

Ivo van Vulpen

Introduction:

Moriond (Electroweak)

Real 'physics' conference

Calorimetry 2004

Real 'hardware' conference.

Disclaimer:

Most of the sheets are taken directly from the talks given at Moriond.

Small and very nice conference, but still: 90 talks!

Experiment: EW results & precision measurements B-physics Searches and SUSY Discovery of new particles Dark matter Neutrinos

Theory:

Large extra dimensions

```
top quark mass, g-2, s in²(θw)
Babar & Bell + frustrating sheet
Higgs at Tevatron
Penta-quarks

Discovery claim
What is happening

TALK

why and how can we seen it
```


8 sheets

Tevatron run 2: CDF

Tevatron run 2: DO

"First we have something to say on our run 1 result."

Tevatron run 1: DO

New DO analysis technique:

Compute event-by-event probability

Match measured 4-momenta to expectations for signal (m_{top} = 170,175,180 etc) and background.

Use only 4 jet (clean) events (22 events instead of 77 previously) & all combinations

Basically same as difference between:

$$< m > = \frac{\sum_{i} \left(\frac{1}{\sigma_{i}}\right)^{2} m_{i}}{\sum_{i} \left(\frac{1}{\sigma_{i}}\right)^{2}}$$
 instead of $< m > = \frac{1}{n} \sum_{i} m_{i}$

Can it be so important ?? YES!!

Tevatron run 1: DO

provement in statistical error i

•Improvement in statistical error is roughly 1.5 (comparable to 2.4 times more data)

D0 l+jets (old)
$$m_{top} = 173.3 \pm 5.6 \, (stat) \pm 5.5 \, (syst) \, GeV$$
 91 events (new) $m_{top} = 180.1 \pm 3.6 \, (stat) \pm 3.9 \, (syst) \, GeV$ 22 events As if you had 2.4 times more data

Relative weight in top mass average

Tevatron

New top quark mass averages

CDF CDF CDF diI+jets allhad lepton

D0 dilep- D0 I+jets
ton

$$m_{top} = 174.3 \pm 5.1 \,\text{GeV}$$

$$m_{top} = 178.0 \pm 4.3 \,\text{GeV}$$

$$M_{top}$$
 moves up by +4.7 GeV

RUN2 (l+jets)
$$m_{top} = 177.8^{+4.5}_{-5.0} \pm 6.2 \text{ GeV}$$

Influence on rest of EW physics results

Another example: Influence new top mass on $tan(\beta)$ exclusion region from LEP:

In MSSM benchmarks: $m_{top} = 175 \text{ GeV} \longrightarrow \text{Maximum } m_h$: in the MSSM < 135 GeV

Computation of m_h-max:

Loop corrections $\propto m_{top}^4$

FeynHiggs:

higher order corr. -> $\Delta m_h \approx 3 \text{ GeV}$

$$\Delta m_{top} \approx 5 \text{ GeV} \rightarrow \Delta m_h \approx 5 \text{ GeV}$$

LEP-excluded tan(β) region
 will shrink

. [Scenario	m _h	m _A	Excluded tan(β)
	M _h -max	>91.0	>91.9	$0.5 < tan(\beta) < 2.4$

Impact new top mass on the electroweak fit

• Example: W mass. contributions from:

4 sheets

Anomalous magnetic moment of the muon g-2 collaboration final results

"Compare to SM prediction: there is a 1.4/2.7 sigma deviation"

Depends on e+e- data or tau data

Theoretical computation of a_{11} [(g-2)/2] part (1)

 $ightharpoonup a_{\mu}^{SM}$ can be expressed in terms of its various contributions

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HLBL} + a_{\mu}^{HVP} + a_{\mu}^{HOHVP}$$

	SM Term	$a_{\mu} \times 10^{-10}$	$\Delta a_{\mu} \times 10^{-10}$
	a_{μ}^{QED}	11658471.94	0.18
	a_{μ}^{EW}	15.1	0.4
	a_{μ}^{HLBL}	12.0	3.5
1	$a_{\mu}^{HVP;e^{+}e^{-}}$	694.4	7.2
	a_{μ}^{HOHVP}	-10.1	0.6

One of the monks of Eshpigmenou Monastery who is over 100 years old and also faces

(1) light by light scattering: theory!

Tedious work. Done by 1 guy basically.

Sign flip found in 2002 (PhD student from Marseille ??)

μ.

(2) Hadronic vacuum polarization: experiment (2 ways to extract it)

$$a_{\mu}^{HVP} \propto \int_{s}^{\infty} \frac{R(s)}{s} K(s) ds$$
, where $R(s) = \frac{\sigma(e^{+}e^{-} \to hadrons)}{\sigma(e^{+}e^{-} \to \mu^{+}\mu^{-})}$.

