

Conclusions:

- 1) Top quarks are produced by the millions at the LHC:
 - → Almost no background: measure top quark properties
- 2) Top quarks are THE calibration signal for complex topologies:
 - → Most complex SM candle at the LHC
 - → Vital inputs for detector operation and SUSY background
- 3) Top quarks pair-like events ... window to new physics:
 - → FCNC, SUSY, MSSM Higgses, Resonances, ...

The top quark in the standard model

Discovered more than 10 years ago We still know little about the top quark

- Mass

- Top width ~1.5 GeV

- Electric charge 3/3

- Spin ½

- BR(t→Wb) ~ 100%

Precision <2% (see next talk on CMS' potential)

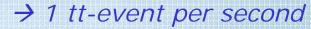
7

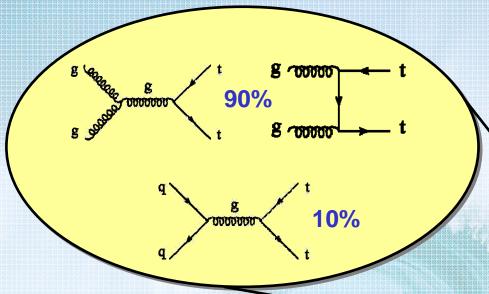
-4/3 excluded @ 94% C.L. (preliminary)

Not really tested – spin correlations

At 20% level in 3 generations case

FCNC: probed at the 10% level


The LHC offers opportunity for **precision measurements**


This talk: "What can we do with 1-10 fb-1 of high-energy data?"

Top quark production at the LHC

Production: $\sigma_{tt}(LHC) \sim 830 \pm 100 \text{ pb}$

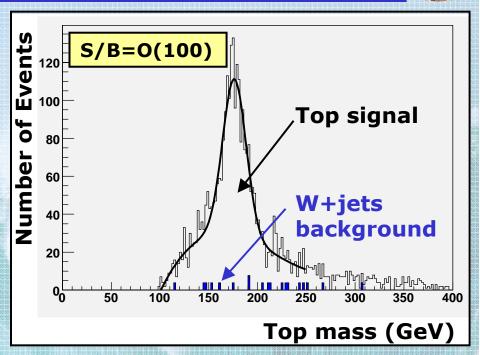
Cross section LHC = $100 \times \text{Tevatron}$ Background LHC = $10 \times \text{Tevatron}$

Final states:

- 1) Fully-hadronic (4/9) 6 jets
- 2) Semi-leptonic (4/9): 11 + 1v + 4 jets
- 3) Fully-leptonic (1/9): 2l + 2v + 2 jets

Golden channel ($l=e,\mu$) \rightarrow 2.5 million events/year

 $t \rightarrow Wb \sim 1$ $W \rightarrow qq \sim 2/3$ $W \rightarrow lv \sim 1/3$


Top quark physics with b-tag information

Top physics is 'easy' at the LHC:

Selection: Lepton
Missing E_T 4 (high- P_T)-jets (2 b-jets)

- → signal efficiency few %
- → very small SM background

- Standard' Top physics at the LHC:
 - b-tag is important in selection
 - Most measurements limited by systematic uncertainties
- 'Early' top physics at the LHC:
 - Cross-section measurement (~ 20%)
 - Decay properties

Top quark physics without b-tag information

Robust selection cuts:

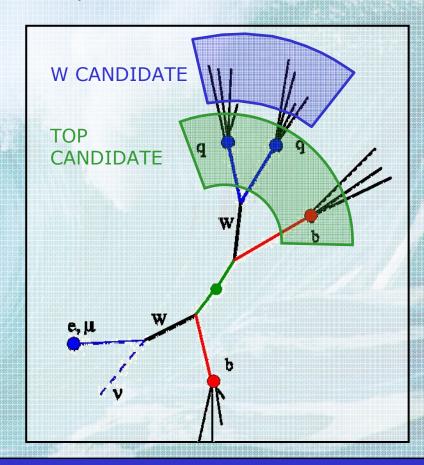
Missing $E_T > 20 \text{ GeV}$

1 lepton $P_T > 20 \text{ GeV}$

4 jets(R=0.4) $P_T > 40 \text{ GeV}$

Still 1500 events/day

Selection efficiency = 5.3%


Assign jets to W-boson and top-quark:


1) Hadronic top:

Three jets with highest vector-sum p_T as the decay products of the top

2) W boson:

Two jets in hadronic top with highest momentum. in reconstructed jjj C.M. frame.

