and expect that the cross section for the following reaction is exactly equal,

π+ + n→ Λ +K+. (93)

Obviously, the electromagnetic interaction breaks this symmetry! However, after we carry
out all electromagnetic corrections, as good as we can calculate these at present, there
still remains a small discrepancy. This is especially clear when we look at the masses,

mn > mp

mK0 > mK+

mΣ+ < mΣ0 < mΣ−(!)
(94)

In itself it is remarkable that the charged particles are often lighter than the corresponding
neutral particles. This small symmetry breaking is attributed[17] to the difference in
mass21 of the up and down quarks,

md −mu = 3.3± 0.3 MeV/c2. (95)

For completeness we mention here G-conjugation, which is closely connected to charge
symmetry22,

G ≡ CsC, (96)

where C represents the charge symmetry operator.

2.5 Invariance under Time Reversal

In classical physics we have determined that Newton’s law of motion,

~F = m
d2~r

dt2
, (97)

is invariant under reflection of the time axis, t→ −t. All particle orbits can just as well be
traversed in opposite direction. When we observe a few particles in a microscopic system
(see figure 11), we would not be able to distinguish whether a movie, on which all orbits
and collisions are recorded, is projected in the forward or backward direction. When the
probability for the two processes shown in figure 11 is equal, we talk about invariance
under time reversal, also know as microscopic reversibility. All this directly changes when
we study a macroscopic system, where irreversible processes occur, such as friction, heat
conductivity, or diffusion (in the equations that describe these processes also first-order
derivates of time occur). Clearly, in nature there exists a preferred direction for time23

- only outgoing waves - a violation of elementary time reversal. In the following we will
not discuss such phenomena, but instead consider whether also in elementary collision
processes there is a preferred direction for time (T -invariance of the interactions).

21It is non trivial to determine the masses of quarks, since there are no free quarks. In general, one
finds in the literature the values of the so-called current masses. These are the values that one should use
in the QCD Lagrangian. Since quarks are surrounded by a cloud of gluons and quark-antiquark pairs, the
mass depends on the energy of the reaction, and can be calculated in QCD. Usual values at a momentum
transfer of about 1 GeV/c, amount to mu ' 5.5± 0.8 MeV and md ' 9.0± 1.2 MeV.

22This is also relevant for the discussion of the weak interaction. It turns out that no strangeness
conserving semileptonic decays exist that violate G-parity (so-called second-order currents). These do
not exist in the standard model and have also not been seen in experiment.

23However, it is not at all obvious whether and how the different factors that determine the direction of
time are connected: increase in entropy - expansion of the universe. ‘It is a poor memory that remembers
only backwards’ (Alice in Wonderland).
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Figure 11: Schematic representation of time reversal invariance in a two-particle collision.

Shortly after Lee and Yang expressed in 1956 their presumption that parity P might
not be conserved in some processes, it was shown in many experiments that this fundamen-
tal symmetry (together with charge conjugation) is maximally broken in all transitions
that are induced by the weak interaction. With time reversal we are dealing with a com-
pletely different situation. Small violations of CP (or T ) were only discovered in 1964 in
the decay of neutral K-mesons. Since then one did not succeed in finding a single other
system where a violation under time reversal occurs, in spite of the significant effort in
looking for such effects24. Although violation of time reversal can be accomodated in the
standard model, one is completely in the dark with respect to the mechanism of this small
symmetry reaking. Also at this moment various experiments are performed (or prepared)
to determine the boundaries of the violation under time reversal25. In the following we
will consider a few nuclear physics experiments more closely. Modern particle physics
experiments will be discussed later.

In a time reversal transformation the position, momentum and spin of a particle change
as follows,

~r′ = T ~r T −1 = ~r
~p′ = T ~p T −1 = − ~p
~J′ = T ~J T −1 = − ~J.

(98)

When we want to describe this transformation, we need to remember that in quantum
mechanics there are two types of observables.

• When we perform a measurement on a system that has been prepared in state |ψ >,

24There is one other ‘experiment’, which however is somewhat difficult to repeat: the Big Bang.
Presently, one assumes that equal amounts of particles and antiparticles were created in the beginning.
The presently observed asymmetry (probably no galaxies exist that are composed entirely of antimatter)
can be ‘explained’ by the mechanism of CP-violation.

25This scientific question determines for an important part the future research program at NIKHEF.
The B physics group participates in the LHCb experiment at CERN, with the goal to investigate CP-
violation in the decay of B-mesons.
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we can find the system in state |φ > with a probability | < φ|ψ > |2.

• The expectation value of a dynamical operator D in state ψ is given by the matrix
element < D >=< ψ|D|ψ >.

The operation t → −t cannot be represented by a unitary operator U. This can be
shown with the following argument. Time reversal invariance demands that U†HU = H.
The time evolution of the wave function is given by

H|ψ >= ih̄
∂

∂t
|ψ > . (99)

After the transformation we find

UH|ψ >= Uih̄
∂

∂t
|ψ >= −ih̄ ∂

∂t
U|ψ >, (100)

because U represents the change t→ −t. Since UH = HU we find

HU|ψ >= −ih̄ ∂
∂t

U|ψ > . (101)

One has |ψ′ >= U|ψ > and thus we see that |ψ′ > does not obey the same Schrödinger
equation, but instead

H|ψ′ >= −ih̄ ∂
∂t
|ψ′ > . (102)

However, note that the wave function is not an observable and that the symmetry can
be restored by using a different definition. It is possible to represent the transformation
for time reversal, T , as the product of a unitary operator UT and an operator K, where
K implies the transition to the complex geconjugated quantity,

T = UT ·K. (103)

For such an antiunitary transformation one has that when |ψ(t) > is a solution of the
Schrödinger equation, then |ψ∗(−t) > will also be a solution. This can be shown as follows

TH|ψ >= HT |ψ >= −ih̄T ∂

∂t
|ψ > = ih̄

∂

∂t
T |ψ > . (104)

Wigner noted that the operator T is antilinear,

T (C1|ψ > +C2|φ >) = C∗
1T |ψ > +C∗

2T |φ >, (105)

and antiunitary,
< ψ′|φ′ >=< ψT †|T φ >=< ψ|φ >∗=< φ|ψ > . (106)

However, note that, because of

| < ψ′|φ′ > | = | < φ|ψ > | = | < ψ|φ > |, (107)

the operator T leaves the physical content of quantum mechanics untouched. In sum-
mary, we conclude that the quantum mechanical equivalent of the classical time reversal
transformation is given by t → −t en i → −i. The quantum mechanical principle of
microscopic reversibility obeys this transformation.

Since T ψ(t) = ψ∗(−t) 6= ηψ(t) there are no observable eigenvalues of T . Contrary to
P we cannot search for T -allowed or forbidden transitions[22].
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2.5.1 Principle of Detailed Balance

From equation (106) we can directly deduce the principle of detailed balance. The cross
section for inverse reactions is equal, when we correct for differences in phase space factors.
In nuclear physics a series of reactions and their corresponding reverse reactions has been
carefully measured.

Figure 12: Comparison of the cross section for the reaction 14N(d, α)12C and its inverse
reaction 12C(α, d)14N.

In figure 12 we give an example of this. One has always found that within the precision
of the measurements one has

dσ/dΩ(a+ b→ A+B)

dσ/dΩ(A+B → a + b)
=

p2
AB

p2
ab

(2JA + 1)(2JB + 1)

(2Ja + 1)(2Jb + 1)︸ ︷︷ ︸
Phase space factor

|Tab→AB|2
|TAB→ab|2︸ ︷︷ ︸

=1 !

. (108)

2.5.2 Electric Dipole Moment of the Neutron

It has been discovered[23] that the charge distribution of a neutron does not vanish (there
is no need for it to vanish since baryons are composed of charged quarks). Therefore, one
can speculate that the neutron not only has a magnetic dipole moment (this is the case,
µn = (1.041 875 6± 0.000 000 3)× 10−3 µBohr), but also a static electric dipole moment.
The orientation of a particle can be specified by the orientation of its spin with respect
to an axis. When we chose the z-as for this, the electric dipole moment is given by

µe =
∫
ρzdV, (109)

where ρ represents the charge distribution of the particle.
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For the neutron one can think a priori about the following order of magnitude

dn = µne ∼ e× 10−13 cm. (110)

However, one can easily contemplate26, that the dipole moment vanishes, when the inter-
actions are parity invariant. One then has φn(x, y, z) = ±φn(−x,−y,−z), resulting in an
expectation value of z,

< z >= znn =
∫
φ∗nzφndV, (111)

that vanishes. However, this is not always the case, since we need to account for the
contribution of the weak interaction, which is approximately 10−7 times smaller than that
of the strong interaction. This leaves the possibility that

dn ∼ e× 10−20 cm. (112)

Figure 13: Experimental set up used for the determination of the electric dipole moment
of the neutron.

Moreover, the dipole moment also vanishes due to time reversal invariance. A mea-
surement of dn with the required high precision will yield indications about the magnitude
of a possible violation under invariance of reversal of time and parity. Various theoretical
models predict values in the order of

dn ∼ e× 10−25 cm ... e× 10−33 cm. (113)

26We want to stress here that these arguments do not hold in case we are dealing with a system that
has several degenerate energy states (something that is not the case for a neutron). In such a system it
is possible that an antisymmetric charge distribution develops, which in turn, when placed in an electric
field, leads to an alignment (in the interplay of collisions with other molecules) and an energy splitting
~µe · ~E. Many molecules indeed have a large electric dipole moment.
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The most precise experiments yield

dn < 1.1× 10−25 e · cm, conf. level = 95%. (114)

To reach this incredible precision a series of cunning tricks is applied. Next, we describe
a few aspects of an experiment at ILL Grenoble[24].

From a high-flux reactor (ftherm = 4.5×1014 cm−2s−1), neutrons are extracted vertically
from a cold source (liquid deuterium at 25 K). Through total reflection and a Doppler-
shift turbine, one obtains ultra-cold neutrons (v < 8 m/s!) with a density of about 60
n·cm−3, which can be ‘stored’ in a bottle for a limited time. These polarized neutrons
have an interaction hamiltonian in an electromagnetic field, given by

Hint = µn ~σ ·B + dn ~σ · E, (115)

where ~σ represents the spin, and µn the magnetic and dn the electric dipole moment of
the neutron. Consequently, the neutrons precess with a frequency

hν = −µnn| ~B| ± 2dn| ~E|. (116)

Note that an electric field of E = 10 kV/cm with a hypothetic dn = 10−25 e·cm would
result in less than one revolution per week! This small effect can be measured using
Ramsey-resonance techniques[25]. However, up to now all results are compatible with
zero within the uncertainties of the measurements.

2.5.3 Triple Correlations in β-Decay

In the β-decay of a polarized nucleus one has for the decay rate

W = W0

{
1 + A~ve · J +D~J · (~ve × ~vν) +R~σe( ~J × ~ve)

}
. (117)

Here, ~J represents the nuclear polarization, ~ve and ~vν are the velocities of the emitted elec-
tron and neutrino (in units of c) and ~σe represents the direction in which the polarization
of the electron is measured.

The asymmetry is characterized by the asymmetry parameter A, that plays a role in
parity violation (see 2.3.3). One can show that for T -invariance both D and R need to
vanish27. The most precise measurements[26, 27] yield results that are again equal to zero
within the uncertainties of the experiments:

D < 10−3,
R = 0.004± 0.014.

(118)

27Neglecting small corrections that are induced by the interaction of the particles in the final state.
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3 SU(2) × U(1) Symmetry or Standard Model

In this section we closely follow the book “CP-violation” of Branco et al. [41] and the
course on Particle Astrophysics by Henk Jan Bulten (Vrije Universiteit - Amsterdam).
Note that the book contains an excellent overview of the current experimental and theo-
retical status on CP violation.

3.1 Notes on Field Theory

This section outlines a few issues of quantum field theory. A thorough treatment of field
theory is not possible, and the interested reader is refered to the literature.

The Schrödinger equation is a non-relativistic equation, it can therefore not be a
consistent description of particles. We want to generalize the Schrödinger equation. As a
first step, we consider the relativistic equation for kinetic energy, m2 = E2 − p2. Using
E = ih̄ d

dt
, p = ih̄ d

dx
, and h̄ = 1 we can write down the Klein-gordon equation for a particle

with no spin (a scalar particle, described by a complex wave function φ) in free fall,

(
∂2

∂t2
−∇2 +m2)φ = 0. (119)

In the Schrödinger formalism we had for the probability density and - current

ρ = φ∗φ, j =
−i
2m

φ∗∇φ− φ∇φ∗

and the continuity equation

∂ρ

∂t
+∇j̇ = φ∗

(
∂φ

∂t
− i

2m
∇2φ

)
+ φ

(
∂φ∗

∂t
+

i

2m
∇2φ∗

)
= 0, (120)

where the Schrödinger equation and its complex conjugate have been used.
The relativistic generalization of the density ρ should transform like a time-like com-

ponent of a four-vector; the current density reads

jµ = (ρ, j) =
i

2m
[φ∗(∂µφ)− φ(∂µφ∗)]. (121)

The field φ∗ also obeys the Klein-Gordon equation, hence we obtain again

∂µj
µ = φ∗(∂0

2 −∇2)φ− φ(∂0
2 −∇2)φ∗ = 0 (122)

The density here however is not positive-definite. This is due to the fact that the
Klein-Gordon equation is of second order and φ and ∂φ/∂t can be chosen freely. Also, the
Klein-Gordon equation has solutions with negative energy E. The interpretation of φ as
a quantum-field operator instead of a single-particle wave function resolves this problem.
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3.1.1 Dirac Equation

In order to obtain a linear first-order relativistic equation that can be boosted and rotated
in space, i.e. that commutes with the Poincaré group, one arrives at the Dirac equation.
This equation reads

iγµ∂µ −mψ(x) = 0, (123)

where the spinor ψ has four components. There are infinite representations of the gamma
matrices, we introduce here the Dirac representation.

γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 ; γi =

(
0 σi

−σi 0

)

=




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



i=1

,




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



i=2

,




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



i=3

. (124)

The Dirac equation for free particles at rest is described by a plane wave solution
ψ(x) = u(0)e−imt for the positive energy states, and ψ(x) = v(0)e+imt for the negative
energy states. Both u and v have two components, one for spin up and one for spin down.
The spinors read

u(1)(0) =




1
0
0
0


 , u(2)(0) =




0
1
0
0


 , v(1)(0) =




0
0
1
0


 , v(2)(0) =




0
0
0
1


 . (125)

By boosting the spinors one arrives at the description for particles with momentum p,

u(1)(p) =
E +m

2m




1
0
pz

E+m
p+
E+m


 , u(2)(p) =

E +m

2m




0
1
p−
E+m
−pz

E+m


 ,

v(1)(p) =
E +m

2m




p−
E+m
−pz

E+m

1
0


 , v(2)(p) =

E +m

2m




pz

E+m
p+
E+m

0
1


 . (126)

where p± = px±ipy. The spinors form an orthonormal basis. Apart from γµ one frequently
encounters the matrix γ5 defined by γ5 = iγ0γ1γ2γ3. The definition of a field operator ψ̄
is ψ̄ = γ0ψ†.

3.1.2 Quantum Fields

The quantity ψ̄ψ transforms as a scalar, ψ̄γµψ as a vector, ψ̄γ5ψ as a pseudo-scalar,
ψ̄γ5γµψ as a pseudo-vector or axial vector, and ψ̄(γµγν−γνγµ)ψ as a rank-2 antisymmetric
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tensor, giving all the possibilities for an object in 4 dimensions to transform under parity,
rotations and Lorentz transformations.

In quantum field theory, φ and ψ are interpreted as field operators. They act on the
vacuum, creating and destroying field quanta. For instance the Klein-Gordon field φ(x)
is written

φ(x) =
∫

d3k

(2π)32k0
[a(k)e−ikx + b†(k)eikx],

φ†(x) =
∫ d3k

(2π)32k0
[b(k)e−ikx + a†(k)eikx], (127)

where a(k) annihilates a boson with momentum k, a†(k) creates a boson with momen-
tum k, a†a counts the number of bosons, and the annihilation and creation operators
b work on the antiparticles of the complex Klein-Gordon field. Furthermore, the classi-
cal Lagrangian is quantized by replacing the Poisson brackets with (anti-) commutation
operators. Whereas one classically has [π, x] = 0 (i.e. the momentum and the coordi-
nate commutate), in quantum field theory this is replaced by [π, x] = ih̄. The classical
Lagrangian depends in quantum field theory on the fields. We will consider Lagrangian
densities L = L(φ, ∂µφ) that do not explicitly depends on the absolute position in space,
and only depends on the fields and the first-order derivatives of the fields. The action
reads S =

∫
L(φ, ∂µφ)d4x. The Klein-Gordon Lagrangian is given by

LKG =
1

2
(∂µφ)(∂µφ)− m2

2
φ2. (128)

This may be verified by using the action principle, leading to the Euler-Lagrange equa-
tions.

The variation ∆φ is constituted from two parts, the functional variation δφ from the
change in the internal field parameters in φ at the same coordinate and by a variation in
coordinate,

φ′(x′)− φ(x) = ∆φ(x) = φ′(x′)− φ(x′) + φ(x′)− φ(x) = δφ+ (∂µφ)δxµ. (129)

The variation in the action is now

δS =
∫
R

∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ)d4x, (130)

where δ(∂µφ) = ∂µ(δφ) since the variation is chosen to disappear at the three-dimensional
boundary ∂R of the regionR in space-time over which we integrate the Lagrangian density.
With

∂L

∂(∂µφ)
∂µ(δφ) = ∂µ

[
∂L

∂(∂µφ)
(δφ)

]
− ∂µ

[
∂L

∂(∂µφ)

]
(δφ), (131)

we obtained a total divergence which can be converted using Gauss’s theorem to

δS =
∫
R

[
∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφd4x+

∫
∂R

∂L

∂(∂µφ)
δφd3σ, (132)

where the surface integral disappears since the variation disappears at the boundary. We
obtained the Euler-Lagrange equation for a field φ,

∂L

∂φ
− ∂µ(

∂L

∂(∂µφ)
) = 0. (133)
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.
This yields the Klein-Gordon equation, as can be found from inspection,

∂L

∂φ
= −m2φ,

∂L

∂(∂µφ)
= ∂µφ,

and inserting these equations into the Euler-Lagrange equation leads to

∂µ∂
µφ+m2φ = 0

for a stationary action.

Finally we mention gauge transformations. A scalar field with 2 real components may
also be written as a complex scalar field

φ =
1√
2
(φ1 + iφ2),

φ∗ =
1√
2
(φ1 − iφ2) (134)

for which we put
L = (∂µφ)(∂µφ∗)−m2φ∗φ.

From the Euler-Lagrange equations we derive that both φ and φ∗ satisfy the Klein-Gordon
equation. The Lagrangian L is clearly invariant under the global gauge transformation
φ → e−iΛφ, φ∗ → φ∗eiΛ. The infinitesimal change δφ under this transformation reads
δφ = −iΛφ, δφ∗ = iΛφ∗. The invariance of the Lagrangian yields a conserved current
(Noether’s theorem, equivalent to the derivation of conservation of energy and momentum
from translations in time and space in classical mechanics)

Jµ =
∂L

∂(∂mφ)
(−iφ) +

∂L

∂(∂mφ∗)
(iφ∗) = i(φ∗∂µφ− φ∂µφ∗). (135)

The current Jµ has a vanishing divergence, as it should have, and the corresponding
conserved quantity is

Q =
∫
J0dV = i

∫
((φ∗∂0φ− φ∂0φ∗)dV. (136)

Now Q can be identified with the total electrical charge.
By making a local gauge transformation, i.e. by allowing Λ to take an arbitrary value

at any coordinate x, we loose the invariance of the Lagrangian. For an infinitesimal
variation we have

δφ = iΛ(x)φ, ∂µφ→ ∂µφ− i(∂µΛ)φ− iΛ∂µφ.