Gives different e+e- -> hadrons

(1) CMD: e+e- results:

- Claim 0.6% uncertainty, but new rad corr shifted cross section by 3%
- Region < 1.8 GeV dominates
- They were alone (check needed)

Now confirmed by KLOE (radiative events). Maybe BaBar and Cleo can do something as well

Muon g-2: new results

Brookhaven, January 2004: μ measurement.

Arkady Vainshtein: new analysis

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 270 \pm 100 \cdot 10^{-11}$$

$$\rightarrow 2.7 \sigma \text{ (again...)}$$
(based on Davier et al., 2003, e+e-)

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 123 \pm 89 \cdot 10^{-11}$$

$$\rightarrow 1.4\sigma$$
(tau)

4 sheets

SLAC E-158

Measuring Parity Violation

in Møller Scattering

 $E = 48 \text{ GeV}, Q^2 = 0.03 \text{ GeV}^2$

For a polarized electron beam and an unpolarized electron target,

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

$$A_{PV} \propto (1 - 4\sin^2\theta_W)$$

tree level: -3 ·10-7

E158 Goal: $\delta \sin^2 \theta_W = +/-0.001$

Best measurement of θ_W away from the Z-pole

neutrino-nucleus deep inelastic scattering

probe strange sea v and anti-v beam clean events

Measure $\sin^2 \theta_W$ through NC CC cross section ratio:

Paschos-Wolfenstein:

$$\frac{\sigma^{\text{NC}}(vN) - \sigma^{\text{NC}}(\overline{v}N)}{\sigma^{\text{CC}}(vN) - \sigma^{\text{CC}}(\overline{v}N)} = \frac{1}{2} - \sin^2 \theta_w$$

For and against PWR

- PWR is based on isospin symmetry

 It is stable against as and HT corrections

 FWR holds for both diff. and tot. x-sections.
- ○PNR holds for an isoscalar tergot (P.g. D) and must be corrected for non-isoscalarity effin heavy nuclei. DWR is violeted if s≠3.
 PNR is violated if isospin symmetry is not exact.

Extracting $\sin^2(\theta_W)$ from DIS cross sections:

$$R = \frac{1}{2} - \sin^2 \theta_w + \delta_R$$

Nuclear effects due to target corrections

More precise corrections:

(1) Z protons and N neutrons $(10 \times experimental error)$

(2) QCD radiative corrections new
$$\delta(\sin^2(\theta_W)) = -0.5 \sigma_{\text{NuTeV}} \text{ (towards SM value)}$$

(3) Fermi-motion and nucleair binding effects from target

$$\delta(\sin^2(\theta_W)) = -0.5 \sigma_{NuTeV}$$
 (towards SM value)

NuTeV shifts towards SM value (almost 1 sigma)!

new

4 sheets

BABAR and Belle attacking the CKM matrix from all sides

Difference between $J/\psi K_s$ and ϕK_s

NP contributions to $B^0 \to \phi K_s$ penguin can result in $\sin(2\beta)_{J/\psi Ks} \neq \sin(2\beta)_{\phi Ks}$

Babar : $\sin(2\beta)_{J/\psi Ks}$ =0.73±0.06 : $\sin(2\beta)_{\phi Ks}$ =0.5±0.5 Diff!
Belle : $\sin(2\beta)_{\phi Ks}$ =-1.0±0.6

Fit asymmetry to:
$$A_{\pi\pi}^{CP}(t) = A_{\pi\pi}(t) \cos(\Delta m \Delta t) + S_{\pi\pi}(t) \sin(\Delta m \Delta t)$$

For no B[±],B⁰ and B⁰ decays no CP -violation is observed (except Belle in B⁰-> π ⁺ π ⁻)

SUMMARY (BABAR/Belle): doing well, some mysteries left.

Most frustrating slide in the conference!!

 $B_s \to \mu^+ \mu^-$ is a promising window on possible physics beyond the SM.

In the SM, the expected branching ratio is small:

$$Br(B_s \to \mu^+ \mu^-) = (3.4 \pm 0.5) \cdot 10^{-9}$$

D0

Quite a few talks on theoretical aspects of rare B decays as well.