Top quarks form an 'oasis' in our search for new physics

First year at the LHC:

A new detector AND a new energy regime

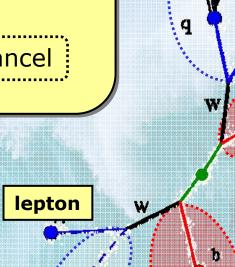
- Understand ATLAS/CMS using cosmics
- 2 Understand SM+ATLAS/CMS in simple topologies
- Understand SM+ATLAS/CMS in complex topologies
- Look for new physics in ATLAS at 14 TeV

Process	#events 10 fb ⁻¹
b b	10 ¹²
$W \rightarrow ev$	10^{8}
$Z \rightarrow e^+e^-/\mu^+\mu^-$	10^7
tī 3	10^{7}
Min. bias	10^7
QCD jets $P_T > 150 \text{GeV}$	10^{7}
$h (m_h = 130 \text{GeV})$	10 ⁵
$\widetilde{g}\widetilde{g}$ (m $_{\widetilde{g}} = 1 \mathrm{TeV}$)	10^4

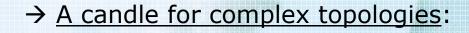
Top quark pair production as calibration tool

b-jet

iet


iet

You can use production of top quark pairs to help calibrate LHC detectors in complex event-topologies

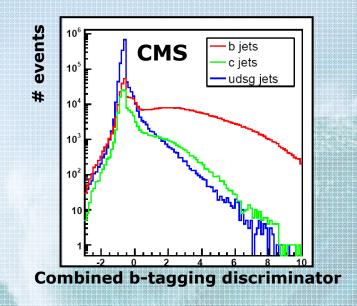

No

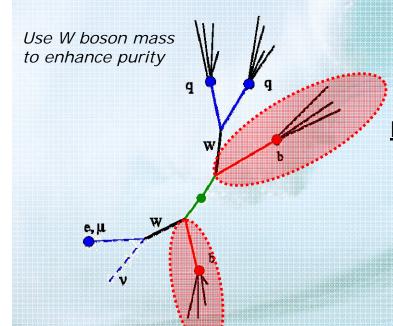
Cancel

Missing

energy

- Calibrate light jet energy scale
- Calibrate missing E_T
- Obtain enriched b-jet sample
- Leptons and trigger


Note candles: 2 W-bosons 2 top quarks


b-jet

Calibrating the b-jet identification efficiency

- B-jet identification efficiency: Important in cross-section determination and many new physics searches (like H, ttH)
- A clean sample of b-jets from top events
 2 out of 4 jets in event are b-jets (a-priori)

B-jet sample from top quark pairs:

- Calibrate b-tagging efficiency from data (~ 5%)
 Dominant systematic uncertainty: ISR/FSR jets
- Study b-tag (performance) in complex events

Note: Can also use di-lepton events

Calibrating the light jet energy scale

Light jet energy scale calibration (target ~1%)

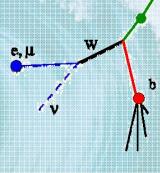
Invariant mass of jets should add up to well known W mass (80.4 GeV)

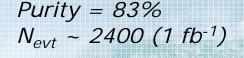
$$M_{jj} = \sqrt{2E_{j1}E_{j2}(1-\cos\theta_{j1j2})} = M_W$$

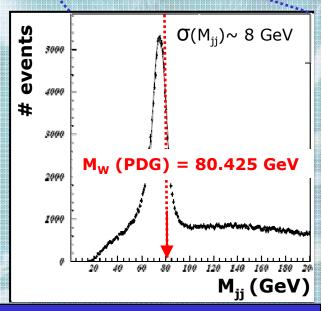
Rescale jet energies:

$$E_{parton} = (1 + \alpha) E_{jet}$$
, with $\alpha = \alpha(P_T, \eta)$

Pro:

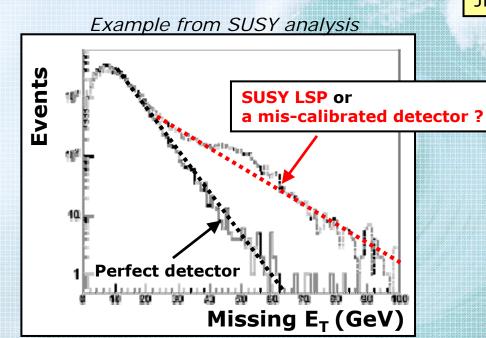

- Complex topology, hadronic W
- Large statistics

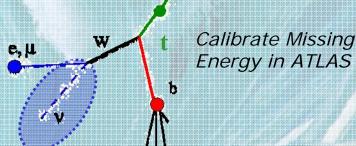

Con:


- Only light quark jets
- Limited P_T-range (50-200 GeV)

Precision: < 1% for 0.5 fb^{-1}

Alternative: P_T -balance in Z/γ +jet (6% b-jets)


Calibrating the missing energy



- Calibrate missing energy
- P_{μ} (neutrino) constrained from kinematics: M_W \rightarrow known amount of missing energy per event

- Calibration of missing energy **vital** for **all** (R-parity conserving) SUSY and most exotics!

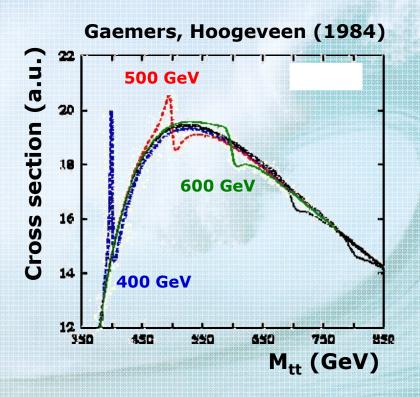
See talk Osamu Jinnouchi

Range: $50 < P_T < 200 \text{ GeV}$

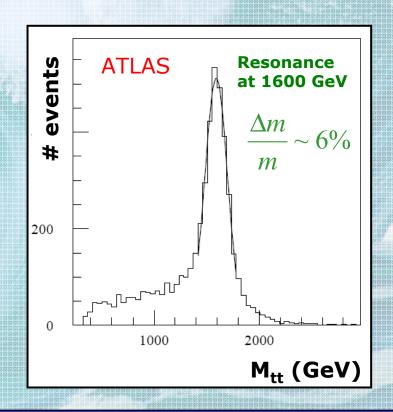
Top physics day-1

1) Top properties:

- Estimate of $\sigma_{top}(M_{top}) \sim 20\%$ accuracy One of LHC's first physics results ?
- Top decay, ...
- 2) Calibrating complex event topologies:
 - Light jet energy scale (< 1%)
 - b-tag efficiency (~ 5%)
 - Missing energy and lepton reconstruction/trigger eff.

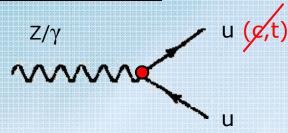

3) Window to new physics?

New physics: Resonances in M_{tt}

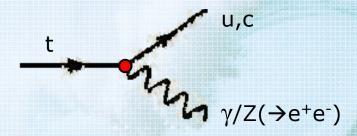


- Structure in M_{tt}
- Interference from MSSM Higgses H,A→ tt (can be up to 6-7% effect)