We see that the derivatives of the field transform in a different manner than the field
itself. Furthermore, the action is now no longer invariant. We obtain

δL =
∂L

∂φ
δφ+

∂L

∂(∂µφ
δ(∂µφ) + (φ→ φ∗), (137)

40



which yields, using the Euler-Lagrange equation,

δL = ∂µ

[
∂L

∂(∂µφ

]
(−iΛφ) +

∂L

∂(∂µφ
(−iΛ∂µφ− iφ∂µΛ) + (φ→ φ∗). (138)

The first term is a total derivative, so the change in the action is zero and we may ignore
it. The second term gives, using the explicit form of the Lagrangian,

δL = i∂µΛ(φ∗∂µφ− φ∂µφ∗) = Jµ∂µΛ. (139)

To render the Lagrangian invariant under local gauge transformations one introduces
an additional term in the Lagrangian, consisting of a new 4-vector Aµ which couples to
the current Jµ:

L1 = −eJµAµ. (140)

Furthermore, we demand that under local gauge transformation A transforms as

Aµ → Aµ +
1

e
∂µΛ (141)

leading to the condition that the variation in L1 equals

δL1 = −e(δJµ)Aµ − Jµ∂µΛ.

This last term cancels the variation in L we saw before. However, now we have to cancel
the first term. We have

δJµ = iδ(φ∗∂µφ− φ∂µφ∗) = 2φ∗φ∂µΛ

If we introduce a term L2

L2 = e2AµA
µφ∗φ (142)

we obtain an invariant action δL+ δL1 + δL2 = 0.

The field Aµ which was introduced, should contribute also to the Lagrangian. We need
a term that is invariant under gauge transformations, but will describe the contributions
of Aµ. This term is found in L3.

L3 =
1

4
F µνFµν , Fµν = ∂µAν − ∂νAµ. (143)

We have now derived the Lagrangian for the electromagnetic field!

LEM = (∂µφ)(∂µφ∗)− ie(φ∗∂µφ− φ∂µφ∗)Aµ + e2AµA
µφ∗φ−m2φ∗φ− 1

4
F µνFµν =

(∂µφ+ ieAµφ)(∂µφ∗ − ieAµφ∗)−m2φ∗φ− 1

4
F µνFµν (144)

From classical electrodynamics we recognize the electromagnetic field tensor Fµν .
Furthermore, we see that the derivative ∂µ is replaced by a covariant derivative Dµ =
∂µ + ieAµ. It transforms as the field φ,

δ(Dµφ) = δ(∂µφ) + ie(δAµ)φ+ ieAµδφ = −iΛ(Dµφ). (145)
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Just like in the case of classical mechanics, one may replace the momentum p →
p − eA. The Hamiltonian of a charged particle in the presence of electromagnetic fields
H reads

H =
1

2m
(P− eA)2 + eφ,

which is also obtained here with the covariant derivative.
The field φ describes a field with charge +e, φ∗ the field with quanta -e. We see, that

the electromagnetic field arises naturally from a gauge principle. To make this explicit, one
can state that it is necessary to introduce the electromagnetic field, if nature is invariant
under the local U(1)-gauge symmetry φ→ φe−iΛ(x).

3.2 Electroweak Interaction in the Standard Model

This section gives an overview of the electroweak interaction in the standard model. It
is assumed that the reader is familiar with quantum field theory; for an introduction to
quantum field theory see for example references [42] and [43].

3.2.1 Electroweak Bosons

In the standard model, the electroweak interaction is described in terms of the SU(2)*U(1)
symmetry groups. The group SU(2) has n2 − 1 = 3 generators, T1, T2, and T3. The
generators follow the anti-commutation relation

[Ti, Tj ] = iεijkTk . (146)

In the fundamental representation, the generators are given by the Pauli spin matrices,

T1 =
1

2

(
0 1
1 0

)
, T2 =

1

2

(
0 − i
i 0

)
, T3 =

1

2

(
1 0

0 − 1

)
. (147)

Furthermore, one defines

T± =
T1 ± iT2√

2
, (148)

leading to
[T+, T−] = T3 , [T3, T±] = ±T± , T− = T †+ . (149)

The covariant derivative in the electroweak interaction is

Dµ = ∂µ − ig(W µ
1 T1 +W µ

2 T2 +W µ
3 T3)− ig′BµY . (150)

Here, g is the SU(2) coupling constant and g′ the U(1) coupling constant. The U(1)
charge Y is called the weak hypercharge. Bµ is the U(1) field, and the three W µ fields are
the SU(2) fields (for which one also defines W± = −(±W2 −W1)/

√
2). Instead of g and

g′ one usually applies the electromagnetic coupling constant e and the angle θw, defined
through

g =
e

sin(θw)
, g′ =

e

cos(θw)
. (151)
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The gauge fields A and Z result from the orthogonal rotation of B and W3,(
B
W3

)
=

(
cos(θw) sin(θw)
− sin(θw) cos(θw)

)(
A
Z

)
. (152)

The covariant derivative may then be written as

Dµ = ∂µ + ie(AµQ− ig(W+µT+W
−µT−) + i

g

cos θw
Z(T3 −Q sin2 θw) . (153)

Due to the presence of SU(2), a non-abelian group, self-interactions occur between the
gauge bosons. The field tensors can be written as:

F µν
1 = ∂µW ν

1 − ∂νW µ
1 + g(W µ

2 W
ν
3 −W ν

2W
µ
3 ) ,

F µν
2 = ∂µW ν

2 − ∂νW µ
2 + g(W µ

3 W
ν
1 −W ν

3W
µ
1 ) ,

F µν
3 = ∂µW ν

3 − ∂νW µ
3 + g(W µ

1 W
ν
2 −W ν

1W
µ
2 ) ,

F µν
Y = ∂µBν − ∂νBµ , (154)

yielding the gauge-kinetic Lagrangian

−1

4
(F µν

1 Fµν1 + F µν
2 Fµν2 + F µν

3 Fµν3 + F µν
Y FµνY =

−(∂µW
+
ν )(∂µW ν−) + (∂µW

+
ν )(∂νW µ−)

−1

2
(∂µAν)(∂

µAν) +
1

2
(∂µAν)(∂

νAν)

−1

2
(∂µZν)(∂

µZν) +
1

2
(∂µZν)(∂

νZν)

+non− quadratic terms . (155)

The non-quadratic terms give rise to the vertices that are shown in Fig. 14.
In the standard model, there is a scalar doublet, denoted Φ, with hypercharge Y = 2.

The term in the Lagrangian µΦ†Φ leads, with negative µ, to the symmetry breaking of
SU(2)*U(1) into U(1) of the electromagnetic interaction (the Higgs mechanism). We write

Φ =

(
φ+

φ0

)
=

(
φ+

v + (H+iχ)√
2

)
. (156)

Here, H and χ are Hermitian Klein-Gordon fields, H is the Higgs boson, χ the Gold-
stone boson that is absorbed into the longitudinal component of the massive Z0-boson,
and the bosons φ± are absorbed into the longitudinal components of the W±-bosons. The
conjugate doublet field Φ̃ with hypercharge Y= -1/2 is defined through

Φ̃ = iτ2Φ
†T =

(
φ0†

−φ−
)

=

(
v + (H−iχ)√

2

−φ−

)
. (157)

The gauge-kinetic Lagrangian for this field becomes[
∂φ− − ieAφ− + i

g√
2
W−φ0† + i

g

2 cos θw
Z(cos2 θw − sin2 θw)φ−

]
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Figure 14: Self-interactions of the Electroweak gauge bosons.

×
[
∂φ+ + ieAφ+ − i

g√
2
W+φ0 − i

g

2 cos θw
Z(cos2 θw − sin2 θw)φ+

]

+

[
∂φ0† + i

g√
2
W+φ− − i

g

2 cos θw
Zφ0†

]

×
[
∂φ0 − i

g√
2
W−φ+ + i

g

2 cos θw
Zφ0

]
. (158)

With the relation

v =

√
2

g
mW =

√
2

g
cos θwmZ , (159)

this can be converted to

(∂φ−)(∂φ+) +
1

2

[
(∂H)2 + (∂χ)2

]
+mW

2W+W− +
1

2
mZ

2Z2

+imW (W−∂φ+ −W+∂φ−) +mZZ∂χ

+non− quadratic terms. (160)

The contributions from the second line are removed by the gauge-fixing part of the La-
grangian, the terms in the third part are shown in Fig. 15.

The group SU(2) is a non-abelian group. It contains infinite contributions to the
propagator arising from certain diagrams. ’t Hooft has proven that SU(2) can be renor-
malized. In order to do so one needs to choose a specific gauge. The gauge-fixing part in
the Lagrangian and the associated ghost fields are discussed next.
The quadratic parts in the Z and χ fields in the Lagrangian reads

−1

2
(∂µZν) [(∂µZν)− (∂νZµ)] +

1

2
mZ

2ZµZ
µ +

1

2
(∂µχ)(∂µχ) +mZZµ(∂

µχ). (161)
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Figure 15: Gauge-interactions of the SU(2)*U(1) scalars.

One now fixes the gauge by using the term in the Lagrangian

− 1

2ξZ
(∂µZ

µ − ξZmZχ)2 = − 1

2ξZ
(∂µZ

ν)(∂νZ
µ) +mZχ(∂µZ

µ)− ξZ
2
mZ

2χ2. (162)

Here, the real positive parameter ξZ relates different gauges. In the Landau gauge it
is chosen 0, in the Feynman gauge it is 1. Measureable quantities should be independent
on the choice of gauge. Adding this gauge-fixing term to the Lagrangian, we see that the
terms for χ yield the usual propagator for a scalar boson with mass

√
ξZmZ

2. The mixed
terms with both χ and Z are removed by integration in parts.

The remaining terms yield the propagator for the Z-boson. The second part contains
a pole on the unphysical squared mass ξzmZ

2. Its effects must cancel out with the effects
of the propagator of χ and of the ghost fields.

For the W-sector the same procedure yields also the usual charged scalar propagator for
the φ± particles with a mass-squared of ξwmW

2, and a W propagator with an unphysical
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part with mass ξwmW
2, which has to cancel in all observeables. For the photon, one has

the gauge-fixing term

− 1

2ξA
(∂µAµ)(∂

νAν). (163)

The gauges for the Z, W , and A fields may be chosen independently (the three ξ-factors
are three, possibly different, real non-negative numbers). The propagators of the gauge
bosons and of the scalars are shown in figures 16 and 17, respectively.

Figure 16: Propagators of the gauge bosons.

Figure 17: Propagators of the scalars.

The second step in renormalizing the theory leads to the introduction of ghost fields.
These are mathematical constructs obeying a Grassmann algebra. The procedure of fixing
the gauge and introducing ghost fields is necessary to remove contributions to the action
of ∫

DADWDZe−i
∫
Leffdx

that are only connnected via gauge transformations. The action is given by integrating
the Lagrangian density for all possible paths and all possible field configurations. In the
formula above,

∫
DA,

∫
DW ,

∫
DZ stand for the functional integrals over the gauge fields.

Since a gauge transformation leaves the Lagrangian invariant, one wants to remove these
infinite contributions.

The ghost fields are non-physical fields since they follow Fermi-Dirac statistics but
have boson propagators; they can only enter inside loops in Feynman diagrams. The
propagators of the ghost fields are shown in Fig. 18, and the vertices that they contribute
to in Fig. 19. Note, that they contain strengths depending on the arbitrary gauge-fixing
parameters ξ; these contributions should cancel in the calculations of all physical observe-
ables.
The scalars in the Lagrangian also have self-interaction via the potential V , with

V = µφ†φ+ λ(φ†φ)2,

46



Figure 18: Propagators of the ghost fields.

Figure 19: Vertices with a ghost field involved.

φ†φ = v2 +
√

2vH +
H2 + χ2

2
+ φ−φ+. (164)

In order to have a stable vacuum one requires that the linear term in the Higgs field
disappears: µ = −2λv2. Furthermore, we use λ = mH

2/(4v2) and Eq. 159 to obtain

V = −mW
2mH

2

2g2
+
mH

2

2
H2 +

gmH
2

2mW

[
H2 + χ2

2
+ φ−φ+

]
H

+
g2mH

2

8mW
2

[
H2 + χ2

2
+ φ−φ+

]2

. (165)

We can recognize a vacuum-energy term −mW
2mH

2/2g2, the mass term for the Higgs
field, and terms with third and fourth powers of the fields, which give rise to the vertices
in Fig. 20.

3.2.2 Fermions in the Standard Model

We discussed the full bosonic section of the electroweak theory in the standard model.
We proceed with the discussion of the fermions. The electroweak interaction acts on left-
handed doublets and right-handed singlets. The quarks form 3 doublets with hypercharge
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Figure 20: Vertices with a ghost field involved.

Y = -1/6 and 6 singlets.

QL =

(
pL
nL

)Y=+1/6

pR
Y=Q=+2/3 nR

Y=Q=−1/3. (166)

The gauge-kinetic Lagrangian for the quark sector reads for a fermion multiplet f

f̄γµ
[
i∂µ − eAµQ+ g(W+

µ T+ +W−
µ T−) +

g

cos θw
Zµ(T3 −Q sin2 θw)

]
. (167)

This can be separated in the electromagnetic interaction terms LA = −eAµJµem with the
electromagnetic current Jµem equal to

Jµem =
2

3
(p̄Lγ

µpL + p̄Rγ
µpR)− 1

3
(n̄Lγ

µnL + n̄Rγ
µnR) , (168)

a neutral-current part LZ

LZ =
g

2 cos θw
Zµ(p̄Lγ

µpL − n̄Lγ
µnL − 2 sin2 θwJ

µ
em) , (169)

and the charged-current part that interchanges members of the doublet

LW =
g√
2
(W+

µ p̄Lγ
µnL +W−

µ n̄Lγ
µpL) . (170)

The lepton sector looks similar. It contains lefthanded doublets with weak hypercharge
-1/2 and righthanded singlets with Q=Y=-1:

LL =

(
νL
lL

)Y=−1/2

lQ=Y=−1
R . (171)

48



Figure 21: Gauge interactions of the fermions in the standard model.

No righthanded neutrino’s are introduced in the standard model.
The electromagnetic current reads

LA = −eAµ
(
l̄Lγ

µlL + (l̄Rγ
µlR

)
, (172)

and the neutral current

LZ = Zµ

[
g

2 cos θw

(
ν̄Lγ

µνL − l̄Lγ
µlL
)

+
g sin2 θw
cos θw

(
l̄Lγ

µlL + l̄Rγ
µlR

)]
. (173)

The charged current is given by

LW =
g√

2(W+
µ ν̄Lγ

µlL +W−
µ l̄Lγ

µνL
(174)

Furthermore, we have the Yukawa interactions involving the fermions and the Higgs
doublet:

LY = −
(
Q̄LΓφnR + Q̄L∆φ̃pR + L̄LΠlR

)
+ h.c. (175)
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with Γ, ∆, and Π arbitrary complex numbers (and as usual h.c. stands for the Hermitian
conjugate). By replacing φ0 with its vacuum-expectation value v we can extract the mass
terms for the fermions:

Lmass = −n̄LMnnR − p̄L
Mp√
2v
pR + l̄LMllR + h.c. (176)

with the particle masses squared Mn = vΓ, Mp = v∆, and Ml = vΠ. The remaining

Figure 22: Yukawa couplings of the fermions.

terms are the Yukawa interactions between the fermions and the Higgs fields:

LY − LMass = −n̄L
Mn√
2v

(H + iχ)nR − p̄L
Mp√
2v

(H − iχ)pR − l̄L
Ml√
2v

(H + iχ)pR

−p̄L
Mn

v
φ+nR + n̄L

Mp

v
φ−pR − ν̄L

Ml

v
φ+lR + h.c. (177)

We know from observation that there are three light families both in the lepton sector
and in the hadron sector. The terms Γ, ∆, and Π, leading to the masses of the fermions,
are represented by ng × ng matrices in generation space, where ng = 3 in the standard
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model. This fact is not understood from a general principle ( e.g. from a gauge theory),
and also the matrices Γ, ∆, and Π do not have to be Hermitian (but they are unitary;
else there would be fermion production/decay from/to the vacuum).

The Yukawa couplings Mp, Mn are not necessarily Hermitian, but they can be diago-
nalized by a unitary transformation

pL = UP
L uL, pR = UP

R uR, nL = Un
LdL, nL = Un

RdR,

with the mass matrices

Up†
L MpU

p
R = Mu =


 mu 0 0

0 mc 0
0 0 mt


 , Un†

L MnU
n
R = Md =


 md 0 0

0 ms 0
0 0 mb


 . (178)

The charged-current interaction written in terms of the mass eigenstates reads then

LW =
g√
2
(W+

µ ūLγ
µV dL + (W−

µ d̄Lγ
µV †uL), (179)

with V the CKM matrix

VCKM = Up†
L U

n
L =


 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (180)

In the standard model, there are no right-handed neutrinos and the left-handed neu-
trinos are massless. There is no neutrino mixing and lepton family is conserved. The
gauge interactions of the fermions are shown in Fig. 21 and the Yukawa interactions in
Fig. 22. In these figures, u and a greek index α refer to the member of the quark multiplet
with charge +2/3, d and a latin index k to the multiplet with Q = −1/3. In the following
section we will discuss the CKM-mixing matrix at lenght.
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4 Quark Mixing

4.1 Introduction

The decays n → pe−νe, µ
+ → e+νµνe and π+ → µ+νµ all take place through the ex-

change of charged currents. The decay rates for these processes are vastly different.
However, when we correct these rates for the differences in phase space, one observes
that the charged currents couple with approximately a universal Fermi coupling constant
G =

√
2g2/M2

W . This is called the quark-lepton universality of the weak interaction.
In these decay processes, shown in Fig. 23, the hadrons involved all have the same
strangeness (S = 0) and the hadronic current is a strangeness conserving, or ∆S = 0 cur-
rent. Experimentally, it is observed that the ∆S = 0 hadronic current is slightly weaker
the purely leptonic current (a few percent).

νe

d
u
u
d

e

d
u

W

p

n

e

µ
W

+

+

νe

νµ

π+ u
d

µ

W

+

νµ

Figure 23: (a) Charged-current decay n→ pe−νe, µ
+ → e+νµνe, and π+ → µ+νµ.

νe

S=0∆

d
u
u
d

e

d
u

W

p

n

(a)

νe

d
u
u
d

e

u

W

p∆

Λ0 s

(b) S=1

Figure 24: (a) Strangeness conserving charged-current decay n→ pe−νe; (b) Strangeness
changing charged-current decay Λ0 → pe−νe.