$B_s \to \mu^+ \mu^-$ sensitivity study Optimised cuts using Random Grid Search [Prosper, CHEP'95; Punzi, CSPP'03] based on the mass sidebands. After optimisation: expect 7.3 ± 1.8 background events in signal region DØ Run II Preliminary Signal region ~180 pb-1 Side Band 1 Side Band 2 The analysis has not been unblinded yet (signal region still hidden). invariant (μ μ) Mass [GeV/c²] Expected limit (Feldman/Cousins): Published CDF Run I result (98 pb-1): $Br(B_s \to \mu^+ \mu^-) < 9.1 \cdot 10^{-7} @ 95 \% CL$ (stat only) $Br(B_s \to \mu^+ \mu^-) < 1.0 \cdot 10^{-6} @ 95 \% CL$ (stat + syst) $Br(B_{\bullet} \rightarrow \mu^{+} \mu^{-})$ < 2.6 · 10-6 @ 95 % CL (expected signal has been normalised to $B^{\pm} \rightarrow J/\Psi K^{\pm}$)

1 sheet

Nothing new on the Higgs front & SUSY searches (updates from HERA, LEP, Tevatron)

April 2004 Ivo van Vulpen 29

4 sheets

'New' particles are discovered all the time:

- two new extremely narrow mesons containing c and \bar{s} quarks (BaBar, CLEO, BELLE)
- new very narrow resonance precisely at $D^{0*}D^0$ threshold (Belle, CDF)

• exotic 5-quark resonances: Θ^+ (KN), Ξ^{*--}

New particle

charmonium

000

800

600

Last summer, Belle announced a new particle at \cong 3872 MeV/c², observed in B+ decays: $B^+ \to K^+ X(3872)$, $X(3872) \rightarrow J/\Psi \pi^+ \pi^-$

Belle's discovery has been confirmed by CDF and DØ.

DØ preliminary:

300 ± 61 events

4.4σ effect

 $\Delta M = 0.768 \pm 0.004 \text{ (stat)} \pm 0.004 \text{ (syst)} \text{ GeV/c}^2$

DØ Run II Preliminary

200 pb⁻¹

Could have seen it in Run1 I guess. Now studying decay properties. Seems like charmonium state.

Penta-quark

Not confirmed by CDF

Pentaquarks Looking for $\Xi(1860) \rightarrow \Xi^- \pi^{\pm}$

 2^{nd} Step: Combine Ξ^- with π^{\pm} Normalise bν known $\Xi^{0}(1530) \rightarrow \Xi^{-}\pi^{+}$. CDF Run II Preliminary N / 10 MeV/c² L~220pb⁻¹ Ξ track found in SVX 'E(1860)' 1000 500 1.6 1.7 1.8 2.1 2.2 $M(\Xi \pi)$ [GeV/c²]

- Don't see any <u>∃(1860)</u>
- It's not statistics: $(18 \times as)$ many Ξ^- as NA49).
- Unknown bias due to Trigger? Re-check with Jet20 data ($2 \times$ NA49). Still no $\Xi(1860)$

5 sheets

e.g. Randall-Sundrum Models

Apparently I was not the only one who was surprised!

Why Consider Extra D?

- String theory: at least six unseen dims
- General Relativity: why 4?
- New ways of approaching old problems
- Cosmology: still many unanswered questions
- Hierarchy, flavor, GUTs

XD for EW Hierarchy

or why is gravity sooo small?

- ADD: all forces & particles localized on one brane, only gravity in large, flat XD ⇒
 - monojet+missing E_T (graviton KK modes)
- RS1: "warped" XD, with second (EW or TeV) brane, where gravity exp. suppressed
 - TeV resonances on EW brane

 KK modes (also for gauge)

April 2004

J. Orloff

- You will see heavy partners of all particles
- Partners of the electron will be fermions
- Not bosons as in SUSY
- Partners should all have similar masses

Depend on size dimension (like harmonic oscillator boundary conditions)

• Gravity strong near the EW scale

$$M_{_{pl}}^2 \sim M_{eff}^{2+n} r^n$$

n extra (space) dimensions of radius r

Virtual graviton exchange affects:

$$\frac{\mathrm{d}}{\mathrm{d}\cos(\theta)} \bigg[\sigma_{e^+e^- \to e^+e^-} \bigg]$$

 We haven't seen additional charged particles up to m~TeV

SUMMARY:

- No branes: 10⁻¹⁷ cm
- With branes, 0.2 cm
- With branes and curvature: infinite!

XD & EWSB: no Higgs

 Boundary conditions can break 4D gauge symmetry (e.g. Dirichlet forbids n=0)

- Unitarity (without scalar) recovered iff all KK modes included, and 5d gauge invariant lagrangian; there are massive KK gauge bosons with m_{KK}<1.8 TeV
- Warped XD + more symmetries needed to suppress oblique corrections S,T,U
- Fermion masses: possible except for top

n=0: NO m=0 n=1; m=1/R n=2; m=2/R n=3: ...

