Pulse (Energy) & Position Reconstruction in the CMS ECAL

(Testbeam Results from 2003)

I vo van Vulpen CERN

On behalf of the CMS ECAL community

The Compact Muon Solenoid dectector

The H4 Testbeam at CERN

Testbeam set-up in 2003:

- 2 supermodules (SMO/SM1) have been placed in the beam (electrons)
- Front-end electronics: FPPA(100) /MGPA(50) crystals equippe

Two testbeam periods in 2003

Two sets of front-end electronics used: FPPA and MGPA

the new 0.25 mm front-end electronics

	FPPA	MGPA
# gains	4	3
SM (# equip. crys.)	SM0 (100)	SM1 (50)
period	long	short
Electron energies (GeV)	20, 35, 50, 80, 120, 150, 180, 200	25, 50, 70, 100 (using PS heavy ion run)

Calor 2004 (March 2004)

I vo van Vulpen

Pulse (Energy) Reconstruction

Part 1

- A single pulse ... and how to reconstruct it
 (some testbeam specifics & evaluate universalities in the ECAL)
- Optimizing the algorithm
- Results

A single pulse

- Photons detected using an APD
- 2) Signal is amplified
- 3) Digitization at 40 MHz (each 25 ns)
 3(4) gain ranges (Energies up to 2 TeV)
- 4) 14 time samples available offline

How to reconstruct the amplitude:

• Analytic fit:

- In case of large noise -> biases for small pulses
- Digital filtering technique: Fast, possibility to treat correlated noise

Timing information

CMS: Electronics synchronous w.r.t LHC bunch crossings

Testbeam: A 25 ns random offset/phase w.r.t the trigger

Precision on Tmax: CMS: jitter < 1 ns Testbeam: < 1 ns (use 1 ns bins)

- Weights computation requires knowledge of the average pulse shape
- Optimal weights depend on assumptions on S_i

Pulse Reconstruction Method

How to extract the optimal weights:

Minimize
$$\chi^2$$
 w.r.t A \longrightarrow assuming $\begin{cases} \text{No pedestal} \\ \text{No correlations} \end{cases}$ $w_i = \frac{f_i}{\sum_i (f_i^2)}$

- Timing: Define a set of weights for each 1 ns bin of the TDC offset
- Knowledge of expected shape required: shape itself, timing info and gain rati

Pulse Shape information: Average pulse shape

Analytic description of pulse shape:

$$f(t) = \left[\frac{t - (T_{\text{max}} - T_{\text{peak}})}{T_{\text{peak}}} \right]^{a} e^{-a\left(\frac{t - T_{\text{max}}}{T_{\text{peak}}}\right)}$$

Could also use digital representation

- Note: Shapes (T_{peak}, α) are similar for large sets of (all) crystals
 - T_{max}: 2 ns spread in the T_{max} for all crystals (we account for it)

universal

Optimization of parameters

Optimization depends on particular set-up.

For the testbeam:

- How many samples
- Which samples
- Treatment of (correlated) noise

Optimization of parameters for testbeam operation

total # samples

Vlore samples:

- Precision (depends on noise and a correct pulse shape description)
- _ess samples:
 - Faster & smaller data volume
 - Reduce effects from pile-up & noise

which samples

Variance on <Ã> scales like sample heights → Use largest samples

Depend on TDC offset (decided per event)

Calor 2004 (March 2004) I vo van Vulpen

Treatment of (correlated) Noise

The (correlated) noise that was present in 2003 is under investigation and is treated off-line:

Correlations between samples: Extract Covariance matrix (pedestal run)

$$\mathbf{c}^{2} = (\overrightarrow{S} - A \times \overrightarrow{F})^{T} \underbrace{Cov^{-1}}_{\mathbf{Covariance Matrix}} (\overrightarrow{S} - A \times \overrightarrow{F})$$

Pedestals: Use pre-pulse samples and fit Ampl. and Pedestal simultaneously

$$\mathbf{c}^{2} = (\vec{S} - A \times \vec{F} - P)^{T} Cov^{-1} (\vec{S} - A \times \vec{F} - P)$$
Pedestal

▶An optimal strategy for this procedure is under investigation

Results using MGPA electronics

- 'No bias at small amplitudes
- Noise » 50 MeV (per crystal)

$$\frac{\mathbf{S}(E)}{E} = \frac{2.4 \%}{\sqrt{E}} \oplus \frac{142 \,\text{MeV}}{E} \oplus 0.44 \%$$

Impact Position Reconstruction

Part 2

- Determination of the 'true' impact point
- Reconstruction of the impact point (2 methods)
- Conclusions

Precision on 'true' impact position

A hodoscope system determines the e-trajectory (and impact point on crystal)

Per orientation 4 points:

$$\sigma(x) = \sigma(y) = 145 \mu m$$

Crystal size 2.2 x 2.4 cm

Impact on crystal centre: 82% in central crystal and 96% in a 3x3 matrix (use 3x3)

General I dea:
$$\langle x \rangle = \frac{\sum_{i} w_{i} \cdot x_{i}}{\sum_{i} w_{i}}$$

- The position of the crystal (η_i, ϕ_i) or (x,y)
- Two methods using different weights: $w_i = E_i$ or $w_i = w_0 + \log$

Calor 2004 (March 2004)

I vo van Vulpen

16

Defining THE position of the crystal:

- Crystals are off-pointing and tilted by in h and j
- Depth of shower maximum is energy dependent

the characteristic position is energy dependent

As an example: the balance point in X

Reconstruction Method 1: Linear weighting

 $w_i = E_i$

• Requires a correction that is $f(E,\eta,\phi)$

Reconstruction Method 2: Logarithmic weighting

$$w_i = w_0 + \log\left(\frac{E_i}{\sum_j E_j}\right) \qquad \text{(all weights should be 3 0.)}$$

Minimal (relative) crystal energy included in computation

Optimal $W_0 = 3.80$ (min. crystal energy is 2.24% of the energy contained in the 3x3 matrix

- Resolution is now more flat over the crystal surface
- no correction needed that is f(E,η,φ)

I mpact Position Resolution versus energy (x, y)

Resolution on impact position using the logarithmic weighting method:

- Resolution in X slightly worse:
 - Different staggering of crystals
 - Different crystal dimensions 10% larger in X than in Y
 - Different (effective) angle of incidence

Conclusions

• Pulse (Energy) reconstruction:

- ECAL strategy to reconstruct pulses in the testbeam set-up evaluated
- Optimized and existing 'universalities' are implemented.
- Energy resolution reaches target precision using the designed
 0.25 mm front-end electronics

Impact point reconstruction:

- Evaluated two approaches and extracted resolutions using real data
- Above 35 GeV: $\sigma_x \& \sigma_y < 1 \text{ mm}$

Backup slides

$$w_{i} = (\mathbf{1}f_{i} + \mathbf{g})$$

$$\mathbf{1}^{-1} = \sum_{i} (f_{i}^{2}) - \left(\sum_{i} f_{i}^{2}\right) / n$$

$$\mathbf{g} = \frac{-\mathbf{1}}{n} \sum_{i} f_{i}$$
n samples