Fig. 24 shows that when instead of n → pe−νe, one studies decays such as Λ0 → pe−νe
the hadronic current is a strangeness changing, or ∆S = 1, weak current. Measurements
show that the strangeness changing hadronic current is about twenty times weaker than
the ∆S = 0 hadronic current and it seems that universality is breaking down.
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4.2 Cabibbo Formalism

In order to maintain quark-lepton universality and to avoid the introduction of additional
coupling constants, Cabibbo [1] proposed in 1963 to modify the quark doublets28. He
assumed that the weak interaction couples to ‘rotated’ quark states and involves only u
and d′ quark states. The weak interaction eigenstates become linear superpositions of the
strong interaction eigenstates and the quarks can be assigned to a ‘weak isospin’ doublet,(

u
d′

)
=

(
u

dcosθC + ssinθC

)
, (181)

where θC is the Cabibbo angle and d′ the Cabibbo rotated quark.
With this formalism several decay rates turned out to be consistent when θC ≈ 13◦

was chosen. Not only is the difference between ∆S = 0 and ∆S = 1 transitions explained,
but also the slight difference between ∆S = 0 and pure leptonic decays. The transition
rates can then be written as

Γ(µ+ → e+νµνe) ∝ g4 purely leptonic
Γ(n→ pe−νe) ∝ g4cos2θC ∆S = 0 semileptonic
Γ(Λ → pe−νe) ∝ g4sin2θC ∆S = 1 semileptonic

(182)

With this formalism there are now ‘Cabibbo favored’ (proportional to cosθC) and
‘Cabibbo suppressed’ transitions (proportional to sinθC). One can compare ∆S = 1 and
∆S = 0 decays, for example

Γ(K+ → µ+νµ)

Γ(π+ → µ+νµ)
∼ sin2θC ∼

1

20
, (183)

and the predicted decay rates are in good agreement with the data.

4.3 GIM Scheme

A major problem with Cabibbo’s theory was the experimental observation of the absence
of strangeness-changing neutral currents. To explain this difficulty, Fig. 25 shows the
first-order Feynman diagrams for the reactions K+ → µ+νµ and K0

L → µ+µ−. The
branching fractions have been measured and one has Γ(K+ → µ+νµ)/Γ = 63.51± 0.18%
and Γ(K0

L → µ+µ−)/Γ = (7.2± 0.5)× 10−9.
Glashow, Iliopoulos and Maiani (GIM) proposed in 1970 [5] the existence of the c

quark29. In the GIM scheme there is a second doublet, consisting of the lefthanded c
quark and a combination of s and d quarks that is orthogonal to d′. Thus we have(

u
d′

)
=

(
u

dcosθC + ssinθC

)
,

(
c
s′

)
=

(
c

scosθC − dsinθC

)
. (184)

Neutral current occurs for d′ and s′, not for d and s. We need to calculate the sum of the

28At that time only the u, d and s quark flavors were known.
29Note that the c quark was discovered in 1974.
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Figure 25: (a) Charged-current decay K+ → µ+νµ; (b) neutral-current decay K0
L →

µ+µ−.

matrix elements for the two families that contribute. For the neutral current we find

< d′|Jnc|d′ > + < s′|Jnc|s′ >
=< d cos θC + s sin θC |Jnc|d cos θC + s sin θC >
+ < s cos θC − d sin θC |Jnc|s cos θC − d sin θC >
= < d|Jnc|d > (cos2 θC + sin2 θC)+ < s|Jnc|s > (cos2 θC + sin2 θC)
+ < s|Jnc|d > (sin θC cos θC − sin θC cos θC)
+ < d|Jnc|s > (cos θC sin θC − sin θC cos θC)
= < d|Jnc|d > + < s|Jnc|s > .

(185)
One sees that with the introduction of the second lefthanded quark doublet the main
problem with Cabibbo’s theory is solved. There is no contribution of a neutral current
connecting the down and strange quarks. The Z0 couples directly only to uu, dd, ss
and cc. Consequently, the first-order diagram (b) of Fig. 25 does not contribute to the
transition rate for the decay K0

L → µ+µ−.
Fig. 26 shows possible second-order contributions to the decay K0

L → µ+µ− involv-
ing two intermediate W bosons. In the absence of a c quark the process would proceed
according to diagram (a) of Fig. 26. The matrix element for diagram (a) is propor-
tional to M∼ g4 cos θC sin θC and the calculated rate significantly exceeds the measured
value. The matrix element for diagram (b) corresponds to M ∼ −g4 cos θC sin θC and
this contribution cancels with diagram (a). Note that this cancellation is not perfect,
Γ(K0

L → µ+µ−)/Γ = (7.2± 0.5)× 10−9, due to the mass difference between the u and c
quarks.

4.3.1 Summary of Quark Mixing in Two Generations

The GIM model describes the flavor-changing neutral current in the four-quark case. In
this model the weak interaction couples to lefthanded u ↔ d′ and c ↔ s′ quark states.
The electroweak interaction states d′ and s′ are orthogonal combinations of the quark
mass eigenstates of definite flavor, d and s. The quark mixing is described by a single
parameter θC . One has (

d′

s′

)
=

(
cos θC sin θC
− sin θC cos θC

)(
d
s

)
. (186)
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Figure 26: Second-order contributions to the neutral-current decay K0

L → µ+µ−. (a)
Feynman diagram with an intermediate u quark; (b) intermediate c quark.

We can rewrite the above expression in the form

d′i =
∑
j

Vijdj, (187)

with d1 ≡ dL and d2 ≡ sL where L denotes a lefthanded quark state. The matrix V is
unitary. One has ∑

i

d
′
id
′
i =

∑
i,j,k

djV
†
jiVikdk =

∑
j

djdj, (188)

and flavor-changing transitions are forbidden. Next, we discuss the procedure for three
generations.
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4.4 The Cabibbo-Kobayashi-Maskawa Mixing Matrix

The SU(2) × U(1) Standard Model describes the electroweak interactions between the
fermionic building blocks of nature, the quarks and leptons. The lefthanded fermions for
the weak interaction can be considered as elementary weak-isospin doublets, while the
righthanded fermions are isosinglets.(

νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

e−R µ−R τ−R

and

(
u
d′

)
L

(
c
s′

)
L

(
t
b′

)
L

uR, dR cR, sR tR, bR

(189)

The quark mass eigenstates differ from the weak eigenstates and the mixing between
different quarks is given by the complex Cabibbo-Kobayashi-Maskawa matrix. The matrix
elements relate eigenstates of mass and weak interaction, as

 d′

s′

b′


 =


 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb




 d
s
b


 . (190)

Fig. 27 shows that the element Vij specifies the coupling of the charged currents to
the quarks with flavor i and j (for example d→ u+W−).

W

d

Vtd

t

+

+
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s

Vus

Vud
W

u
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+ +

+ +

W

W
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cd

c

s

c

W W

W

V

V
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b

tb
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s

ts

W

u

V+ ub

b

cb

c

b

(a)

(b)

(c)

Figure 27: The CKM matrix elements are related to the strength of the coupling of the
electroweak charged currents to different quark flavors. The diagrams can be organized as
follows: a) Cabibbo allowed, b) Cabibbo suppressed, and c) almost forbidden transitions.

It is assumed that the CKM matrix is unitary,

U†U = UU† = 1 andU† = U−1. (191)

Consequently, we have

V † =


 V ∗

ud V ∗
cd V ∗

td

V ∗
us V ∗

cs V ∗
ts

V ∗
ub V ∗

cb V ∗
tb


 = V −1. (192)
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Our present knowledge[2] of the 90 % confidence level on the magnitude of the matrix
elements is as follows

 0.9745 to 0.9757 0.219 to 0.224 0.002 to 0.005
0.218 to 0.224 0.9736 to 0.9750 0.036 to 0.046
0.004 to 0.014 0.034 to 0.046 0.9989 to 0.9993


 . (193)

Figure 28: Determination of the CKM matrix element Vud from measurement of the
neutron life time.

The parameters in the CKM matrix are not predicted by theory, but are fundamental
parameters of the Standard Model with three families. By measuring each element inde-
pendently, we can test unitarity and determine whether all couplings are consistent with
the CKM matrix for three families. Note that our present knowledge of the 2 × 2 CKM
matrix is insufficient to predict a third generation. Fig. 28 shows results for Vud from
precision measurements of the life time of the neutron.

There are several representations of the CKM matrix. It can be reduced to a form
where there are only three generalized Cabibbo angles, θ1, θ2 and θ3, which one recognizes
as so-called Euler angles, and a phase factor δ.

V =


 1 0 0

0 c2 s2

0 −s2 c2




 1 0 0

0 1 0
0 0 eiδ




 c1 s1 0
−s1 c1 0
0 0 1




 1 0 0

0 c3 s3

0 −s3 c3


 , (194)

where ci represents cosθi and si represents sinθi. The matrix is again unitary,

V † =


 1 0 0

0 c3 −s3

0 s3 c3




 c1 −s1 0
s1 c1 0
0 0 e−iδ




 1 0 0

0 c2 −s2

0 s2 c2


 = V −1. (195)
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The product is

V =


 c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

s1s2 −c1s2c3 − c2s3e
iδ −c1s2s3 + c2c3e

iδ


 . (196)

In the limit θ2 = θ3 = 0, the third generation decouples, and the usual Cabibbo mixing
of the first two generations is recovered. One can identify θ1 with the Cabibbo angle.

Wolfenstein noted[29] that an empirical hierarchy in the magnitudes of the matrix
elements can be expressed as follows

V =


 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (197)

where λ = sinθc, with θc the Cabibbo angle, and A ≈ 1.

For an n × n unitary matrix there are n(n − 1)/2 real angles and (n − 1)(n − 2)/2
phases. For the three generation CKM matrix we thus have 3 angles and 1 phase.
Exploiting unitarity,

 V ∗
ud V ∗

cd V ∗
td

V ∗
us V ∗

cs V ∗
ts

V ∗
ub V ∗

cb V ∗
tb




 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =


 1 0 0

0 1 0
0 0 1


 , (198)

we can obtain six relations,

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0.

(199)

The above expressions each represent a sum of three complex numbers.

Next, we consider the orthogonality condition between the first and third columns of V ,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (200)

It is possible to represent this expression by a triangle in the complex plane. This is shown
in Fig 44 together with the representation of a second useful relation,

VtbV
∗
ub + VtsV

∗
us + VtdV

∗
ud = 0. (201)

Note that the other four relations would result in topological strange triangles.
The angles α, β and γ are defined by

α ≡ arg

(
− VtdV

∗
tb

V ∗
ubVud

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
, γ ≡ arg

(
−V

∗
ubVud
VcdV ∗

cb

)
. (202)

The angles (α′, β ′, γ′) of the second useful triangle can be defined in a similar way.
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Figure 29: Representation in the complex plane of the triangle formed by the CKM matrix
elements of the first and third columns.

It is useful to rescale expression (200) by dividing by its second term. We obtain

1 +
VudV

∗
ub

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

= 0. (203)

In this way we choose to orient the triangle such that VcdV
∗
cb lies along the horizontal.

In our parametrization Vcb is real, while Vcd is real to a good approximation in any case.
Furthermore, we set the cosines of small angles to unity and obtain

V ∗
ub + Vtd = sin θCV

∗
cb. (204)

Fig 30 shows the corresponding triangle in the complex plane.
After rescaling the triangle with the factor 1/| sin θCVcb|, the base is of unit length and

the coordinates of the vertices become

A(Re(Vub/| sin θCVcb|,−IM(Vub/| sin θCVcb|), B(1, 0), C(0, 0). (205)

In the Wolfenstein parametrization the coordinates of the vertex A of the unitary triangle
are simply (ρ, η), as shown in Fig. 30. All amplitudes can be measured, due to hermiticity
of V V †.

Different authors remarked that all CP violating observables are proportional to a
quantity J , which is independent of quark phases

J = Im{VusVcbV ∗
ubV

∗
cs} = Im{VudVtbV ∗

ubV
∗
td}. (206)
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Figure 30: Representation in the complex plane of the triangle formed by the CKM matrix
elements of the first and third columns. The triangle has been rescaled.

In Wolfenstein’s parametrization one has J ≈ A2λ6η, where J is equal to 2Aλ6 times the
area of the unitary triangle.

Without prove we state that for a theory that contains only four quarks, the symmetry
CP is conserved. In a theory with six quarks it is possible that the short- and long-lived
neutral kaons are not exact eigenstates of CP. It turned out to be possible to perform
such experiments that demonstrate the violation of CP (or T ) in K0 decay. This will be
the subject of the next section.
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5 The neutral Kaon system

5.1 Particle Mixing for the Neutral K - Mesons

The action of symmetry principles will be discussed first for the creation and decay of neu-
tral K-mesons. Neutral K-mesons are produced in reactions with the strong interaction,
for example

π− + p → Λ + K0

S : 0 + 0 → −1 + 1

π− + p → Λ + K
0

+ n + n
S : 0 + 0 → 1 − 1 + 0 + 0.

(207)

Together with the charged kaons they form an isospin doublet (K0, K+) and an antipar-

ticle doublet (K−, K
0
). These particles are strong interaction eigenstates and have a

well defined strangeness, S = 1 for the K0, and S = −1 for the K
0
. Neutral kaons

can be obtained by associated production and the pion energy threshold for the reaction

π−+p→ Λ+K0 is 0.91 GeV, whereas the threshold for the reactions π++p→ K++K
0
+p

and π− + p→ Λ +K
0
+ n + n amounts to 1.5 and 6.0 GeV, respectively. Consequently,

it is possible to produce a pure K0 beam through a suitable choice of pion energy. The
intrinsic parity of the neutral kaons is negative, just like in the case of pions.

Under the combined operation CP one has30

CP |K0 > = −|K0
>

CP |K0
> = −|K0 > .

(208)

Clearly both the K0 and the K
0

are no eigenstates of CP (because S changes with two
units). However, with the help of the superposition principle we can construct two new
states, that are eigenstates of CP ,

|K0
1 >≡ 1√

2
(|K0 > −|K0

>) ; CP |K0
1 > = +|K0

1 >

|K0
2 >≡ 1√

2
(|K0 > +|K0

>) ; CP |K0
2 > = −|K0

2 > .
(209)

The particle K0 is the antiparticle of K
0

and both mesons have, according to the CPT -
theorem, the same mass and lifetime. This does not hold for the K0

1 and K0
2 , since they

are not each other’s antiparticles.

All this is important since the K-mesons are the lightest mesons with S 6= 0 and therefore
decay weakly (both in the electromagnetic and in the strong interaction the quantum
number S is conserved). We first study the decay of two pions. We start with the π+π−

system. In het center of mass of both pions the operation P interchanges the π+ and
the π−. Because the particles are bosons, their wave function must be symmetric under
particle exchange. Charge conjugation also interchanges the π+ and π−, and the combined
operation CP results in the initial state, independent of orbital angular momentum l.

30Here, one encounters different notations in the literature since the overall phase of the states is
arbitrary.
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The same is true for a system with two neutral pions, where Bose symmetry excludes the
antisymmetric odd-l states. Therefore, one has

CP |2π >= +|2π > . (210)

Assuming that CP is conserved in the weak interaction31, the state K0
1 can decay into

two pions and three pions, but the three-pion state cannot exist in the lowest angular
momentum state. On the other hand32

CP |3π >' −|3π > . (211)

Thus, the K0
2 -meson can decay into three pions, but not two.

We differentiate between the following observed decays of the neutral kaons [2].

KS ≈ K0
1 → π+ + π− B.R. (68.61± 0.28)%
→ π0 + π0 B.R. (31.39± 0.28)%
→ π+ + π− + γ B.R. (1.78± 0.05)× 10−3

→ γ + γ B.R. (2.4± 0.9)× 10−6

→ π± + e∓ν B.R. (6.70± 0.07)× 10−4

→ π± + µ∓ν B.R. (4.69± 0.06)× 10−4

τ = (8.927± 0.009)× 10−11 s

KL ≈ K0
2 → π0 + π0 + π0 B.R. (21.12± 0.27)%
→ π0 + π+ + π− B.R. (12.56± 0.20)%
→ π± + µ∓ν B.R. (27.17± 0.25)%
→ π± + e∓ν B.R. (38.78± 0.27)%
→ γ + γ B.R. (5.92± 0.15)× 10−4

→ π0 + γ + γ B.R. (1.70± 0.28)× 10−6

→ π0 + π± + e∓ν B.R. (5.18± 0.29)× 10−5

→ π± + e∓ν + γ B.R. (1.3± 0.8)%
→ π+ + π− + γ B.R. (4.61± 0.14)× 10−5

→ π+ + π− B.R. (2.067± 0.035)× 10−3

→ π0 + π0 B.R. (9.36± 0.20)× 10−4

→ µ+ + µ− B.R. (7.2± 0.5)× 10−9

→ µ+ + µ− + γ B.R. (3.23± 0.30)× 10−7

→ e+ + e− + γ B.R. (9.1± 0.5)× 10−6

→ e+ + e− + γ + γ B.R. (6.5± 1.2)× 10−7

→ e+ + e− + e+ + e− B.R. (4.1± 0.8)× 10−8

τ = (5.17± 0.04)× 10−8 s

(212)

For the decay into two pions there is an energy available of about 215 MeV, and for
the decay into three pions of about 78 MeV. The phase space for three-pion decay is
consequently significantly smaller than that for the decay into two pions. One thus expects

31This is only an approximation. In section 5.4 we will discuss CP violation in the decay of neutral
kaons. Consequently, we will change notation: K0

1 and K0
2 will be the CP eigenstates, while K0

S and K0
L

will be used to denote the short-lived and long-lived decay states.
32In the 3π-decay of the K0

2 there is only a relatively small amount of kinetic energy available for the
three pions (Q ≈ 78 MeV). Their orbital angular momentum is therefore mainly l = 0. From this it
follows that CP = −1.
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that the decay times will be significantly different. Also their massa’s are different, but
that difference is small

mK0
2
−mK0

1
= m2 −m1 = (3.491± 0.009)× 10−6 eV. (213)

The system is almost completely degenerate.

∆E

E
=

∆m

mK
' 7× 10−15, (214)

and this leads to a series of interesting phenomena.

The wave functions of both particles have in vacuum the following time dependence,

|ψ1(τ) >= |ψ1(0) > e−im1τ− 1
2
Γ1τ and |ψ2(τ) >= |ψ2(0) > e−im2τ− 1

2
Γ2τ , (215)

with m1,2 and Γ1,2 the masses and decay rates of K0
1 and K0

2 . Here τ is the eigentime,
τ = t

√
1− v2, and t is the time measured in the laboratory.

Figure 31: A beam initially consisting of only K0-mesons transforms after a certain time

into a K0
2 beam, that contains equal amounts of K0 and K

0
.

We consider what happens when a system composed of only K0’s, as produced in the
reaction π− + p → Λ +K0, decays in vacuum. The probability to find a K0 must then,
according to the superposition principle of quantum mechanics, have the following time
dependence,

I(τ) = | < K0|ψ(τ) > |2 =
1

4

{
e−Γ1τ + e−Γ2τ + 2e−

Γ1+Γ2
2

τcos(m2 −m1)τ
}
. (216)
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The probability to find a K
0

amounts to

I(τ) = | < K
0|ψ(τ) > |2 =

1

4

{
e−Γ1τ + e−Γ2τ − 2e−

Γ1+Γ2
2

τcos(m2 −m1)τ
}
. (217)

The K0 first decays fast, during which it preferentially emits two pions. After a certain
time (τ � Γ−1

S ) we obtain an almost pure K0
2 state, that among others decays by three-

pion emission. Fig. 31 shows that in the intermediate region oscillations occur, that can
be readily observed. Data on oscillations are presented in Fig. 32.

Figure 32: Number of π+π− decays from K0 and K0 as function of eigentime. The best
fit demands the existence of an interference term between K0

1 and K0
2 .

We can define the asymmetry A(τ) as

A(τ) =
I(τ)− I(τ)

I(τ) + I(τ)
=

2e−
Γ1+Γ2

2
τ

e−Γ1τ + e−Γ2τ
cos(m2 −m1)τ. (218)

This asymmetry represents the beam strangeness < S > which oscillates with a frequency
∆m/2π.
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Figure 33: Strangeness oscillations and the interference term. From the fit one can
determine the K0

2 −K0
1 mass difference ∆m and the phase φ+− between both amplitudes.