J. Orloff

Moriond EW04 Th Summary

11 sheets

II. Direct detection of Neutralino WIMP

Local Dark Matter density

$$\rho_{local} \approx 0.3 GeV / cm^3$$

Maxwellian velocity distribution

$$\overline{v} \approx 270 km/s$$

Local Flux of Dark Matter

$$\Phi_{local} \approx \frac{100 GeV}{m_{\chi}} \cdot 10^5 cm^{-2} s^{-1}$$

Detecting WIMPS (2)

 χ H, h χ q q

- Principles of WIMP detection
- Elastic scattering of a WIMP on a nucleus inside a detector
- ullet The recoil energy of a nucleus with mass $oldsymbol{m}_N$

$$E_{recoil}(\text{max}) = 2v_x^2 m_N \frac{m_\chi^2}{(m_N + m_\chi)^2}$$

For
$$v_{\chi} \approx 10^{-3} c$$
 \Longrightarrow $E_{recoil} \approx 10^{-6} m_N \approx 10 keV$

- This recoil can be detected in some ways :
 - Electric charges released (ionization detector)
 - Flashes of light produced (scintillation detector)
 - Vibrations produced (phonon detector)

Sensitive underground detectors, but need large (mass * exposure time)

Discrim.	Name	Location	Technique	Material	Status
Now.	CUORICINO	Gran Sasso	Heat	41 kg TeO2	running
	GENIUS-TF	Gran Sasso	Ionization	42 kg Ge in N2	running
	HDMS	Gran Sasso	Ionization	0.2 kg Ge diodes	stopped
	IGEX	Canfranc	Ionization	2 kg Ge Diodes	stopped
Syonskicol	DAMA	Gran Sasso	Light	100 kg NaI	stopped
	LIBRA	Gran Sasso	Light	250 kg NaI	running
	NaIAD	Boulby mine	Light	65 kg NaI	running
	ZEPLIN-I	Boulby mine	Light	4 kg Liquid Xe	running
Sunt Of event	CDMS-I	Stanford	Heat + Ionization	4 Kg Ge + Si	stopped
	CDMS-II	Soudan mine	Heat + Ionization	2 to 7 kg Ge + Si	running
	CRESST-I	Gran Sasso	Heat + Light	0.262 kg Al2O3	stopped
	CRESST II	Gran Sasso	Heat + Light	0.6 to 9.9 kg CaWO4	running
	EDELWEISS-I	Modane	Heat + Ionization	1 kg Ge	running
	ROSEBUD	Canfranc	Heat + Light	1 kg BGO	running
	SIMPLE	Rustrel	Superheated droplets	Freon	stopped

DAMA & Edelweiss

WIMPS

DAMA OX Moriona, Investigating the presence of a WIMP component in the galax halo by the model independent WIMP annual modulation signature

- $v_{sun} \sim 232$ km/s (Sun velocity in the halo)
- $v_{orb} = 30 \text{ km/s}$ (Earth velocity around the Sun)
- $y = \pi/3$
- $\omega = 2\pi/T$ T = 1 year
- $t_0 = 2^{nd}$ June (when v_{\oplus} is maximum)

$$V_{\oplus}(t) = V_{\text{sun}} + V_{\text{orb}} \cos \gamma \cos[\omega(t-t_0)]$$

$$S_k[\eta(t)] = \int_{\Delta E_k} \frac{dR}{dE_R} dE_R \cong S_{0,k} + S_{m,k} \cos[\omega(t-t_0)]$$

Expected rate in given energy bin changes because of the Earth's motion around the Sun moving in the Galaxy

Requirements of the annual modulation

- 1) Modulated rate according cosine
- 2) In a definite low energy range
- 3) With a proper period (1 year)

- 4) With proper phase (about 2nd June)
- 5) For single hit in a multi-detector set-up
- 6) With modulated amplitude in the region of maximal sensitivity ≤ 7% (larger for WIMP with

To mimic this signature, spurious effects and side reactions must (not only - obviously - be able to account for the whole observed modulation amplitude, but also) satisfy contemporaneously all these 6 requirements

- v_{sun} ~ 232 km/s (Sun velocity in the halo)
- v_{orb} = 30 km/s (Earth velocity around the Sun)
- $\omega = 2\pi/T$ T = 1 year
- $t_0 = 2^{nd}$ June (when v_{\oplus} is maximum)
- $S_k[\eta(t)] = \int_{\Delta E_k}^{\text{orb}} \frac{dR}{dE_R} \frac{\partial S_T \cos[\omega(t-t_0)]}{\partial E_R} \cos[\omega(t-t_0)]$ $v_{\oplus}(t) = v_{\text{sun}} + v_{\text{orb}} \cos \gamma \cos[\omega(t-t_0)]$