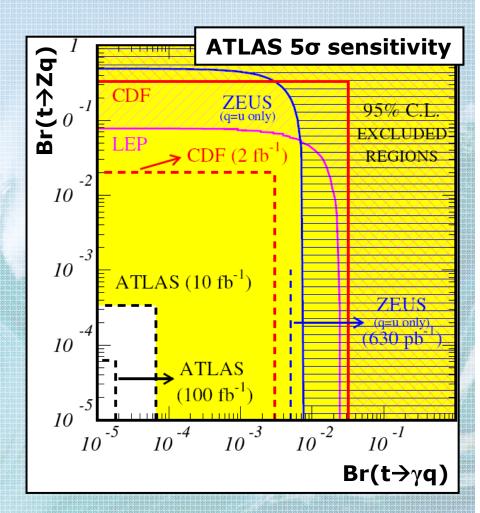
Resonances in M_{tt}


$$pp \rightarrow X \rightarrow t\bar{t}$$
Z', Z_H, G⁽¹⁾, SUSY, ?

New physics: Flavour changing neutral currents



• No FCNC in SM:



SM: 10⁻¹³, other models up to 10⁻⁴

• Look for FCNC in top decays:

Mass peak in je⁺e⁻ or jγ

→ With 10 fb⁻¹ already 2 orders of magnitude better than LEP/HERA

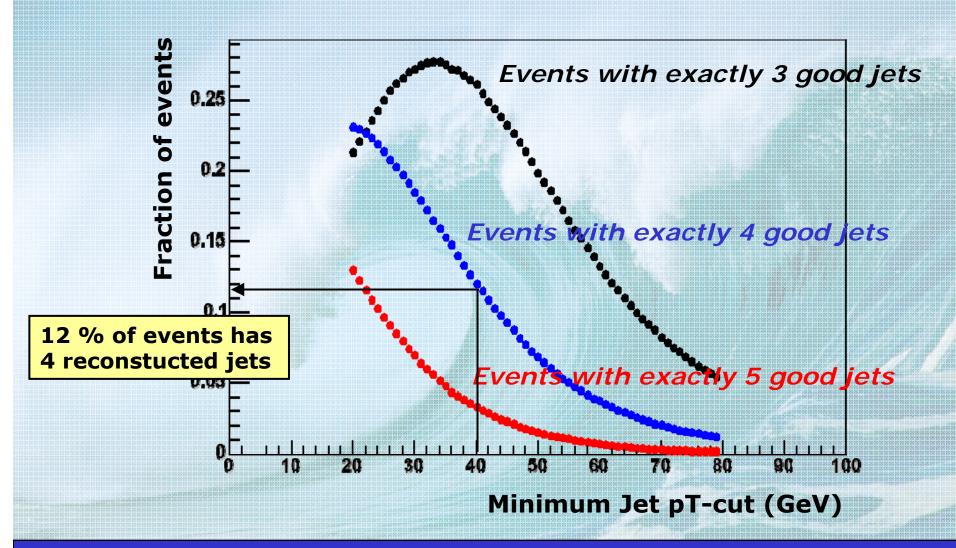
Summary on early top quark physics at the LHC

Conclusions:

- 1) Top quarks are produced by the millions at the LHC:
 - → Almost no background: measure top quark properties
- 2) Top quarks are THE calibration signal for complex topologies:
 - → Most complex SM candle at the LHC
 - → Vital inputs for detector operation and SUSY background
- 3) Top quarks pair-like events ... window to new physics:
 - → FCNC, SUSY, MSSM Higgses, Resonances, ...

DAY-2 top physics:

- Single top production
- Top charge, spin(-correlations), mass



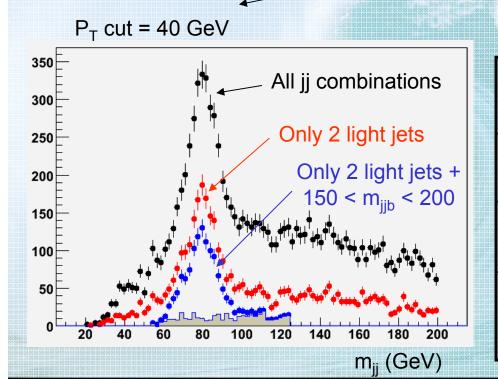
BACKUP

Influence of Jet p_{T-min} cut on number of selected events

Note: require 4 good jets, with **Good jet:** $P_T > P_T(min)$ and $|\eta| < 2.5$