Fig. 33 shows that it can be measured, because in semileptonic decay one has the
∆S = ∆Q rule, where Q is the charge of the hadron. The K0 predominantly decays into

K0 → π− + e+ + νe; ∆S = −1, ∆Q = −1, (219)

while the K
0

decays into the experimentally different channel

K
0 → π+ + e− + ν̄e; ∆S = +1, ∆Q = +1. (220)

The emperical rule ∆S = ∆Q can be understood by considering for example the first-

order Feynman diagrams for the reactions K0 → π− + e+ + νe and K
0 → π+ + e− + ν̄e

shown in Fig. 34. The basic process is the decay of the s (s) quark with the d (d) quark
acting as a spectator.

The ratio of the number of leptons with the ‘wrong’ sign (e.g. electrons) and leptons
with the ‘right’ sign (e.g. positrons) for a state that started as K0 integrated over time is

rK =
(Γ1 − Γ2)

2 + 4(∆m)2

2(Γ1 + Γ2)2 − (Γ1 − Γ2)2 + 4(∆m)2
, (221)

with ∆m = m1 − m2. Since Γ1, the decay rate of the K0
1 is much larger than Γ2, the

decay rate of K0
2 , the value for rK with be close to unity.

5.2 Mass and Decay Matrices

The hamiltonian that determines the time evolution of a particle state ψ is

H = Hstrong +Hem +Hweak (222)
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Figure 34: First-order Feynman diagrams for the reactions K0 → π− + e+ + νe and

K
0 → π+ + e− + ν̄e.

and obeys

i
∂ψ

∂τ
= Hψ. (223)

For an unstable particle of mass M and lifetime τlife = 1/Γ, the wave function in the
rest frame of the particle has time dependence exp{−i(M − iΓ/2)τ} and the Schrödinger
equation is

i
∂ψ

∂τ
= Hψ =

(
M − i

Γ

2

)
ψ, (224)

where M and Γ are positive numbers.

Next we consider a mixed system of unstable particles, e.g. K0 and K
0
, and as-

sume that at time τ we have an arbitrary superposition of states K0 and K
0
, with time

dependent coefficients c1 and c2,

ψ(τ) = c1(τ)|K0 > +c2(τ)|K
0
> . (225)

The state can be represented by a two-component wave function (see Eq. (225))

ψ(τ) =

(
c1
c2

)
, (226)

where c1(τ) and c2(τ) are the amplitudes for finding K0 and K
0

at time τ , respectively,
when the initial state was ψ(0). When we insert

|K0 >=
1√
2
(|K0

1(0) > +|K0
2(0) >), and |K0

>=
1√
2
(|K0

1(0) > −|K0
2 (0) >), (227)

in Eq. (225), we find

ψ(τ) = |K0
1(τ) > +|K0

2(τ) >=

[
c1(τ) + c2(τ)√

2

]
|K1(0) > +

[
c1(τ)− c2(τ)√

2

]
|K2(0) > .

(228)
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From Eq. (215) we derive

i
∂ψ1,2

∂τ
=
(
m1,2 − i

Γ1,2

2

)
ψ1,2, (229)

and find with Eq. (228)

i
(
∂c1
∂τ

+ ∂c2
∂τ

)
=
(
m1 − iΓ1

2

)
(c1 + c2),

i
(
∂c1
∂τ
− ∂c2

∂τ

)
=
(
m2 − iΓ2

2

)
(c1 − c2).

(230)

This can be written as follows

i∂c1
∂τ

=
[
m1+m2

2
− i(Γ1+Γ2)

4

]
c1 +

[
m1−m2

2
− i(Γ1−Γ2)

4

]
c2

i∂c2
∂τ

=
[
m1−m2

2
− i(Γ1−Γ2)

4

]
c1 +

[
m1+m2

2
− i(Γ1+Γ2)

4

]
c2.

(231)

In matrix notation this can be expressed in the K0 - K
0

basis as

i
∂ψ

∂τ
= Hψ = (M − i

Γ

2
)ψ =

(
m− iΓ

2
∆m− i∆Γ

2

∆m− i∆Γ
2

m− iΓ
2

)
ψ, (232)

with m = (m1 +m2)/2, Γ = (Γ1 + Γ2)/2, ∆m = (m1 −m2)/2 and ∆Γ = (Γ1 − Γ2)/2.

The matrices M and Γ are called the mass and decay matrix, respectively. Both M
and Γ are hermitian (M∗

ij = Mji, Γ∗ij = Γji), whereas H is not hermitian since the particles
decay and probability is not conserved33. From CPT invariance it follows that a particle
and antiparticle have identical mass and life time; thus M11 = M22 and Γ11 = Γ22.
CP is violated if the off-diagonal elements of the hamiltonian are different, H12 6= H21.

This implies that Im M12 and Im Γ12 contribute to CP violation. This can be easily
demonstrated by considering the case Im M12 = Im Γ12 = 0, since then the off-diagonal
elements are equal and the eigenvectors are the CP eigenstates

|K0
1 >≡

1√
2
(|K0 > −|K0

>) and |K0
2 >≡

1√
2
(|K0 > +|K0

>), (234)

with eigenvalues CP = +1 and −1, respectively. The eigenvalues of the mass matrix
corresponding to these eigenstates are

m1 = m+M12, Γ1 = Γ + Γ12 → m1 − i
Γ1

2
(235)

and

m2 = m−M12, Γ2 = Γ− Γ12 → m2 − i
Γ2

2
(236)

33Note that in case one assumes Hweak = 0, both K0 and K
0

cannot decay, and consequently one has
Γ = 0. In that case H reduces to

H →M =
(
mK0 0

0 m
K

0

)
, (233)

where mK0 =< K0|Hstrong +Hem|K0 > and m
K

0 =< K
0|Hstrong +Hem|K

0
>.
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and the mass and width differences are

∆m =
m1 −m2

2
= M12 and ∆Γ =

Γ1 − Γ2

2
= Γ12. (237)

Thus even without CP violation flavor oscillations still occur, because K0
1 and K0

2 evolve
differently in time. For a discussion of the more general case, with Im M12 = Im Γ12 6= 0,
it is useful to study the diagonalization of the mass and decay matrix34. From diagonal-
ization (see Eq. (238)) of Eq. (232) we find that

cos β = 0, α = 0, D = m− i
Γ

2
, E = ∆m− i

∆Γ

2
. (241)

One observes that the eigenvectors are orthogonal. In case of CP violation with conser-
vation of CPT one has in vacuum

cos β = 0, α 6= 0 (242)

and in this case both eigenvectors are not orthogonal < V1|V2 >∝ 2Re α.

5.3 Regeneration

Here, we discuss the remarkable phenomenon of regeneration. When we start with a pure
K0-state, then after a certain time we obtain a practically pure K0

2 -state (see Fig. 35).

This state contains equals amounts of K0- and K
0
-mesons,

|K0
2 >=

1√
2
(|K0 > +|K0

>). (243)

In case we scatter this beam into matter, then for both states different strong interaction

effects will take place. The K
0

can for example induce the reaction

K
0
+ p→ Λ + π+. (244)

Due to strangeness conservation this reaction cannot take place for the K0. This has,
again according to the superposition principle, as consequence that after the regenerator
we do not have a pure K0

2 beam anymore. The elastic scattering amplitudes, f and f ,

34A complex 2× 2 matrix can be easily diagonalized with the following representation:

M − i
Γ
2

= D1 + ~E · ~σ = D

(
1 0
0 1

)
+ E

(
cosβ sinβe−iα

sinβeiα − cosβ

)
, (238)

with D and ~E a complex scalar and complex vector. One has Ex = E sinβ cosα, Ey = E sinβ sinα and
Ez = E cosβ. The matrices ~σ are the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (239)

The eigenvectors are

V1 =
(

1
tan β

2 e
iα

)
and V2 =

(
1

−cotβ
2 e

iα

)
(240)

and the corresponding eigenvalues are D ± E.
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Figure 35: Schematic representation of the phenomenon of regeneration of KS-mesons
from a beam of KL-mesons.

for the reactions K0p and K
0
p are different. This results in an additional phase factor,

φreg = k(n − 1)l from elastic scattering for kaons moving in the forward direction. Here,
l is the distance the particle travels in the medium, while n is the index of refraction and
k the wave number of the incoming particles. The distance l is related to the eigentime
interval as l = τv/

√
1− v2. The index of refraction is given by

n = 1 +
2πN

k2
f(0), (245)

with N the density of scattering centers, and f(0) the complex elastic scattering ampli-
tude. The optical theorem related f(0) to the total cross section as

σtotal =
4π

k
Im f(0). (246)

Since K0 and K
0
have different total cross sections, the corresponding indices of refraction

will differ, and we find for their phases

φreg =
2πNτv

k
√

1− v2
f(0). (247)

We will take this additional phase into account in the mass matrix and denote the

amplitude for elastic scattering of K0 with f and for K
0

with f . We find for a neutral
kaon beam in matter

i
∂ψ

∂τ
=


 m− iΓ

2
− φreg

τ
∆m− i∆Γ

2

∆m− i∆Γ
2

m− iΓ
2
− φreg

τ


ψ. (248)

From Eq. (238) we find that

D = m− i
Γ

2
−
φreg − φreg

2τ
, E = ∆m− i

∆Γ

2
, cos β =

φreg − φreg

(2∆m− i∆Γ)τ
, (249)

with | cos β| � 1 and sin β ≈ 1.

From the relations tan (β/2) = (1 − cos β)/ sinβ and cot(β/2) = (1 + cosβ)/ sin β it
follows that the eigenvectors are proportional to(

1
1− cos β

)
,

(
1− cos β
−1

)
, or to

(
1 + rreg
1− rreg

)
,

(
1− rreg

−1− rreg

)
, (250)
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with rreg = cos β/2. We can write these states as

|K0′
1 >= |K0

1 > +rreg|K0
2 >, and |K0′

2 >= −rreg|K0
1 > +|K0

2 >, (251)

where rreg is a small number, typically in the order of 10−3, given by

rreg =
cos β

2
=

φreg − φreg

2(2∆m− i∆Γ)τ
. (252)

Figure 36: Mixing of K0 ↔ K
0

due to the weak interaction. Note that the strangeness
changes by two units.

When a neutral kaon beam travels over a large distance, then it only will consist of
K0

2 ’s. When the K0
2 ’s travel through matter, their propagation needs to be analyzed as

function of the eigenstates in that medium. The K0
2 is almost completely K0′

2 , but with a
small component K0′

1 . These two components will develop different phases when traveling
through matter. After leaving the medium the states need to be analyzed again in terms
of K0

1 and K0
2 . This reintroduces a component K0

1 of the order rreg, where the amplitude
of regenerated K0

1 is proportional to rreg. Thus, the amount of regenerated K0
1 depends

on the mass difference. We expect that now again two-pion decay will take place. Indeed
it is possible that such phenomena, which one calls regeneration, can be experimentally
observed.

Why do these remarkable phenomena only occur in the K0-system and not for example
with neutrons? The reason for this is the fact that due to second-order weak interaction
effects a mixing of K0 ↔ K

0
occurs (see Fig. 36). Consequently the strangeness changes

by two units, ∆S = 2. A similar transition from a neutron to an antineutron n ↔ n is
excluded due to conservation of baryon number.

5.4 CP Violation with Neutral Kaons

In 1964 Christenson, Cronin, Fitch and Turlay [6] demonstrated in an experiment at the
Alternating Gradient Synchrotron (AGS) at Brookhaven that also the long-lived neutral
kaon can decay into two pions with a branching ratio of about 2× 10−3.

The experiment of Christenson et al. is schematically represented in Fig. 37. The
apparatus was a two-arm spectrometer and each arm had a magnet for momentum deter-
mination, scintillators to trigger on charged particles, a Čerenkov to discriminate between
π± and e±, and spark chambers to visualize the tracks of charged particles.
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Figure 37: Schematic representation of the experimental set-up used by Christensor,
Cronin, Fitch and Turlay to demonstrate CP-violation in KL-decay.

In the decay of K0
L → π+π− the invariant mass M of both pions is

Mc2 = (E1 + E2)
2 − c2(~p1 + ~p2)

2 = MK = 498 MeV/c2, (253)

while the three-particle decay K0
L → π+π−π0, the invariant mass is smaller

280 MeV/c2 < M < 363 MeV/c2. (254)

In addition in the two-particle decay the vector sum of both momenta ~p1 + ~p2 needs to
correspond with the beam direction; in the three-particle decay this is not required.

Fig. 38 shows the angular distribution in the extreme forward direction for two op-
positely charged pions from the decay K0

2 → π+π−. The pronounced forward peak for
the central mass range corresponding to two-body decay provides a small but convincing
signature for the CP violating decay. Shortly thereafter, the experiment was repeated at
several laboratories and the results were confirmed.

We will now change notation. The reason is that Eq. (209) defines the states K0
1 en

K0
2 as eigenstates of CP . However, the measurements of Christenson et al. show that the

long-lived neutral kaon is not an eigenstate of CP . It is custom to maintain the notation
K0

1 en K0
2 for the eigenstates of CP, and to indicate the real particles with K0

S (short-lived
neutral kaon) and K0

L (long-lived neutral kaon). The K0
S and K0

L represent the physical
decay states and have unique but differing life times.

In the mass and decay matrix that governs the time evolution of the K0−K0
system,

it is possible to realize CP violation in case the non-diagonal elements ∆m and ∆Γ are
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Figure 38: Angular distribution of pions with opposite charge from the decay K0
2 → π+π−

versus cos θ for three mass ranges.

complex (both m and Γ remain real).

i
∂ψ

∂τ
=

(
m− iΓ

2
∆m− i∆Γ

2

∆m∗ − i∆Γ∗
2

m− iΓ
2

)
ψ =

{
D

(
1 0
0 1

)
+ E

(
cos β sin βe−iα

sin βeiα − cos β

)}
ψ.

(255)
For cos β = 0 and α 6= 0 we find the solution

D = m− i
Γ

2
and E = Re ∆m− iRe

∆Γ

2
. (256)

In case we take the difference of the non-diagonal elements over their sum, we obtain an
expression for α

e−iα − eiα

e−iα + eiα
= itanα =

iIm ∆m+ Im ∆Γ
2

Re ∆m− iRe ∆Γ
2

. (257)

According to tradition we introduce the variables ε, p and q through the relation
q/p = (1− ε)/(1 + ε) = eiα. The eigenvectors are(

p
q

)
= 1√

2(1+|ε|2)

(
1 + ε
1− ε

)
and

(
p

−q

)
= 1√

2(1+|ε|2)

(
1 + ε

−(1− ε)

)
. (258)

From Eq. (257) it follows that

−i tanα =
1+ε
1−ε −

1−ε
1+ε

1+ε
1−ε + 1−ε

1+ε

=
(1 + ε)2 − (1− ε)2

(1 + ε)2 + (1− ε)2
=

2ε

1 + ε2
. (259)
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In the kaon system both ε and α are small quantities, and we have

ε ≈ −iα
2
≈ −1

2

iIm ∆m+ Im ∆Γ
2

Re ∆m− iRe ∆Γ
2

. (260)

Thus, when CP is violated, but [CPT ,H] = 0 for each interaction because of a cor-
responding violation of T , then the deviations of K0

S and K0
L from K0

1 and K0
2 can be

expressed as

|K0
S >=

(1 + ε)|K0 > +(1− ε)|K0
>√

2(1 + |ε|2)
and |K0

L >=
(1 + ε)|K0 > −(1− ε)|K0

>√
2(1 + |ε|2)

, (261)

where the superposition of the states is changed compared to that given by Eq. (209)
by using the parameter ε, that characterizes the mixing of both states. Instead of equa-
tion (261) we also can write the states as

|K0
S >=

|K0
1>+ε|K0

2>√
1+|ε|2

≈ |K0
1 > +ε|K0

2 >

|K0
L >=

|K0
2>+ε|K0

1>√
1+|ε|2

≈ |K0
2 > +ε|K0

1 >,

(262)

where on the right side of the equation the normalizations are correct to order ε. The

existence of Re ε implies that the states |K0
S > and |K0

L > are not orthogonal

< K0
S|K0

L >=
(1 + ε∗)(1 + ε)− (1− ε∗)(1− ε)√

2(1 + |ε|2
≈ ε+ ε∗ = 2Re ε. (263)

The non-diagonal ∆m corresponds to virtual K0−K0
transitions. The difference ∆Γ

arises from real transitions and is dominated by the ππ state with isospin I = 0 (see next

section). With the Wu-Yang choice [3] for the free phase between the |K0 > and |K0
>

the I = 0 amplitude is real and also ∆Γ is almost real.

From Eq. (260) we have

ε = − i
2

Im ∆m+ Im ∆Γ
2

Re ∆m− iRe ∆Γ
2

≈ − i
2

Im ∆m

Re ∆m− iRe ∆Γ
2

, (264)

which holds when Im ∆Γ � Im ∆m. In good approximation one has that mS = m1,
mL = m2, ΓS = Γ1, ΓL = Γ2 with ∆mI � ∆mR. From this it follows that the phase
angle of ε is equal to

arg ε ≈ arctan
2(mL −mS)

ΓS − ΓL
≈ 43.7◦ = φSW. (265)

Here, the subscript ‘SW’ refers to the superweak model of Wolfenstein that attributes CP
violation to the term ∆m.
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5.5 Isospin Analysis

Next, we will consider the decay K0
L → ππ in some more detail. Bose symmetry restricts

the two pions to symmetric isospin states, I = 0 and I = 2. In case the pions would not
experience final-state interaction effects (FSI), then CPT would give a simple relation

between the K0 and K
0

amplitudes,

< (2π)I=0; no FSI|Hweak|K0 >= A0 and

< (2π)I=0; no FSI|Hweak|K
0
>= A∗

0,
(266)

with similar relations for the I = 2 states. We can write for the ππ states

|(2π)I=2 >
s = 1√

6

(√
2|π+

1 π
−
2 >s +2|π0

1π
0
2 >

s
)
,

|(2π)I=0 >
s = 1√

3

(√
2|π+

1 π
−
2 >s −|π0

1π
0
2 >

s
)
,

(267)

where the superscript s indicates that we assume that there are no strong-interaction
effects between the pions. Thus we can write the stationary final states as

< π+π−|s = 1√
3

(
< (2π)I=2|s +

√
2 < (2π)I=0|s

)
,

< π0π0|s = 1√
3

(√
2 < (2π)I=2|s− < (2π)I=0|s

)
.

(268)

In reality the final states are not ‘stationary’ states, but final states where the pions
interact strongly. Consequently, the pions develop a strong-interaction phase35. Thus
each amplitude is multiplied with exp(iδI), where I denotes isospin I = 0 or 2.

< π+π−|s = 1√
3

(
eiδ2 < (2π)I=2|s +

√
2eiδ0 < (2π)I=0|s

)

< π0π0|s = 1√
3

(√
2eiδ2 < (2π)I=2|s − eiδ0 < (2π)I=0|s

)
.