Expected rate in given energy bin changes because of the Earth's motion around the Sun moving in the Galaxy

Requirements of the annual modulation

- 1) Modulated rate according cosine
- 4) With proper phase (about 2nd June)
- 2) In a definite low energy range
- 3) With a proper period (1 year)
- 5) For single hit in a multi-detector set-up
- 6) With modulated amplitude in the region of maximal sensitivity ≤ 7% (larger for WIMP with preferred inelastic interaction, PRD64(2001)043502)

Requirements of the annual modulation

- 1) Modulated rate according cosine
- 5) For single hit in a multi-detector set-up

- 2) In a definite low energy range 3) With a proper period (1 year)
- 6) With modulated amplitude in the region of maximal sensitivity < 7% (larger for WIMP with preferred inelastic interaction, PRD64 (2001)043502, or if contributions from Sagittarius, astro-ph/0309279)

4) With proper phase (about 2 June)

DAMA at Moriond

DAMA at CALOR

Talks from DAMA 95% the same:

They see something!

Latest results: DAMA

- Data taking completed in July 2002
- Total exposure of 107,731 kg.d
- See annual modulation at (6.3σ)
- Claim model-independent evidence for WIMPs in the galactic halo

- WIMP candidate under standard halo parameters: M_{χ} = (52 $^{+10}_{-8}$) GeV and $\sigma_{\chi-N}$ = (7.2 $^{+0.4}_{-0.9}$) .10⁻⁶ pb
- Checking this result remains important
- 2nd phase 250 kg LIBRA running...
- · NaIAD 65kg NaI in Boulby mine

EDELWEISS-I (Frejus, inonization-heat measurement, small)

<u>Plans</u>: 10⁻⁶ pb (now), 10⁻⁸ (soon), 10⁻¹⁰ (10 years) that no m

that no model independent comparison is possible...

can be produced in the sun.

Interact with magnetic field ($\propto B^2L^2$) and produce X-rays (a-> γ)

→100 times more a->γ conversions than any other experiment

X ray telescope.

2005: Probe higher axion masses (fill magnet with helium)

Ambitious:

74 sheets in 30 minutes

100,000,000 kg liquid argon

7 sheet

Neutrino: mass and mixing parameters

- Puzzles and experimental tasks:
 - ◆ Do neutrinos really oscillate? ← OK, evidence from Super-K

- ◆ Are there only 3 neutrino species? ← LSND / MiniBooNE Are there sterile neutrinos?
- ◆ What is the mass hierarchy pattern? (Sgn ∆m₂₃²?)

```
NORMAL m<sub>3</sub> ENVERTED F
```

- What is absolute mass scale? Neutrinoless double beta-decay
- ◆ Are neutrinos Dirac or Majorana? ← Neutrinoless double beta-decay
- Measure θ₁₃ and δ

How do we probe the neutrino sector of the SM:

MNS = Maki-Nakagawa-Sakata

Do they really oscillate ??

Super Kamiokande

Atmospheric Neutrinos

 $v_{\mu} \leftrightarrow v_{\tau}$ 2 flavor oscillations from

- Zenith angle analysis
- II. L/E analysis.

Is disappearance really caused by oscillations??

regions are comparible

April 2004

Ivo van Vulpen

3.5sigma

Oscillation

disfavored

(confirmation needed): --> miniBOONE

10 -3

10 -2

10 -1

 $\sin^2 2\theta$

10

miniBOONE energy spectrum requires more precise cross section data Fraction of Events / 0.18 Data Monte Carlo PRELIMINARY

0.08

0.06

0.04 0.02

Systematic study of HAdRon Production:

- Beam energy: 2-15 GeV
- Target: from hydrogen to lead

errors:

flux, σ, & detector

optical model

Motivation:

- Pion/kaon yield for the design of the proton driver of neutrino factories and SPL-based super-beams
- Input for precise calculation of atmospheric neutrino flux
- Input for prediction of neutrino fluxes for the MiniBooNE and K2K experiments
- Input for Monte Carlo generators (GEANT4, e.g. for LHC, space applications)

Use identical targets at HARP

miniBOONE will cross-check LSND result

Depends on Tevatron programme

What about the absolute mass scale and hierarchy??

We only know mass differences squared $\Delta(m^2)$

59

61