Using t → W → jj to calibrate the light JES

- Standard tt → lvb jjb selection cuts
- Improve W → jj purity by requiring:

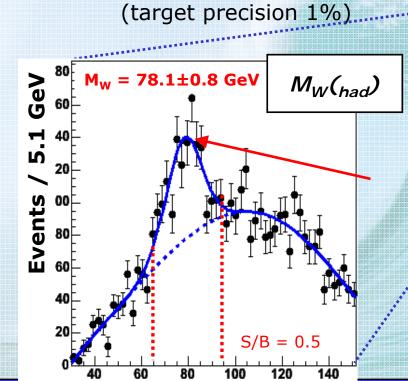

Etienvre, Schwindling

- 2 light jets only
- 150 < m_{iib} < 200 GeV

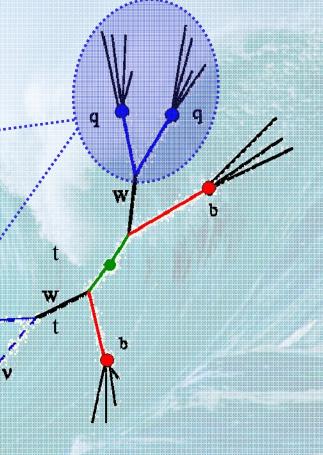
 \rightarrow Purity ~ 83 %, ~ 1200 W selected for 500 pb⁻¹

Number of jj for 491 pb⁻¹:

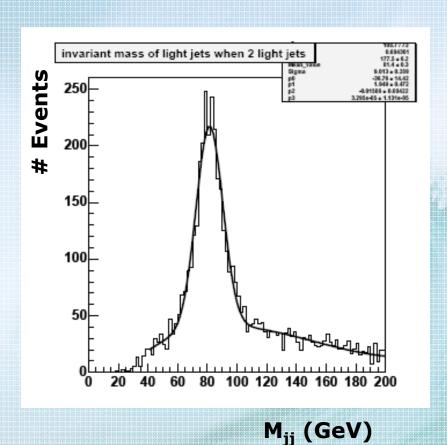
(% purity as fraction of cases with 2 jets at $\Delta R < 0.25$ from 2 W guarks)



	all	60 < m _{jj} < 100
Standard	15833	4001
selection 16.1 ± 0.	16.1 ± 0.3 %	56.7 ± 0.8 %
+ only 2 light jets	3558	1903
	41.0 ± 0.8 %	69.0 ± 1.1 %
+ m _{top}	1401	1205
in 150 - 200	73.5 ± 1.2 %	82.6 ± 1.1 %

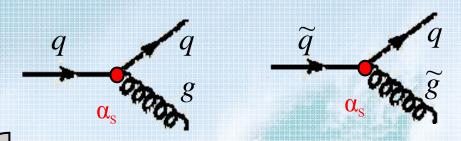

Jet energy scale (no b-tag analysis)

- (1) Abundant source of W decays into light jets
 - Invariant mass of jets should add up to well known W mass (80.4 GeV)
 - W-boson decays to light jets only
 → Light jet energy scale calibration

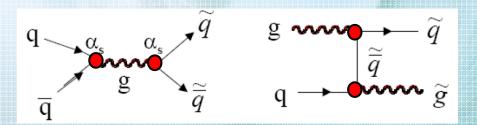

Determine Light-Jet energy scale

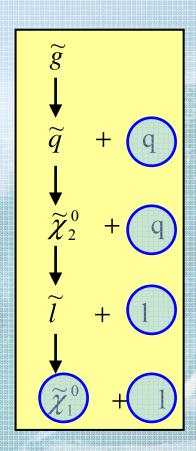
Translate jet 4-vectors to parton 4-vectors

Full Simulation



ATLAS note: ATLAS-PHYS-INT-2005-002


Production of SUSY particles at the LHC



 Superpartners have same gauge quantum numbers as SM particles → interactions have same couplings

Gluino's / squarks are produced copiously (rest SUSY particles in decay chain)

In this example:
Gluino → 2 jets + 2 leptons
+ LSP (missing energy)