(269)

With Eq. (261) we find for the K0 → ππ amplitudes

< π+π−|Hweak|K0
L > =

√
2
3
eiδ2 (εRe A2 + iIm A2) +

√
4
3
eiδ0 (εRe A0 + iIm A0)

< π0π0|Hweak|K0
L > =

√
4
3
eiδ2 (εRe A2 − iIm A2) +

√
2
3
eiδ0 (εRe A0 + iIm A0)

< π+π−|Hweak|K0
S > =

√
2
3
eiδ2 (Re A2 + iεIm A2) +

√
4
3
eiδ0 (Re A0 + iεIm A0)

< π0π0|Hweak|K0
S > =

√
4
3
eiδ2 (Re A2 − iεIm A2) +

√
2
3
eiδ0 (Re A0 + iεIm A0)

(270)

We can simplify these reactions by noting that K0
S decay proceeds much faster than

charged kaon decay, ΓK0
S→π+π−/ΓK+→π+π0 ≈ 450 and thus |A0| � |A2|. Furthermore we

have
Γ(K0

S→π+π−)

Γ(K0
S→π0π0)

= 2.19± 0.02 and
Γ(K0

L→π+π−)

Γ(K0
L→π0π0)

= 2.23± 0.09, (271)

35Since the pions are present only in the final state, they will obtain about half of the usual strong-
interaction phase.
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which is in good agreement with the assumption that the decay proceeds through the
I = 0 channel. Finally we note that the phase of the K0 state is a matter of agreement.
Following T.T. Wu and C.N. Yang [3] we make the choice that A0 is real. Thus we can
drop the Im A0 terms, and in addition terms of order εA2/A0. In order to facilitate
the comparison of CP violating K0

L → 2π amplitudes to the CP conserving K0
S → 2π

amplitudes, we define the following ratios,

η+− =
<π+π−|Hweak|K0

L>

<π+π−|Hweak|K0
S
>

= ε+ ε′,

η00 =
<π0π0−|Hweak|K0

L>

<π0π0|Hweak|K0
S
>

= ε− 2ε′,

(272)

with

ε′ =
i√
2

Im A2

A0
ei(δ2−δ0). (273)

With the Wu-Yang definition, the quantity ε measures the violation of CP due to kaon
state mixing (see Fig. 36), whereas ε′ measures CP violation in the decay, i.e. direct CP
violation36. The phase of ε′ is denoted φε′ = δ2 − δ0 + π

2
. Pion scattering experiments[45]

have determined δ2 − δ0 = −43◦ ± 6◦ and thus φε′ = 47◦ ± 6◦.

Figure 39: Schematic representation of the various complex amplitudes that play a role
in the description of CP violation in the decay of kaons.

Fig. 39 gives a schematic representation of the various complex amplitudes that play
a role in the description of CP violation in the decay of kaons. If only the asymmetric
K0 − K0 mixing in the mass matrix contributes to the CP violating amplitudes, then
η+− = η00 = ε. Fig. 40 shows a so-called penguin diagram that is expected to play a role
in direct CP violation. If instead of a gluon, a γ of Z is exchanged, then one speaks of an
electromagnetic penguin amplitude.

Measurements of ε and ε′ are important to distinguish between various models of CP
violation. Fig 41 shows that the experimental accuracy improves over time. For example

36One observes that direct CP violation arises in case there is more than one decay channel, with
different strong interaction phases, and non-zero imaginary amplitudes. We will encounter this again in
the decay of B mesons.
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Figure 40: Penguin amplitude that plays a role in direct CP violation in the decay of
kaons. Note that the strangeness changes by one unit.

in the superweak model of Wolfenstein CP violation in the decay K0
L → 2π arises through

a new ∆S = 2 superweak interaction which couples K0
L → K

0
S.

Figure 41: Results of the experiments that measure the possible contribution of direct CP
violating contributions in the decay of kaons. It is seen that the experimental accuracy
dramatically improves over time.

Subsequently, the K0
S decays through the normal weak interaction. Given the small

mass difference ∆m, the superweak coupling is required to be only of the order 10−10

of the normal weak coupling to explain the observed state mixing CP violation. The
superweak model predicts ε′ = 0, whereas the standard model predicts ε′ 6= 0.
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Measurement of the branching ratio, B.R., for K0
L → π+π− yields

|η+−|2 =
Γ(K0

L → π+π−)

Γ(K0
S → π+π−)

=
B.R. (K0

L → π+π−)Γ (K0
L → all)

B.R. (K0
S → π+π−)Γ (K0

L → all)
≈ ((2.285±0.019)×10−3)2.

(274)
The corresponding measurement for neutral pions has also been performed and yields

|η00|2 =
Γ(K0

L → π0π0)

Γ(K0
S → π0π0)

=
B.R. (K0

L → π0π0)Γ (K0
L → all)

B.R. (K0
S → π0π0)Γ (K0

L → all)
≈ ((2.275± 0.019)× 10−3)2.

(275)
In addition, one has |η00/η+−| = 0.9956± 0.002337.

Measurement of the phases of η+− and η00 requires the observation of interference
between K0

L → ππ and K0
S → ππ. This can be accomplished by starting with a pure

K0 beam, or by generating a small amount of K0
S in a K0

L beam. In the latter case one
first observes the fast decaying K0

S component. At the end one only observes the CP
violating K0

L decay. In the intermediate region the contributions of K0
S and K0

L have
similar magnitude and interference effects can be measured (see Fig. 33).

The interference pattern can be understood from the following. Suppose we start with
a pure K0 beam. We then have

|K0 >=
|K0

S > +|K0
L >√

2(1 + ε)
. (277)

The time evolution can be written as

|ψ(τ) >
1√

2(1 + ε)

(
|K0

S > e−ΓSτ/2−imSτ + |K0
L > e−ΓLτ/2−imLτ

)
. (278)

With Eq. (272) the decay amplitude to π+π− can be written as

< π+π−|Hweak|ψ(τ) >=
< π+π−|Hweak|K0

S >√
2(1 + ε)

e−imτ
[
e−ΓSτ/2−i∆mτ + η+−e

−ΓLτ/2+i∆mτ
]
.

(279)
With η+− = |η+−|eφ+− the observed intensity is

Iπ+π−(τ) = Iπ+π−(0)
[
e−ΓSτ + |η+−|2e−ΓLτ + 2|η+−|2e−Γτ cos (τ∆m + φ+−)

]
. (280)

From the interference pattern shown in Fig. 33 both |η+−|, ∆m and φ+− can be deter-
mined. In the same manner φ00 was determined from a measurement of π0π0 decay. The
current values [2] are φ+− = (43.5 ± 0.6)◦ and φ00 = (43.4± 1.0)◦. In addition, one has
φ00 − φ+− = (−0.1± 0.8)◦.

37Note that several uncertainties can be minimized by forming the ratio

|η00|2
|η+−|2

≈ 1− 6Re
ε′

ε
≈ 1− 6

ε′

ε
, (276)

where ε′/ε is almost real, because the phases of ε′ and ε are almost equal. The most recent result is
ε′ − ε = (1.5± 0.8)× 10−3 [2]. However, it should be noted that the CERN (Na31) and Fermilab (E731)
experiments yield inconsistent results.
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5.6 CP Violation in Semileptonic Decay

Violation of CP is also demonstrated in the semileptonic decay of neutral kaons,

K0 → l+νlπ
− (∆S = ∆Q)

K
0 → l−ν lπ

+ (∆S = −∆Q),
(281)

where the lepton l is an electron or a muon (these decays are termed Ke3 and Kµ3 decays,
respectively). The final states transform in each other under CP. We thus expect that
violation of CP leads to a small charge asymmetry, defined as

δ =
Γ(K0

L → π−µ+ν) + Γ(K0
L → π+µ−ν)

Γ(K0
L → π−µ+ν)− Γ(K0

L → π+µ−ν)
=
| < K0

L|K0 > |2 − | < K0
L|K

0
> |2

| < K0
L|K0 > |2 + | < K0

L|K
0
> |2

= 2Re ε.

(282)
Contrary to the decay K0

L → ππ, the semileptonic process is allowed, even without viola-
tion of CP . Only the small difference between the two allowed decay rates is due to CP
violation. Furthermore, this asymmetry will be a function of time and exibit interference
effects between the K0

L and K0
S states. This is clearly observable in Fig. 42.

Figure 42: Charge asymmetry for semileptonic decay of neutral kaons (from Ref. [4]).

We see that after a certain time a net charge asymmetry persists, given by δ =
(0.327±0.012)%. This experiment allows for an absolute definition of the sign of electrical
charge.

At this moment we do not understand the reason for this small violation of CP-
invariance (or with the help of the CPT -theorem: the time reversal invariance). Is all
this only the consequence of a, more or less trivial, free phase in the Cabibbo-Kobayashi-
Maskawa matrix38, or is all this an announcement of new physics effects?

38In that case the Standard Model predicts a small positive value for ε′/ε.
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Important is the small CP-violation, because we assume that in the first phase of the
formation of our universe (before tabsolute < 10−4 s, and kT > 1 GeV) baryon-antibaryon
pairs were created and annihilated in equilibrium with photons (after a period of cooling
that was dominated by annihilation). The mechanism of CP-violation, in combination
with violation of conservation of baryon number, can give an explanation of the fact
that today we life in a universe where we find predominantly matter (baryons) and no
antimatter.

5.7 CPT Theorem and the Neutral Kaon System

5.7.1 Generalized Formalism

We will now introduce a more general formalism that will allow us to test CPT invariance.
The variable δ will denote the CPT violating mixing parameter. We can write

|K0
S >= 1√

2

(
1 + ε+ δ
1− ε− δ

)
= K0

1 + (ε+ δ)K0
2

|K0
L >= 1√

2

(
1 + ε− δ

−1 + ε− δ

)
= K0

2 + (ε− δ)K0
1 .

(283)

Here, both ε and δ are small quantities. The |K0
S > and |K0

L > are eigenstates with
eigenvalues MS ≡ mS − iΓS/2 and ML ≡ mL − iΓL/2 with mL > mS and ΓS > ΓL. We
then obtain (

H11 H12

H21 H22

)(
1 + ε+ δ
1− ε− δ

)
= MS

(
1 + ε+ δ
1− ε− δ

)
(284)

and (
H11 H12

H21 H22

)(
1 + ε− δ

−1 + ε− δ

)
= ML

(
1 + ε+ δ

−1 + ε− δ

)
. (285)

These last two equations can be written as(
1 + ε+ δ 1− ε− δ
1 + ε− δ −1 + ε− δ

)(
H11

H12

)
=

(
MS(1 + ε+ δ)
ML(1 + ε− δ)

)
(286)

and (
1 + ε+ δ 1− ε− δ
1 + ε− δ −1 + ε− δ

)(
H21

H22

)
=

(
MS(1− ε− δ)

ML(−1 + ε− δ)

)
(287)

and these can be solved for H11, H12, H21 and H22. The result is

H11 = (MS +ML)/2 + δ(MS −ML)
H22 = (MS +ML)/2− δ(MS −ML)
H12 = (MS +ML)(

1
2

+ ε)
H21 = (MS +ML)(

1
2
− ε)

(288)

From this we can obtain ε and δ. We find

H12 −H21 = 2ε(MS −ML)
H11 −H22 = 2δ(MS −ML).

(289)
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Note that all quantities in Eq. (289) are complex. We have H = M − iΓ/2, with M and
Γ hermitian matrices. Thus M12 = M∗

21 and Γ12 = Γ∗21. From this we find

H12 −H21 = 2iIm M12 + Im Γ12

H11 −H22 = M11 −M22 − i
2
(Γ11 − Γ22)

(290)

In addition we have for the superweak phase angle the expression given by Eq. (265) and
for the mass difference

MS −ML =
e−φSW

i

√
(mL −mS)2 +

1

4
(ΓS − ΓL)2. (291)

Consequently, we can write for the mixing parameters

ε = H12−H21

2(MS−ML)
= iIm M12+Im Γ12/2

(MS−ML)
= −Im M12+iIm Γ12/2√

(mL−mS)2+ 1
4
(ΓS−ΓL)2

≈ −Im M12+iIm Γ12/2

(mL−mS)
√

2
eiφSW

(292)

and

δ = H11−H22

2(MS−ML)
=

M11−M22− i
2
(Γ11−Γ22)

2(MS−ML)

≈ M11−M22− i
2
(Γ11−Γ22)

2(mL−mS)
√

2
ieiφSW .

(293)

Here we used the approximation that (ΓS − ΓL)/2 ≈ mL −mS .

In the generalized representation we can calculate the overlap between the |K0
S > and

|K0
L > states. In lowest order in ε and δ we find

< K0
L|K0

S >= 2Re ε+ 2iIm δ. (294)

In addition, we can derive
δ = 2Re ε− 2iRe δ. (295)

5.7.2 CP Symmetry

The operation CP interchanges K0 and K
0

(see Eq. (208)). With these states as basis

the Pauli matrix σ1 acts as the CP operator, |K0 >= σ1|K
0
>, or more specifically(

1
0

)
=

(
0 1
1 0

)(
0
1

)
. (296)

The hamiltonian transforms as H → σ1Hσ1 and as function of its matrix elements we
have (

H11 H12

H21 H22

)
=⇒ CP =⇒

(
H22 H21

H12 H11

)
(297)

Thus when CP is conserved we have H12 = H21 and H11 = H22. In addition, both M and
Γ are hermitian matrices, and we find

M12 ≡M∗
21 = M21 ≡M∗

12 and Γ12 ≡ Γ∗21 = Γ21 ≡ Γ∗12 (298)

and M12 and Γ12 are necessarily real when CP is conserved.
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5.7.3 Time Reversal Invariance and CPT Invariance

Here we address the case where CP is violated39. We need to distinguish between a simul-
taneous violation of T with conservation of CPT , and conservation of T with violation
of CPT . We consider the transition amplitude

< f |e−iH(t)t|i > . (299)

This amplitude describes the time evolution of an initial state |i > at time t = 0 to a final
state |f > at time t. After a time reversal operation the state |f > starts at time t and
evolves to state |i > with a time difference that is now −t and with a hamiltonian in the
time moves backwards. The corresponding amplitude is

< i|e−iH(−t)(−t)|f >=< f ∗|e−iH̃(−t)(−t)|i∗ > . (300)

The matrix H̃ represents the transposed of H . When T is conserved then the last matrix
element has to equal to Eq. (299), where states and operators have been transformed
with the T operator,

< fT−1|Te−iH(t)(t)T−1|T i > . (301)

We conclude that the manner in which the T operator acts on states and the hamiltonian
is given by

T |i >= |i∗ > and THT−1 = H̃. (302)

The hamiltonian transforms as H → H̃. Conservation of T symmetry and hermiticity
implies that H = H†. Consequently its matrix elements are real and ε = 0, since H21 =
H12.

Under a CPT operation the hamiltonian transforms as H → σ1H̃σ1. Assuming CPT
invariance we have for the matrix elements H11 = H22. Consequently we have in this case
δ = 0.

5.7.4 Isospin Amplitudes

We will now briefly discuss the isospin states in the two-pion decay channel in the gener-
alized formalism. The decay amplitude for the kaon can be written as

A(K → 2π, I) = (AI +BI)e
iδI , (303)

where δI is the rescattering phase of the two pions. Here AI are CPT invariant ampli-
tudes, while BI are non-CPT invariant amplitudes. For the K we have the corresponding
parametrization

A(K → 2π, I) = (A∗
I −B∗

I )e
iδI . (304)

When CP is conserved, then the K0 and K
0

amplitudes are equal. When CPT is con-
served, the amplitudes are related through complex conjugation (in which the rescattering
phase in unaltered).

A similar parametrization can be formulated for the semileptonic decay amplitudes,

A(K → π−l+νl) = (a+ b), (305)

39When CP is violated, it is not possible that both ε and δ vanish.
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with b� a and a the CP violating and CPT conserving amplitude, and with b the CPT
violating amplitude. For the K we have the corresponding parametrization

A(K → π+l−νl) = (a∗ − b∗), (306)

with identical demands concerning CP , T and CPT conservation as was the case for A
and B.

Again it is possible to work out the CP and CPT violating parameters and the experi-
mental quantities ε, ε′ and δ.

• In case of CP violation and CPT conservation one has δ = 0 and B (b) = 0. With
the choice Im A0 = 0 we find

ε = ε

ε′ = 1√
2

Im A2

A0
ei(δ2−δ0+

π
2
),

δ = 2Re ε

(307)

• In case we allow for CPT violation we find

ε = ε− δ + i Im A0

Re A0
+ Re B0

Re A0

ε′ = ei(δ2−δ0+ π
2

)
√

2

(
Im A2

Re A0
− iRe B2

Re A2

)
,

δ = 2Re ε− 2Re δ + 2 Re b
Re a

,

(308)

where the amplitudes B (or b) and the parameter δ parametrize the violation of
CPT in the decay and mixing, respectively. Furthermore, one has Im a� Re a and
Im A� Re A.

From pion scattering we know that δ2−δ0+ π
2
≈ 44◦, while the phase φπ

+π−
η+− = (43.7±0.6)◦.

Recently, also the difference in phase between the CP violating decay to π0π0 and π+π−

has been accurately determined [30] and amounts to (0.30± 0.88)◦. This implies that the
phase of ε′ is almost equal to that of ε, in agreement with CPT conservation. Furthermore,
we know from unitarity constrains that CP violation is associated with T violation. More
quantitative tests do not give any indication for CPT violation.

5.8 Particle Mixing and the Standard Model

Why do these remarkable phenomena only occur in the K0-system and not for example
with neutrons? The reason for this is the fact that due to second-order weak interaction
effects a mixing of K0 ↔ K

0
occurs (see Fig. 43). Consequently the strangeness changes

by two units, ∆S = 2. A similar transition from a neutron to an antineutron n ↔ n is
excluded due to conservation of baryon number.

First we will discuss the mass difference ∆m in terms of the Standard Model. We have
the following relation

∆m = mS −mL =< K0
S|H|K0

S > − < K0
L|H|K0

L >, (309)
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Figure 43: Mixing of K0 ↔ K
0

due to the weak interaction. Note that the strangeness
changes by two units.

which can be written as40

∆m = 2Re < K0|H|K0 > −4Imε Im < K0|H|K0 > . (311)

Next, we calculate the non-diagonal element of the mass matrix < K0|H|K0 > with
the box diagrams shown in Fig. 36. The amplitude for the box diagram is obtained by
applying the Feynman rules which state that

• each fermion propagator is represented by

iSF(k) =
i

γµkµ −m+ iε
= i

γµkµ +m

k2 −m2 + iε
,

with m the mass of the fermion (quarks in our case);

• expressions for spin-1 propagators depend both on the theory and on the gauge. In
general we have the ’t Hooft propagator represented by

iDF(k)µν = i
−gµν + kµkν(1− ζ)(k2 − ζm2

W )−1

k2 −m2
W

,

where ζ is an arbitrary parameter first proposed by ’t Hooft in 1971. The choice
ζ = 1 corresponds to ’t Hooft-Feynman gauge, ζ = 0 Landau gauge, and ζ = ∞
unitary gauge. In our case we take ζ → ∞ and obtain the usual form of the
propagator of massive vector bosons, namely

iDF(k)µν = i
−gµν + kµkν/m2

W

k2 −m2
W

;

40We can derive the result by using the representation given in Eq. (261). One then has

∆m = 1√
2

[
(1 + ε∗) < K0|+ (1− ε∗) < K0|

]
1√
2

[
(1 + ε)H |K0 + (1 − ε)H |K0 >

]
− 1√

2

[
(1 + ε∗) < K0| − (1− ε∗) < K0|

]
1√
2

[
(1 + ε)H |K0 − (1− ε)H |K0 >

]
= (1 + (ε∗ − ε)− εε∗) < K|H |K0 > +(1− (ε∗ε)− ε∗ε) < K0|H |K0 > .

(310)

We then use the relations ε − ε∗ = 2iImε and ε∗ε = (Reε)2 + (Imε)2. In addition, we neglect all terms
quadratic in ε and obtain the required result.
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• for the external quark lines we use the spinors u and v;

• furthermore, at each vertex we have the weak coupling constant g, the parity vi-
olating V − A coupling given by iγµ(1 − γ5), and the appropriate element of the
Cabibbo-Kobayashi-Maskawa matrix.

The amplitude for the box diagram with the intermediate u-quark is given by

M = i
(
−igw

2
√

2

)4
(V ∗

usVud)
2
∫ d4k

(2π)2

(
i
−gλσ+kλkσ/m2

W

k2−m2
W

)(
i
−gαρ+kαkρ/m2

W

k2−m2
W

)
[
ūsγλ(1− γ5) 6k+mu

k2−m2
u
γρ(1− γ5)ud

] [
v̄sγα(1− γ5) 6k+mu

k2−m2
u
γσ(1− γ5)vd

]
.

(312)

The calculation of this matrix element is rather tedious. One neglects the terms
kλkσ/m2

W and kαkρ/m2
W in the W propagators. Furthermore, one neglects terms propor-

tional to the mass of the u quark and finds

M≈ −ig4
w

(4π)4
(V ∗

usVud)T
µν
∫

d4k

(2π)2

kµkν
(k2 −m2

u)
2(k2 −m2

W )2
, (313)

with
T µν = ūsγλγ

µγρ(1− γ5)udv̄sγργ
νγλ(1− γ5)vd. (314)

We neglect the quark momenta in the meson with the result that only a single momentum
k circulates in the box diagram. The integral

Iµν =
∫

d4k

(2π)2

kµkν
(k2 −m2

u)
2(k2 −m2

W )2
(315)

becomes, when terms of order m2
u/m

2
W are ignored,

Iµν = gµν/64π2im2
W . (316)

The matrix element can now be obtained, carrying out a Fierz transformation, as

M = Σ′
n
<K0|H|n><n|H|K0>

mK0−En

≈ −ig4w
(4π)4

(V ∗
usVud)

[
< K0|Sγλ(1− γ5)D|0 >< 0|Sγλ(1− γ5)D|k0 >

]
,

(317)

where D and S are operators and the vacuum-insertion approximation corresponds to
inserting a factor 1 = Σ′

n|n >< n| ≈ |0 >< 0|. The factors in square brackets may be
related to the kaon decay constant fK , which appears in the matrix element for Kl2 decay.
We find

M =
−ig4

w

(4π)4
(V ∗

usVud) f
2
Km

2
K(2EK02EK0)

−1/2 (318)

which yields for EK0 = EK0 = mK ,

∆m = mL −mS ≈
G2
F

4π2
m2
W cos2 θC sin2 θCf

2
KmK . (319)

This formula gives much too large a value of ∆m if mW ≈ 80 GeV/c2 is used.
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Next, we take also exchange of c and t quarks into account. Since mu � mc and mu � mt

one can neglect the terms proportial to mu. After these simplifications one can write the
matrix element as

M =
G2
F

2

∫
d4k

(2π)2
Σi,jaiaj ūdγλ(1−γ5)

6 k +mi

k2 −m2
i

γλ(1−γ5)usv̄dγσ(1−γ5)
6 k +mj

k2 −m2
j

γσ(1−γ5)vs,

(320)
where i, j = u, c, t and where ai,j are the CKM matrix elements for transitions of the form
s→ i→ d, given by

a1 = +c1s1c3
a2 = −s1c2(c1c2c3 − s2s3e

iδ)
a3 = −s1s2(c1s2c3 + c2s3e

iδ).
(321)

To obtain ε, we separate the integral ino real and imaginary parts and evaluate them by
means of contour integration, assuming m2

c,t � m2
u ≈ 0. Thus we find

ImM12/ReM12 = 2s2c2s3 sin δP (θ2, η), (322)

where η = m2
c/m

2
t and

P (θ2, η) =
s2
2(1 + [η/(1− η)] ln η)− c22(η − [η/(1− η)] ln η)

c1c3(c
4
2η + s2

2 − 2s2
2c

2
2 [η/(1− η)] ln η)

. (323)

This model yields CP violation with approximately the right magnitude.

In the derivation one can simplify things by demanding that the CKM matrix is unitary
and thus

V ∗
usVud + V ∗

csVcd + V ∗
tsVtd = 0. (324)

We then obtain for the integral

∫
d4k

(2π)2
kµkν

(
V ∗
csVcd

[
1

k2 −m2
c

− 1

k2 −m2
u

]
+ V ∗

tsVtd

[
1

k2 −m2
t

− 1

k2 −m2
u

])2

. (325)

This integral rapidly converges for high values of k2, because the propagators have pairwise
opposite signs. After integration we are left with one term that is proportional to m2

c and
one term that is proportional to m2

t . Furthermore, the integral is proportional to gµν .
The tensor term T µν also contains the transition of K0 to the d and s̄ quarks, that

is described by the kaon form factor. There are various uncertainties left, such as the
vacuum-insertion approximation |0 >< 0| in the middle of the expression. This leads to
a factor B = 1, while other estimates lead to values between 0.5 and 1. In addition, one
has to include both a gluon correction η in the results and a color factor 1/3. Combining
all these ingredients we arrive to the value

∆mK0 ≈ 1

12π2
G2
Fm

2
c |(Vcd)2(V ∗

cs)
2|ηBf 2

KmK. (326)

Note that ∆m is a complex quantity and that we only give its magnitude here. It is the
imaginary part of ∆m that leads to CP violation. For the imaginary part we have to
include a small correction for the t-quark. Winstein and Wolfenstein find the following
approximation for the parameter ε,

ε ≈ 3.4× 10−3A2ηB

[
1 + 1.3A2(1− ρ)

(
mt

mW

)1.6
]
. (327)
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Here, A and ρ are CKM parameters in the Wolfenstein parametrization of the CKM
matrix. The parameter ρ is predicted to vary between -0.5 and 0.5. The QCD parameter
η is estimated to be 0.85.

It is possible to calculate B0 ↔ B0 in a similar fashion using the box diagram. How-
ever, there is one significant difference. For the K0 system the absolute value of the box
diagram, which determines ∆m, is proportional to the CKM factor

∆m ∝ (V ∗
csVcd)

2 = λ2, (328)

while the imaginary part is proportional to A2λ6η. Consequently,

Im∆m

Re∆m
≈ A2λ4η. (329)

In contrast, in the B0 case, independent of the intermediate quarks in the box diagram
(u, c or t), there is always a factor λ6. Given the dominance of the t quark, we have now
in the expression for ∆m the factor

(V ∗
tbVtd)

2 = (1− ρ− iη)2A2λ6. (330)

Therefore, it follows that the CP violating term equals

Im∆m

|∆m| =
1

2
sin 2β =

η(1− ρ)

(1− ρ)2 + η2
, (331)

where β is the phase of Vtd. Consequently, CP violation in the mass matrix of the B0

system is not suppressed by a factor λ, while in case of theK0 system there is a suppression
by a factor λ4 (= 2.3× 10−3).
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6 The B-meson system

A Lagrangian is CP conserving whenever all the coupling and mass terms in the La-
grangian can be made real by an appropriate set of field redefinitions. Within the Stan-
dard Model, the most general theory with only two quark generations and a single Higgs
multiplet is of this type. However, when we add a third quark generation then the most
general quark mass matrix allows for CP violation. The three-generation Standard Model
with a single Higgs multiplet has only a single non zero phase. It appears in the matrix
that relates weak eigenstates to mass eigenstates, commonly known as the CKM matrix.
This matrix must be unitary, a constraint that provides relationships between its ele-
ments. With relatively few further assumptions this translates into specific predictions
for the relationships between the parameters measured in different B-decay processes.
This makes the B decays an ideal tool to probe for physics beyond the Standard Model;
theories with other types of CP-violating parameters generally predict different relation-
ships. This section gives a brief description of the theoretical background of B-physics
with respect to CP violation.

6.1 CP Violation in the Standard Model

The charged current interaction can be written in the mass eigenbasis, where the matrices
VqL define the transformation from the eigenstates to the mass eigenstates [31]:

−Lw =
g√
2

[uLcLtL] γ
µVuLV

†
dL


 dL
sL
bL


Wµ + h.c., (332)

where h.c. is the hermitic conjugate. The object VuLV
†
dL is the mixing matrix for three

quark generations. It is a 3 by 3 unitary matrix which contains three real parameters and
six phases. The number of phases can be reduced to one physically meaningful phase δ.
The three-generation Standard Model predicts CP violation unless δ = 0.

The mixing matrix with three angles and one phase is called the Cabbibo-Kobayashi-
Maskawa (CKM) matrix. It relates weak and mass eigenstates and its elements Vij,
multiplied by g/

√
2, give the coupling of the weak charged current. The unitary CKM

matrix can be written as follows

V =


 Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb


 . (333)

Each element corresponds to the amplitude of a transition of a (u, c, t) quark to a (d, s, b)
quark or the transformation from a weak interaction eigenstate to a strong interaction
eigenstate. The unitarity of the CKM matrix (V V ∗ = 1) leads to six relations such as

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (334)

The unitarity triangle is a geometrical representation of this relation in the complex plane;
the three complex quantities form a triangle, as shown in Fig. 44. Only two of the six
relations give distinguishable triangles with measurable angles.
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β

Figure 44: The unitarity triangle is a representation in the complex plane of the triangle
formed by the CKM matrix elements VudV

∗
ub, VcdV

∗
cb and VtdV

∗
tb.

The Standard Model predictions for the CP asymmetries in neutral B decays into cer-
tain CP eigenstates are fully determined by the values of the three angles of the unitarity
triangle, α, β and γ. Their measurement will test these Standard Model predictions and
consequently provide a probe for physics beyond the Standard Model.
CP violation is put in the Standard Model for empirical reasons, by allowing the

Yukawa coupling of the Higgs to the quarks to be complex. In the case of three or more
generations, this results in a non-trivial (imaginary) phase in the CKM matrix which, in
turn, gives rise to CP violating observables in weak interactions. CP violating observables
in the decays of B mesons are expected to provide highly constraining information. The
two most common neutral meson systems useful for measuring CP violation are: the
neutral K system where all relevant phases are small, while in the neutral Bd and Bs

systems the two mass eigenstates have similar lifetimes. In the B systems it is the mass
difference that dominates the physics. CP violation in the D system is expected to be
small and uncertain, dominated by long distance effects. Mixing between neutral B0 and

B
0

does not require CP violation but depends on the existence of common eigenstates
to which both mesons can decay. B0 has many decay channels with CP = −∞ and
CP = +∞. Therefore the two eigenstates have the same lifetimes.

We distinguish between three types of CP violation [32]:

• CP violation in decay or direct CP violation. It results from the interference among
various decay amplitudes that lead to the final state. This is interference between
tree and penguin diagrams when they have different weak phases, or, in channels
where there are no tree contributions, it can also arise because of different weak
phases of different penguin contributions. CP asymmetries in charged meson decays
are of this type. Here |Af/Af | 6= 1 indicates CP violation (see 6.1.3).
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• CP violation in mixing or indirect CP violation. It results from the mass eigenstates
being different from the CP eigenstates. Or more precisely from complex mixing
effects that will also give a nonvanishing lifetime difference for the two B mass
eigenstates. CP asymmetries in semileptonic decays are of this type. Here |q/p| 6= 1
indicates CP violation (see 6.1.3).

• CP violation in the interference of mixing and direct decay. CP asymmetries in
neutral meson decays into CP eigenstates are of this type. For CP violation the
quantity κ 6= 1, see next sections.

LHCb will mainly measure CP violation of the type kind. The importance of CP
violation in neutral meson decays lies in the possibility of theoretical interpretation rela-
tively free of hadronic uncertainties. The two CP violating parameters which have been
experimentally measured in the K-system, ε and ε′/ε, belong to this class of CP violation.

6.1.1 CP Violation in neutral B decays

The time evolution of a mixed neutral B-meson mixing state a|B0 > +b|B0
> is given by

the time dependent Schrödinger equation [31, 32, 33, 34]

i
∂

∂τ

[
B0

B
0

]
=

[
H11 H12

H21 H22

] [
B0

B
0

]
=

[
M − iΓ/2 M12 − iΓ12/2

M∗
12 − iΓ∗12/2 M − iΓ/2

] [
B0

B
0

]
. (335)

M and Γ are Hermitic matrices. CPT invariance guarantees H11 = H22. The anti-
hermitic part (iΓ) describes the exponential decay of the meson system, while the hermitic
part (M) is called the mass matrix. H contains nonvanishing off-diagonal matrix elements
due to weak interactions, which do not conserve flavour, therefore the two meson states are
coupled through virtual intermediate channels (described by coupled Schrödinger equa-
tions, see above). The non-diagonal terms are important in the discussion of CP violation.

The mass matrix can be diagonalized by a similarity transformation. This transfor-
mation yields two eigenvectors; the two mass eigenstates BH and BL (heavy and light
respectively) of H are resonances and not elementary particles

|BL >= p|B0 > +q|B0
>

|BH >= p|B0 > −q|B0
> .

(336)

The mass eigenstates are not CP eigenstates, but mixtures of the two CP-conjugate
quark states. The mixing is due to box diagrams as shown in figure 45. With the
eigenvectors given in Eq. (336) the coupled Schrödinger equations (see Eq. (335)) become
two decoupled equations, with certain eigenvalues

i d
dt
|BL >= ML|BL > ML ≡ mL − i

2
γL

i d
dt
|BH >= MH |BH > MH ≡ mH − i

2
γH .

(337)

Here ∆γ = γH − γL � γ, since ∆γ is produced by channels with branching ratio of order
10−3 that contribute with alternating signs, and therefore one may safely set γH = γL = γ,
for both the Bd and the Bs system [31]. The eigenvalues from Eq. (337) can be written
as function of the matrix elements. One can extract information on these parameters
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by a theoretical analysis of the box diagram. M12 coincides with the real part of H12

(M12 = Re{H12} = Re{< B0|H|B0
>}) and −Γ/2 with its imaginary part. Because of

the largest contribution arising from the top quark, one has [34, 35]

M12 ∼ (VtdV
∗
tb)

2m2
t . (338)

In the computation of Γ12 only up or charm internal quarks are allowed in the box diagrams
because the energy of the final state cannot exceed mb

Γ12 ∼ m2
b(VcdV

∗
cb + VudV

∗
ub)

2 = (VtdV
∗
tb)

2m2
b . (339)

This has the following consequences: |Γ12| � |M12| since mt � mb and have the same
CKM phase for B-mixing ΦM = arg(M12) = arg(Γ12). Since ∆γ = γH−γL ' 0 the states
BH and BL have the same lifetime. Finally the so called phase factor, for example in the
Bd system, can be written as

q

p
=

1− ε

1 + ε
' e−i2ΦM =

VtdV
∗
tb

V ∗
tdVtb

. (340)

So |Γ12| � |M12| gives |q/p| = 1. From the mixing parameter xd (or ∆md), obtained by
calculating the box diagram, the leptonic B decay constant fb and the Bb parameter can
be determined. Bb 6= 1 would signal deviations from the factorization approximation.

Vq b

Vq b

Vq b

Vq d
*

Vq d
*

Vq d
*

Vq d
*

Vq b

d b

d b

W
-

W
+

u, c, t

b d

b d

WW

u, c, t u, c, t

u, c, t

Figure 45: Mixing diagrams for B-mesons. The corresponding CKM entries are shown.
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The eigenstates are often written

|BL,H >=
(1 + ε)|B0 > ±(1− ε)|B0

>√
2(1 + |ε|2)

, (341)

where ε = (p − q)/(p + q) and the plus sign belongs to ‘L’. Since ML 6= MH , the time
evolution of the mass eigenstates BL and BH (that are given by ∼ e−iMjt|Bj(0) >) are

different. Therefore one can have oscillations between B0 and B
0
. Denoting by |B0

phys(t) >

(|B0
phys(t) >) the state that at time t = 0 is pure B0 (respectively B

0
), we have

|B0
phys(t) >= g+(t)|B0 > +

(
q
p

)
g−(t)|B0

>

|B0
phys(t) >=

(
q
p

)
g+(t)|B0 > −g−(t)|B0

>,

(342)

where
g+(t) = e−

t
2
γe−imtcos∆mt

2

g−(t) = e−
t
2
γe−imtisin∆mt

2
.

(343)

Here, we have defined m ≡ (mH +mL)/2 and ∆m = mH −mL. The probability that an

initial B0 (B
0
) decays as a B

0
(B0) is simply

P (t) =
1

2
e−γt[1− cos(∆mt)]. (344)

Observation of the time dependency in the four combinations of initial and final state
flavours enables the mass difference and a dilution factor to be determined. From ∆mq

and γ the mixing parameter xq = ∆mq/γq (q = d, s, b), the number of oscillations per
lifetime, can be derived.

In general the final states (f and their CP conjugate f) of B meson decay are not CP
eigenstates. There are four decay amplitudes for pure beauty eigenstates to be measured

Mf =< f |H|B0 > M f =< f |H|B0
>

Mf =< f |H|B0 > Mf = f |H|B0
> .

(345)

The amplitudes Mf can be factorized with the two phases and an absolute value (see
also Eq. (357)), here two different phases appear. The ‘weak’ phases Φ are parameters in
the Hamiltonian. They account for CP violation and have opposite signs in Mf and M f .
The ‘strong’ phases δ appear in scattering and decay amplitudes, they do not account for
CP violation and have equal signs in Mf and Mf . From equations (339) and (340) the
time-dependent rates are

(−)

Γ f (t) = Ae−γt[1± I(t)]

(−)

Γ f (t) = Ae−γt[1± I(t)].

(346)
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Here A = 1
2
(|Mf |2 + |M f |2), A = 1

2
(|Mf |2 + |M f |2) and I (I) are the BL−BH interference

terms due to mixing

I(t) = 1−|κ|2
1+|κ|2cos(∆mt) + 2Imκ

1+|κ|2 sin(∆mt) κ = q
p

Mf

Mf

I(t) = 1−|κ|2
1+|κ|2 cos(∆mt) + 2Imκ

1+|κ|2 sin(∆mt) κ = q
p

M
f

M
f
.

(347)

Of special interest is the case, where only a single diagram and therefore a single CKM
phase and hadronic matrix element contributes to the decay. In this case |M f | = |Mf |,
|Mf | = |M f | and with |q/p| = 1 this gives |κ| = 1/|κ|.
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6.1.2 Measurement of Relevant Parameters

The two unitarity conditions relevant for B-meson systems are

VtbV
∗
ub + VtsV

∗
us + VtdV

∗
ud = 0

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0.

(348)

The angles of the triangles shown in Fig. 46 can be extracted either indirectly by measuring
the lengths of the sides, or, within the Standard Model, directly from CP asymmetries. If
the angles extracted by the two different methods disagree, then this would indicate new
physics.

γ

α

β

V V*
td tb

V V*
ud ub

V V*
cd cb

γ

α

β

V V*
cs cb

V V*
us ub

V V*
ts tb’

’
’

Figure 46: Two unitarity triangles which provide the measurable angles in B-physics.

LHCb is ideally suited to determine all the angles of the two unitarity triangles using
high-statistics data. Table 2 indicates the decay modes used and the expected precision
on the unitarity triangles, obtained after one year of data taking.

Another common parameterization of the CKM matrix due to Wolfenstein is [36]

V =


 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 (349)
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Table 2: Expected precision on the angles of the unitarity triangles obtained by the LHCb
experiment in one year of data taking.

Parameter Decay Mode σ [ 1 year ]

β + γ B0
d and B

0
d → π+π−; no penguin 0.03

(= π − α) penguin/tree = 0.20± 0.02 0.03 - 0.16

β B0
d and B

0
d → J/ψKS 0.01

γ − 2δγ B0
s and B

0
s → D±

s K
∓ 0.05 - 0.28

γ B0
d → D

0
K∗0, D0K∗0, D1K

∗0 and 0.07 - 0.31

B
0
d → D

0
K
∗0
, D0K

∗0
, D1K

∗0

δγ B0
s and B

0
s → J/ψφ 0.01

xs B0
s and B

0
s → D±

s π
∓ up to 90 (95 % CL)

with four real parameters A, λ, ρ and η. A consequence of unitarity in the Wolfenstein
parameterization is J = ηA2λ6. ‘J’ has the geometrical interpretation of two times the
area of the unitarity triangle; therefore all the triangles, for instance the triangles defined
by Eq. (348), have the same area.

The parameters ρ and η are poorly determined. A major goal of the LHCb experiment
is a precise measurement of these two quantities as a sensitive test of the Standard Model
description of quark mixing. In conjunction with measurements already made, this can be

accomplished by the measurement of B0
s −B

0
s mixing, CP violation in various decays of B

mesons and rare decays of B mesons. The measurement of the Bs mixing parameter xs,
when combined with our knowledge of Bd mixing, provides a measurement of the CKM
parameters |Vts/Vtd| with relatively low theoretical uncertainties. So far, |Vud| and |Vus|
give a precise measurement of λ ≈ 0.22. |Vcb|, and thus A, is determined from semileptonic
B decays; A ≈ 0.84± 0.06. Three present measurements provide limited information on
the remaining two variables, ρ and η:

• measurement of |Vub/Vcb| gives λ
√
ρ2 + η2.

• B0
d − B

0
d mixing depends on the combination |VtdV ∗

tb|2 which gives the quantity

Aλ3
√

(1− ρ)2 − η2.

• CP violation parameter ε in K decays depends on the quantity (1− ρ)η.

The latter two suffer from theoretical uncertainties and a dependency on the inaccuracy
in the measured top-quark mass. Resuming this gives three constraints on the CKM
parameters, see Fig. 47. The above measurements are usually discussed with reference to
the unitarity triangle. CP violation in the B-meson system is only possible if all the three
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angles are different from zero. The angles can be rewritten in terms of the Wolfenstein
parameters

tan = η
η2−ρ(1−ρ) , tanβ = η

1−ρ , tanγ = η
ρ
. (350)

The sign and the magnitude of these angles are meaningful and can be measured.

1

2

-1 20 1

A

BC0

η

ρ

Figure 47: Constraints in the (ρ, η) plane from εK measurement (solid curves), from

|Vub/Vcb| (dotted curves) and from B0
d − B

0
d mixing (dashed curves). Also the unitarity

triangle is reported with coordinates A(ρ, η), B(1,0) and C(0,0).

The LHCb experiment will determine the unitarity triangle completely, without using
previous measurements. All angles, one side and the height of the triangle can be measured
independently. The general strategy might look as follows [36, 37]:

• B0 → J/ψK0
S and similar channels will obtain a clean and precise measurement of

the angle β. Measurement of Bs mixing determines the side opposite to the angle
γ. Now the whole unitarity triangle is determined.

To understand how a measurement of Bs-mixing can improve the determination of
the quantity (1−ρ)2 + η2 we consider the mixing frequency ratio ∆md/∆ms, where
the top-quark mass dependence is cancelled

(1− ρ)2 + η2 =
(

∆md

∆ms

)(
1

λ2

)(
BBs

BBd

)(
fBs

fBd

)2

. (351)
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So by measurement of the two mixing frequency parameters from Bs and Bd mixing
it is possible to extract the above quantity. Failure to find Bs mixing frequencies in
the theoretical allowed range will signal a failure of the Standard Model description
of quark mixing in weak interactions.

• Check the internal consistency of the unitarity triangle with less clean or precise
decay channels. Angle α may suffer from possible Penguin contribution. Angle γ
is limited in precision because strong phases have to be experimentally determined
together with the weak phase in fewer events. The triangle height using the small
CP violating decay B0

s → J/ψφ is limited in statistical precision.

• Rare B decays can be studied yielding independent information on the CKM pa-
rameters.

As mentioned in section 6 there are three types of measurement. Here only CP asym-
metries in neutral meson decay are considered.

• Decays of B mesons to CP eigenstates.

Here we are interested in the decays of neutral B’s into a CP eigenstate, which we
denote by fCP . We define the amplitudes (compare Eq. (345)) for these processes
as

Af ≡< fCP |H|B0 >, Af ≡< fCP |H|B
0
> . (352)

Define further κ ≡ (q/p)(Af/Af). Now, for the B system, we should measure
quantities of the form

afCP
≡

Γ(B0
phys(t) → fCP )− Γ(B

0
phys(t) → fCP )

Γ(B0
phys(t) → fCP ) + Γ(B

0
phys(t) → fCP )

. (353)

This leads, using equation 342 and 343, to the following form for the time-dependent
CP asymmetry

afCP
=

1− |κ|2cos(∆mt)− 2Im{κ}sin(∆Mt)

1 + |κ|2 . (354)

The quantity Im{κ} can be directly related to CKM matrix elements in the Standard
Model. If the neutral B meson decays into a CP eigenstate (|f >= ±CP |f >), then
κ = κ and one is left with only two independent decay rates. When in addition only
a single diagram contributes to the decay, |κ| = |κ| = 1 and the decay rates in
equation 346 simplify to

(−)

Γ f (t) = Ae−γt [1∓ 2Im{κ}sin(∆mt)] . (355)

Here κ = e−2i(ΦM +ΦD) with mixing phase ΦM and the decay phase ΦD, see also
Eq. (358).

For decay modes such that |κ| = 1 (the clean modes, no CP violation), the asym-
metry given in expression (353) simplifies considerably

afCP
(|κ| = 1) = −Im{κ}sin(∆mt). (356)
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The modes appropriate for measuring asymmetries of the type (356) are those dom-
inated by a single weak phase. Likely candidates are J/ψKS, DD, ππ, φKS and
others. More diagrams contribute to the channel B0 → ππ. The asymmetry in
lowest order governs the angle α. Penguins can also contribute and this makes in-
terpretation of the measurements more difficult. Isospin analysis can in principle
partially eliminate unknown hadronic contributions [32]. The channel B0

s → ρK0
S

also suffers from hadronic contributions. The asymmetry measures γ with a very
low branching fraction.

• Decays of Bs mesons to non CP eigenstates.

These decays can be used for a measurement of the angle γ. One measures inde-
pendently the time dependence of the four possible decays (B0

s → f). Only one tree
diagram contributes, so again some simplifications can be made to equations (346)
and (347). LHCb will use the decays B0

s → DsK where the weak phase is given by
φfD

= 2(π − γ).
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6.1.3 Measurement of the Angles of the Unitarity Triangle

The measurement of the CP asymmetry, see Eq. (354), will determine Im{κ} [31]. It
depends on electroweak parameters only, without hadronic uncertainties. The amplitudes
Mf can be factorized

Af = ΣAie
iδieiΦi and Af = ΣAie

iδie−iΦi, (357)

where Ai are real, Φi are weak CKM phases and δi are strong phases. Thus |Af/Af | = 1
if all amplitudes that contribute to the direct decay have the same CKM phase, which is

denoted by ΦD: |Af/Af | = e−2iΦD . For Γ12 � M12, we have q/p =
√
M∗

12/M12 = e−2iΦM ,
where ΦM is the CKM phase in the B-mixing. Thus

κ = e−2i(ΦM +ΦD) → Im{κ} = −sin2(ΦM + ΦD). (358)

Note that Im{κ} is independent of phase convention and does not depend on any hadronic
parameters. In what follows, we concentrate on those processes that, within the Standard
Model, are dominated by amplitudes that have a single CKM phase.

For mixing in the B-system, see equations (338) and (339), the ratio q/p is given by
the CKM phases

e−2iΦM =
(
q
p

)
Bd

' 2 arg (VtdV
∗
tb) e−2iΦM =

(
q
p

)
Bs
' 2 arg (VtsV

∗
tb). (359)

For decays via quark subprocesses b→ ccd, which are dominated by tree diagrams

e−2iΦd =
Af
Af

=
VcbV

∗
cd

V ∗
cbVcd

. (360)

Thus for Bd decaying through b→ ccd

Imκ =

(
q

p

Af
Af

)
= sin

[
2 arg

(
VcbV

∗
cd

Vtb∗Vtd

)]
. (361)

For decays with a single KS (or KL) in the final state, K −K mixing plays an essential

role since B0 → K0 and B
0 → K

0
. Interference is possible because K −K mixing, for

these modes

κ =

(
q

p

)(
Af
Af

)(
q

p

)
K

with

(
q

p

)
K

=
VcsV

∗
cd

V ∗
csVcd

. (362)

Decay processes b→ ssd and b→ sss are dominated by penguin diagrams. For these

Af
Af

=
VtbV

∗
td

V ∗
tbVtd

respectively
VtbV

∗
ts

V ∗
tbVts

. (363)

Note that the sign of Im{κ} depends on the CP transformation properties of the final
state. The analysis above corresponds to CP-even final states. For CP-odd states, Im{κ}
has the opposite sign. In what follows, we specify Im{κ} of CP-even states, regardless of
the CP assignments of specific hadronic modes discussed.

100



CP asymmetries in decays to CP eigenstates, B0 → fCP , provide a way to measure
the three angles of the unitary triangle (see Fig. 44) defined by

α ≡ arg

(
− VtdV

∗
tb

V ∗
ubVud

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡ arg

(
−V

∗
ubVud
VcdV

∗
cb

)
. (364)

The angles (α′, β ′, γ′) of the second useful triangle can be defined in a similar way. Next
three explicit examples will be given for asymmetries that measure the three angles α, β
and γ.

Measuring sin(2β) in B0
d → J/ψKS.

The mixing phase in the Bd system is given in Eq. (360). With a single kaon in the
final state, one has to take into account the mixing phase in the K0 system given in
Eq. (363).

WW
B

o
d Bo

d

V*
tb Vtd

Vtd V*
tb

b d

WWKs
o Ko

s

c

c

s

d

d

b

V*
cs Vcd

Vcd V*
cs

B
o
d

b
J/ψ

Ks
o

Vcb

V*
cs

c

s

t

td b

d d

c
W

Figure 48: Bd-mixing, K-mixing and tree diagrams contributing in the decay B0
d →

J/ψKS.
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The decay phase in the quark subprocess b→ ccs is Af/Af = (VcbV
∗
cs)/(VcsV

∗
cb). Thus

κ(B0
d → J/ψKS) =

(
VtdV

∗
tb

V ∗
tdVtb

)(
VcbV

∗
cs

VcsV ∗
cb

)(
VcsV

∗
cd

VcdV ∗
cs

)
→ Im{κ} = −sin(2β). (365)

(As J/ψKS is a CP = −∞ state, there is an extra minus sign in the asymmetry that is
suppressed here.) In addition there is a small penguin contribution to b→ ccs. However,
it depends on the CKM combination VtbV

∗
ts, which has to a very good approximation, the

same phase (modulo π) as the tree diagram, which depends on VcbV
∗
cs. Hence, only one

single weak phase contributes to the decay.

Measuring sin(2α) in B0
d → ππ.

Using q/p from Eq. (360) and Af/Af = (VubV
∗
ud)/(VudV

∗
ub) gives

κ(B0
d → ππ) =

(
VtdV

∗
tb

V ∗
tdVtb

)(
VubV

∗
ud

VudV
∗
ub

)
→ Im{κ} = −sin(2α). (366)

In this case, the penguin contribution is also expected to be small, but it depends on
the CKM combination VtbV

∗
td, which has a phase different from that of the tree diagram.

Uncertainties due to the penguin contribution can be eliminated using isospin analysis
[31].

WW
B

o
d Bo

d

V*
tb Vtd

Vtd V*
tb

b d

b

B
o
d

Vub

Vud
* d

u

π_

π+

t

td b

d d

W
u

Figure 49: Bd-mixing and tree diagrams contributing in the decay B0
d → ππ.
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Measuring sin(2γ) in B0
s → ρKS.

The mixing phase in the Bs system is given in expression (360). Because of the final
state KS, the mixing phase for the K0 system has to be taken into account. The quark
subprocess is b→ uud as in B0

d → ππ, thus

κ(B0
s → ρKS) =

(
VtsV

∗
tb

V ∗
tsVtb

)(
VubV

∗
ud

VudV ∗
ub

)(
VcsV

∗
cd

VcdV ∗
cs

)
→ Im{κ} = −sin(2(γ + β ′)). (367)

In this case, the penguin contribution is also expected to be small.

WW

V*
tb

V*
tb

b s

Vts

Vts
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sBs

o

u

d

b
Vub

Vud
*
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s

t

t
s b

u
W

ρ

s s

Figure 50: Bs-mixing and tree diagrams contributing in the decay B0
s → ρKS.
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7 Status of Experiments

7.1 The LHCb Experiment at CERN

The LHCb spectrometer, as shown in Fig. 51, is a dipole magnet configuration with a
forward angular coverage of approximately 10 mrad to 300 (250) mrad in the bending
(nonbending) plane. The silicon vertex detector is positioned inside the vacuum pipe for
measurement of the B secondary vertices. The expected proper time resolution is about
0.043 ps. LHCb comprises a vertex detector system (including a pile-up veto counter),
a tracking system (partially inside a dipole magnet), aerogel and gas RICH counters, an
electromagnetic calorimeter with preshower detector, a hadron calorimeter and a muon
detector. The polarity of the dipole magnetic field can be changed to reduce systematic
errors in the CP violation measurements that could result from a left-right asymmetry of
the detector. An iron shield upstream of the magnet reduces the stray field in the vicinity
of the vertex detector and of the first RICH. The vertex detector system comprises a silicon
vertex detector and a pile-up veto counter. The vertex detector has to provide precise
information on the production and decay vertices of b-hadrons. The pile-up veto counter
is used to suppress events containing multiple pp interactions in a single bunch-crossing,
by counting the number of primary vertices. The tracking system, consisting of inner and
outer tracker, provides efficient reconstruction and precise momentum measurement of
charged tracks, track directions for ring reconstruction in the RICH, and information for
the level1 and higher level triggers. The system comprises 11 stations between the vertex
detector and the calorimeters. The RICH system has the task of identifying charged
particles (K/p) over the momentum range 1-150 GeV/c, within an angular acceptance of
10-330 mrad. Particle identification is crucial to reduce background in selected final states
and to provide an efficient kaon tag. K/p separation is used to eliminate backgrounds
such as the or +K- background to the +p- mode. The RICH’s give LHC-b the capability
of separating the three modes.

Figure 51: The LHCb detector seen from above.

The main purpose of the calorimeters is to provide identification of electrons (e/p dis-
crimination) and hadrons for trigger and off-line analysis, with measurements of position
and energy. The muon detector provides muon identification and level-0 trigger informa-
tion. It consists of four stations embedded in an iron filter and a special station (M1) in
front of the calorimeter.
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8 PROBLEMS

8.1 Time Reversal

Problem 1. Wigner defined the operation of time reversal as

T = U · J, (368)

where U is a unitary operator and K is an operator that complex conjugates all quantities
it operates on.
(a) Show that an immediate consequence of Wigner’s definition of time reversal is that a
hamiltonian invariant to time must be real.
(b) Prove that another consequence of Wigner’s definition of time reversal is the relation

< T ψα|T ψβ >=< ψα|ψβ >∗ . (369)

8.2 Charge Conjugation

Problem 2. For particles such as n, p, π+, etc., from which the corresponding antiparticles
are distinguishable, the wave function Ψ must be complex.
(a) Prove this by using the current density of particle flow,

S =
ih̄

2m
(Ψ∗∇Ψ−Ψ∇Ψ∗). (370)

(b) Show that for self-conjugate particles such as γ and π0 one must have Ψ∗ = Ψ.

8.3 CPT -Theorem

Problem 3. The CPT -theorem states that the hamiltonians in a general class of quan-
tum field theories are invariant to the combined operations of CPT even if they are not
invariant to one or more of those operations. Prove that an important consequence of the
CPT -theom is that the lifetime of a particle is equal to that of an antiparticle. Consider
the decays A → B and A → B, where B represents the final state of many particles.
Note that the lifetime is governed by the decay matrix element < Ψb|Hwk|Ψa >.

8.4 Cabibbo Angle

Estimate the Cabibbo angle θC by comparing the β decays n→ pe−νe and Λ0 → pe−νe.
The neutron (Λ0) lifetime is τn = 900 s (τΛ = 2.63×10−10 s), branching fraction is fn = 1
(τΛ = 8.3 × 10−4), and the energy release is En = 1.3 MeV (EΛ = 177.3 MeV). Assume
that the phase space factors are approximately E5/30, where E is the energy release in
MeV.

8.5 Unitary Matrix

Problem 2. Show that an n× n unitary matrix has n2 real parameters, and that

U = e−iα
(

cos θCe
iβ sin θCe

iγ

− sin θCe
−iγ cos θCe

−iβ

)
(371)

is the most general form of a 2× 2 unitary matrix.
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8.6 Quark Phases

Problem 3. The most general form of (d, s) mixing is

(
d′

s′

)
= U

(
d
s

)
, (372)

where U is an arbitrary 2× 2 unitary matrix, U†U = 1. Show that this can be reduced
to the form (186) by adjusting the arbitrary phases of the quark states s, s′ and d.

8.7 Exploiting Unitarity

Problem 4. Show that if Eq. (186) were exact one can derive the remaining CKM matrix
elements by exploiting the unitarity of the CKM matrix.

8.8 D-meson Decay

Problem 5. Estimate the relative rates for the following htree decay modes of the D0 (cu)
meson: D0 → K−π+, π−π+, K+π−.

Classify the following semileptonic decays of the D+(1869) = cd meson as Cabibbo-
allowed, Cabibbo-suppressed, or forbidden in lowest-order weak interactions, by finding
selection rules for the changes in strangeness, charm and electrical charge in such decays:

(a) D+ → K− + π+ + e+ + νe
(b) D+ → K+ + π− + e+ + νe
(c) D+ → π+ + π+ + e− + νe
(d) D+ → π+ + π− + e+ + νe

8.9 Mass and Decay Matrix

Problem 6. Determine the eigenvalues and normalized eigenvectors of the mass matrix


 M − iΓ

2
M12 − iΓ12

2

M∗
12 −

iΓ∗12
2

M − iΓ
2


 (373)

8.10 Kaon Intensities

Problem 7. (a) Determine the intensities of K0 and K
0

as function of time.
(b) Derive Eq. (221) for the ratio of the number of leptons of the ‘wrong sign’ with respect

to the number with the ‘correct sign’ for K0 ↔ K
0

oscillations. Give the expression for
r in case Γ1 � Γ2.
(c) For B0 ↔ B

0
oscillations a good approximation is Γ1 ≈ Γ2. Give the expression for r

as function of x = ∆m/Γ.
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8.11 Optical Theorem

Problem 8. Describe an incoming particle with a plane wave Aei(kz−ωt), with ω =√
k2 +m2, that enters perpendicular to a thin plate with thickness l. Determine the

phase shift of the wave as it travels through the material. Derive the relation between
the index of refraction n and the forward scattering amplitude,

n = 1 +
2πN

k2
f(0). (374)

Note that on the one hand a plane wave in the material can be described by a travel
constant nk. This leads to a phase shift. On the other hand one can integrate over the
coherent elastic scattering in the forward direction. The scattered wave is proportional to
Af(θ)ei(kr−ωt)/r, with r the distance between the scattering center in the plate to a point
after the plate. One can make the approximation f(θ) = f(0).

8.12 Neutral Kaon States in Matter

Problem 9. (a) Verify Eq. (252) for the eigenstates of the neutral kaon system in matter.

(b) Explain how the value of ∆m/Γ is obtained in the experiment of F. Muller et al. [4].

8.13 Regeneration Parameter

Problem 10. Estimate the value of the regeneration parameter in Beryllium for a momen-
tum of 1,100 MeV. This corresponds to the circumstances of the original CP violation
experiment. Estimate f and f by using the optical theorem and data from K+p and K−p
total cross sections.

8.14 Isospin Analysis

Problem 11. Derive Eq. (270).

109



110



9 APPENDIX B: SOLUTIONS

9.1 Cabibbo angle.

Problem 1. Estimate the Cabibbo angles θC by comparing the β decays n → pe−νe and
Λ0 → pe−νe. The neutron (Λ0) lifetime is τn = 900 s (τΛ = 2.63 × 10−10 s), branching
fraction is fn = 1 (τΛ = 8.3× 10−4), and the energy release is En = 1.3 MeV (EΛ = 177.3
MeV). Assume that the phase space factors are approximately E5/30, where E is the
energy release in MeV.

Solution: At the quark level the neutron decay corresponds to d → ue−νe which has a
Cabibbo factor cosθC . For the Λ0 we have s→ ue−νe which has a Cabibbo factor sinθC .
Thus we have

Γ(n→ pe−νe) = fn

τn
∝ cos θCE

5
n

30
,

Γ(Λ0 → pe−νe) = fΛ
τΛ
∝ sin θCE

5
n

30
.

(375)

From the ratio we find

tan θC
2 fΛτn
fnτΛ

(
En
EΛ

)5

= 0.060 (376)

and we have that θC = 13.8◦.

9.2 Unitary Matrix

Problem 2. Show that an n× n unitary matrix has n2 real parameters, and that

U = e−iα
(

cos θCe
iβ sin θCe

iγ

− sin θCe
−iγ cos θCe

−iβ

)
(377)

is the most general form of a 2× 2 unitary matrix.

Solution: An arbitrary complex n × n matrix U has 2n2 real parameters. The matrix
F ≡ U†U is Hermitian by construction, so Fij = F ∗

ji and it has n2 real parameters.
Hence, the condition U†U = 1 imposes n2 conditions on U, leaving n2 real parameters
undetermined. Since Eq. (377) has n2 = 4 real parameters and satisfies U†U = 1, it is
the most general 2× 2 unitary matrix.

9.3 Quark Phases

Problem 3. The most general form of (d, s) mixing is(
d′

s′

)
= U

(
d
s

)
, (378)

where U is an arbitrary 2× 2 unitary matrix, U†U = 1. Show that this can be reduced
to the form (186) by adjusting the arbitrary phases of the quark states s, s′ and d.

Solution: Substituting Eq. (378) into Eq. (377) gives

d′ = e−iα(cos θCe
iβd+ sin θCe

iγs)
s′ = e−iα(− sin θCe

−iγd+ cos θCe
−iβs),

(379)
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which can be written as

ei(α−β)d′ = cos θCd+ sin θC(ei(γ−β)s)
ei(α+γ)s′ = − sin θCd+ cos θC(ei(γ−β)s).

(380)

Redefining the phases of the quark states by

ei(α−β)d′ → d′, ei(α+γ)s′ → s′, ei(γ−β)s→ s (381)

gives the required result.

9.4 Exploiting Unitarity

Problem 4. Show that if Eq. (186) were exact one can derive the remaining CKM matrix
elements by exploiting the unitarity of the CKM matrix.

Solution: If Eq. (186) is exact then


 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =


 cos θC sin θC Vub
− sin θC cos θC Vcb
Vtd Vts Vtb


 . (382)

The remaining elements are then determined by exploiting the fact that the sum of the
squared moduli of the elements of any row or column of a unitary matrix must be unity
(this follows directly from UU† = 1 and U†U = 1, respectively). For example

|Vud|2 + |Vus|2 + |Vub|2 = cos θC
2 + sin θC

2 + |Vub|2 = 1, (383)

implying Vub = 0, etc.

9.5 D-meson Decay

Problem 5. Estimate the relative rates for the following htree decay modes of the D0 (cu)
meson: D0 → K−π+, π−π+, K+π−.

Classify the following semileptonic decays of the D+(1869) = cd meson as Cabibbo-
allowed, Cabibbo-suppressed, or forbidden in lowest-order weak interactions, by finding
selection rules for the changes in strangeness, charm and electrical charge in such decays:

(a) D+ → K− + π+ + e+ + νe
(b) D+ → K+ + π− + e+ + νe
(c) D+ → π+ + π+ + e− + νe
(d) D+ → π+ + π− + e+ + νe

Solution: The amplitudes for the decay of the D0 meson for the channels D0 → K−π+,
π−π+, K+π− are respectively cos θC

2, sin θC cos θC , and sin θC
2.

The Cabibbo-allowed decays involve the csW vertex, giving rise to the selection rule
∆C = ∆S = ∆Q = ±1. Cabibbo-suppressed decays involve the cdW vertex, giving rise
to the selection rule ∆C∆Q = ±1, ∆S = 0. Using these rules one sees that the decays
are (a) Cabibbo-allowed, (b) forbidden, (c) forbidden, and (d) Cabibbo-suppressed.
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9.6 Mass and Decay Matrix

Problem 6. Determine the eigenvalues and normalized eigenvectors of the mass matrix


 M − iΓ

2
M12 − iΓ12

2

M∗
12 −

iΓ∗12
2

M − iΓ
2


 (384)

Solution: We have M − i
2
Γ = D · I + ~E · ~σ with ~σ the Pauli matrices. Thus

~E · σ =


 Ex
Ey
Ez


 ·


 σx
σy
σx


 ·

(
Ez Ex − iEy

Ex + iEy −Ez

)
= E

(
cos β sin βe−iα

sin βeiα − cos β

)
(385)

and we find

D · I + ~E · ~σ =

(
D + E cos β E sin βe−iα

E sin βeiα D − cos β

)
. (386)

The eigenvalues are found from

det
(
[D · I + ~E · ~σ]− λI

)
= 0 (387)

We find
(D + E cos β − λ)(D −E cos β − λ)− E2 sin2 β = 0
D2 − 2λD + λ2 − E2 = 0
(λ−D)2 = E2 or λ−D = ±E

(388)

We find for the eigenvalues λ1 = D + E and λ2 = D −E.

The eigenvectors that correspond to these eigenvalues are found as follows.(
[D · I + ~E · ~σ]− λnI

)
|~x >= 0. (389)

This gives for the first eigenvalue, λ1,(
E(cosβ − 1) E sin βe−iα

E sin βeiα −E(cos β + 1)

)(
x1

x2

)
= 0. (390)

Thus we find
(cos β − 1)x1 + sin βe−iαx2 = 0
sin βeiαx1 − (cosβ + 1)x2 = 0

(391)

We assume x1 = 1 and find using the geometrical relations 1−cos β = 2 sin2 β
2
, 1+cosβ =

2 cos2 β
2

and sin β = 2 sin β
2

cos β
2

for x2 the following

cos β − 1 + sin βe−iα = 0

x2 = 1−cos β
sinβ

eiα = tanβ
2
eiα.

(392)

For the second eigenvalue, λ2, we find(
E(cosβ + 1) E sin βe−iα

E sin βeiα E(1− cos β)

)(
y1

y2

)
= 0. (393)
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Thus we find
(cosβ + 1)y1 + sin βe−iαy2 = 0
sin βeiαy1 + (1− cos β)y2 = 0

(394)

We assume y1 = 1 and find for y2 the following

y2 = −cos β + 1

sin β
eiα = −cot

β

2
eiα. (395)

We find for the eigenvectors

V1 =

(
1

tanβ
2
eiα

)
and

(
1

−cotβ
2
eiα

)
. (396)

9.7 Kaon Intensities

Problem 7. (a) Determine the intensities of K0 and K
0

as function of time.
(b) Derive Eq. (221) for the ratio of the number of leptons of the ‘wrong sign’ with respect

to the number with the ‘correct sign’ for K0 ↔ K
0

oscillations. Give the expression for
r in case Γ1 � Γ2.
(c) For B0 ↔ B

0
oscillations a good approximation is Γ1 ≈ Γ2. Give the expression for r

as function of x = ∆m/Γ.

Solution: (a) The intensity for K0 after decay for a certain time τ is

I(K0) =
[a1(τ) + a2(τ)]√

2
· [a∗1(τ) + a∗2(τ)]√

2
, (397)

with as K1 amplitude

a1(τ) =
1√
2
e−im1τ− 1

2
Γ1τ (398)

and for the K2 amplitude

a2(τ) =
1√
2
e−im2τ− 1

2
Γ2τ . (399)

We find

I(K0) =
1

4

[
e−Γ1τ + e−Γ2τ + 2e−

1
2
(Γ1+Γ2)τ cos ∆mτ

]
, (400)

with ∆m = |m1 −m2|.
The intensity for K

0
is

I(K
0
) =

[a1(τ)− a2(τ)]√
2

· [a∗1(τ)− a∗2(τ)]√
2

, (401)

and we find

I(K
0
) =

1

4

[
e−Γ1τ + e−Γ2τ − 2e−

1
2
(Γ1+Γ2)τ cos ∆mτ

]
, (402)

with ∆m = |m1 −m2|.

(b) The ratio rK is defined for semileptonic decay as

rK =

∫∞
0 I(K

0
)dτ∫∞

0 I(K0)dτ
. (403)
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For the integral
∫∞
0 I(K

0
)dτ we find

∫∞
0 I(K

0
)dτ = 1

4

[
1

−Γ1
e−Γ1τ + 1

−Γ2
e−Γ2τ − 2e−

1
2
(Γ1+Γ2)τ (− 1

2
(Γ1+Γ2) cos ∆mτ+∆m sin ∆mτ)

( 1
2
(Γ1+Γ2))2+(∆m)2

]∞
0

= 1
4

[
0− 1

−Γ1
− 1

−Γ2
+ 2

[− 1
2
(Γ1+Γ2)]

1
4
(Γ1+Γ2)2+(∆m)2

]

= 1
4

[
Γ1+Γ2

Γ1Γ2
− Γ1+Γ2

1
4
(Γ1+Γ2)2+(∆m)2

]
(404)

The same for
∫∞
0 I(K0)dτ gives

∫ ∞

0
I(K0)dτ =

1

4

[
Γ1 + Γ2

Γ1Γ2
+

Γ1 + Γ2
1
4
(Γ1 + Γ2)2 + (∆m)2

]
. (405)

Thus we find for rK

rK =
(Γ1+Γ2)[ 1

4
(Γ1+Γ2)2+(∆m)2]−Γ1Γ2(Γ1+Γ2)

(Γ1+Γ2)[ 1
4
(Γ1+Γ2)2+(∆m)2]+Γ1Γ2(Γ1+Γ2)

=
1
4
(Γ1+Γ2)2+(∆m)2−Γ1Γ2

1
4
(Γ1+Γ2)2+(∆m)2+Γ1Γ2

= (Γ1−Γ2)2+4(∆m)2

2(Γ1+Γ2)2−(Γ1−Γ2)2+4(∆m)2

(406)

For the neutral kaon system one has that Γ1 � Γ2 and we find

rK ≈
Γ2

1 + 4(∆m)2

2Γ2
1 − Γ2

1 + 4(∆m)2
≈ 1. (407)

(c) For the B0 − B
0

system one has that Γ1 ≈ Γ2 and we find

r ≈ 0 + 4(∆m)2

2(2Γ1)2 − 0 + 4(∆m)2
=

4(∆m)2

8Γ2 + 4(∆m)2
=

(
∆m
Γ

)2

2 +
(

∆m
Γ

)2 =
x2

2 + x2
, (408)

with x = ∆m/Γ.

9.8 Optical Theorem

Problem 8. Describe an incoming particle with a plane wave Aei(kz−ωt), with ω =√
k2 +m2, that enters perpendicular to a thin plate with thickness l. Determine the

phase shift of the wave as it travels through the material. Derive the relation between
the index of refraction n and the forward scattering amplitude,

n = 1 +
2πN

k2
f(0). (409)

Note that on the one hand a plane wave in the material can be described by a travel
constant nk. This leads to a phase shift. On the other hand one can integrate over the
coherent elastic scattering in the forward direction. The scattered wave is proportional to
Af(θ)ei(kr−ωt)/r, with r the distance between the scattering center in the plate to a point
after the plate. One can make the approximation f(θ) = f(0).
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Solution: We have an incoming particle with a plane wave Aei(kz−ωt), with ω =
√
k2 +m2.

In the infinitely thin plane, the travel constant is nk, with n the index of refraction. We
take the z direction along ~k of the wave. For the incoming wave we have Aeikze−iωt. For
the wave after the thin plate we find Aei(k(z−l)+nkl)e−iωt, where wave attenuation has been
neglected. The phase shift amounts to i(nkl − kl) = i(n− 1)kl. Thus we have

Aeikzeilk(n−1)e−iωt ≈ Aeikz [1 + ikl(n− 1)] e−iωt. (410)

The wave after the thin plate can also be written as the sum of the coherent incoming
and scattered waves.

A

(
eikz +

∫ ∞

0
f(θ)

eikr

r
·N · 2πlρdρ

)
e−iωt, (411)

with N the number of nuclei per volume, 2πlρdρ the volume, f(θ) the scattering am-
plitude. Here ρ is the distance along the plate, perpendicular to the wave. One has
ρ2 = r2 − z2. For r = z → f(θ) = f(0) and for r = ∞→ f(θ) = 0. We find

2πNl
∫∞
0 f(θ) e

ikr

r
ρdρ = 2πNl

∫∞
z f(θ)eikrdr = 2πNlf(θ) 1

ik
eikr|∞z

= 2πNl
[
0− f(0)

ik
eikz

]
= −2πNl f(0)

ik
eikz.

(412)

We now combine Eq. (410) and Eq. (412) and find

Aeikz [1 + ikl(n− 1)] e−iωt ≈ Aeikz
[
1− f(0)

ik
2πNl

]
eiωt

ikl(n− 1) = −f(0)
ik

2πNl

(n− 1) = f(0)
k2 2πN

n = 1 + 2πN
k2 f(0).

(413)

9.9 Neutral Kaon States in Matter

Problem 9. (a) Verify Eq. (252) for the eigenstates of the neutral kaon system in matter.

(b) Explain how the value of ∆m/Γ is obtained in the experiment of F. Muller et al. [4].

Solution: The Schrödinger equation for the kaon system in matter can be written as

i
∂ψ

∂τ
= (M − i

2
Γ)ψ −


 φreg

τ
0

0
φreg

τ


ψ, (414)

with φreg = 2πNτv
k
√

1−v2 f(0). One observes that the Schrödinger equation for kaons in matter
has an additional term compared to the case of vacuum. The eigenvectors are

|K0′
1 >=

(
1 + rreg
1− rreg

)
and |K0′

2 >=

(
1− rreg

−1− rreg

)
. (415)
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These states can be written as

|K0′
1 > = |K0

1 > +rreg|K0
2 >

= 1√
2

(
1
1

)
+ rreg

1√
2

(
1

−1

)
= 1√

2

(
1 + rreg
1− rreg

)
,

|K0′
2 > = |K0

2 > −rreg|K0
1 >

= 1√
2

(
1

−1

)
− rreg

1√
2

(
1
1

)
= 1√

2

(
1− rreg

−1− rreg

)
.

(416)

(b) The ratio of intensities of the ‘transmitted’ wave and the ‘scattered’ wave is a function
of ∆m/Γ. The ‘transmitted’ wave originates from regeneration of K0

1 through so-called
transmission regeneration by means of the thin plate. The ‘scattered’ wave originates
from regeneration of K0

1 from diffraction by the nuclei in the thin plate. The latter wave
has a characteristic angular distribution corresponding to diffraction. The intensities of
the K0

1 ’s generated by transmission and by diffraction is measured and from this ∆m/Γ
can be calculated.

9.10 Regeneration Parameter

Problem 10. Estimate the value of the regeneration parameter in Beryllium for a momen-
tum of 1,100 MeV. This corresponds to the circumstances of the original CP violation
experiment. Estimate f and f by using the optical theorem and data from K+p and K−p
total cross sections.

Solution: The regeneration parameter can be written as

rreg =
1

2

φreg − φreg

2∆m− i∆Γ
. (417)

The phase shifts in matter are given by

φreg =
2πNτv

k
√

1− v2
f(0) and φreg =

2πNτv

k
√

1− v2
f(0). (418)

The optical theorem can be used to relate the forward elastic scattering amplitude to the
imaginary part of the total cross section. We have

σtotal =
4π

k
Im f(0) → f(0) =

kσtotal

4π
, (419)

with a similar equation for f(0). From Ref. [2] we find for the kaon - proton scattering
cross sections the values

K+p : σrmtotal ≈ 18 mb
K−p : σrmtotal ≈ 55 mb.

(420)

9.11 Isospin Analysis

Problem 11. Derive Eq. (270).
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Solution: We can write down the following expressions for the ππ states,

|(2π)I=0 >
s = 1√

3

(
|π+

1 π
−
2 >s −|π0

1π
0
2 >

s +|π−1 π+
2 >s

)
,

|(2π)I=2 >
s = 1√

6

(
|π+

1 π
−
2 >s +2|π0

1π
0
2 >

s +|π−1 π+
2 >s

)
,

|π+π− >s = 1√
2

(
|π+

1 π
−
2 >s +|π−1 π+

2 >s
)
.

(421)

where the superscript s indicates that we assume that there are no strong-interaction
effects between the pions.

Thus we can write for the ππ states

|(2π)I=2 >
s = 1√

6

(√
2|π+

1 π
−
2 >s +2|π0

1π
0
2 >

s
)

|(2π)I=0 >
s = 1√

3

(√
2|π+

1 π
−
2 >s −|π0

1π
0
2 >

s
)
.

(422)

We multiply the latter equation by
√

2 and add up both expressions in Eq. (422). This
gives

< (2π)I=2|s +
√

2 < (2π)I=0|s =

(√
2√
6

+
2
√

2√
6

)
< π+π−|s. (423)

The same procedure gives

< (2π)I=2|s− < (2π)I=0|s =

√
3√
2
< π0π0|s. (424)

Next the strong-interaction phases for the pions is taken into account by multiplying each
amplitude with exp(iδI), where I denotes isospin I = 0 or 2. We find

< π+π−|s = 1√
3

(
eiδ2 < (2π)I=2|s +

√
2 < eiδ0(2π)I=0|s

)

< π0π0|s = 1√
3

(√
2eiδ2 < (2π)I=2|s− < eiδ0(2π)I=0|s

)
.

(425)

The K0 and K
0

amplitudes are given by

< (2π)I=0|sHweak|K0 >= A0 < (2π)I=2|sHweak|K0 >= A2

< (2π)I=0|sHweak|K
0
>= A∗

0 < (2π)I=2|sHweak|K
0
>= A∗

2.
(426)

We write the eigenstates as

|K0
S >=

1√
2

(
(1 + ε)|K0 > +(1− ε)|K0

>
)
, |K0

L >=
1√
2

(
(1 + ε)|K0 > +(1− ε)|K0

>
)
.

(427)
It is now possible to determine the K0 → ππ amplitudes. Here we use the relations
A+ A∗ = 2Re A and A− A∗ = 2iIm A. We find

< π+π−|Hweak|K0
L > = 1√

6

(
eiδ2 [(1 + ε)A2 − (1− ε)A∗

2] +
√

2eiδ0 [(1 + ε)A0 − (1− ε)A∗
0]
)

= 1√
6
eiδ2 [(A2 − A∗

2) + ε(A2 + A∗
2)] +

√
2√
6
eiδ0 [(A0 −A∗

0) + ε(A0 + A∗
0)]

= 2√
6
eiδ2 [iIm A2 + εRe A2] + 2√

3
eiδ0 [iIm A0 + εRe A0] .

(428)
The other expressions given in Eq. (??) are found in a similar manner.
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