

Ivo's first 5+5 months as CERN fellow

in 5x5 slides

Note: superficial talk ... just meant to show what I did

Testbeam

wire chambers: efficiency & new tracking calibration

H4 testbeam

(efficiency study)

Observations:

- in x all is fine
- 3 central wires in y are off
- in y less efficient

Tracking procedure:

- Simple χ^2 fit (y=ax+b) Rewritten so I understood what was happening
- 2002: minimal ('2+1')
 track definition

CMA (March 03)

H4 testbeam (calibration)

Conclusions:

- Efficiency study & new tracking procedure (recover 20% of tracks)
- Started with a note ... no push to finsh ... should I have ??
- Calibrated wire chambers (angular resolution: 115-135 mrad)

Personal Conclusions:

• ~1 month work, learn C, people (Jean Bourotte & Patrick Jarry), useful

Testbeam

pulse shapes

H4 testbeam

(pulse shape)

Pulse shape (Amplitude) reconstruction:

Pol (3):fast, but does not use real shape / bias / always okAnalytic Fit:time consuming / bias (fit) region / laser-beam different shapeFit electr. shape:ok for testbeam, not ok for CMS (save shape for each crystal)Weights method: $\widetilde{A} = \sum w_i S_i$ / most promising candidate (also in ORCA)

Weights method: $\tilde{A} = \sum w_i S_i$: What is the minimal set of weights ??

Remember the calibrated wire chambers !

• Small dispersion, but Offset(max-min) = 0.16 clocks = 4.0 ns

	Beam	Laser
「 ₁₀ (ns)	272.2 ± 4.5	270.7 ± 4.8
Г ₅₀ (ns)	$\textbf{128.8} \pm \textbf{1.8}$	130.1 ± 1.3

• Not shown, but Rise Time is also correlated nanogreen is as fast as the electrons

CMA (March 03)

Ivo van Vulpen

Conclusions:

- Correlation between beam runs and nanogreen laser runs
 - Yes, they have a similar shape, ... and yes, you can use laser runs to prepare
- Dispersion between crystals is rather small
 - Yes, you can probably live with a small number of weights & correction functions

Personal Conlusions and Outlook:

- Nice set-up, lot's to do, but no clear coherence in analyses (different in 2003)
- Study Impact of using 1 set of weights from an 'average' crystal:
 Some channels 2-4 ns off / Some channels are 0.5 clocks off
- Impact on energy resolution & (small) signal efficiency
 Using data and 'simulation'
- Participate in 2003 data analysis with more clear objective

Preshower (π^0/γ - separation)

In ECAL: Look for photons ... try to reject jet background Use both isolation cuts & differences between a γ and a π^0

1999: CMSIM 116 Et=50 / 90% γ eff: π^{0} rejection = 65%

2002: CMSIM 126 Et=50 / 90% γ eff: π^0 rejection = 48%

Is there a simple bug or something more deeply wrong in ORCA ?? Redo full study of separation using large samples

```
200,000 events = 2 -- single-\gamma and single-\pi^{0}

X 2 -- \eta = 1.7 and \eta = 2.4

X 5 -- E_{T} = 20, 30, 40, 50 and 60

X 10,000 -- events CMS computing

(30 Gbyte MC data)
```


CMA (March 03)

PreShower strip = $6 \text{ cm } \times 2 \text{ mm}$

Preshower: (π^0/γ - separation)

CMA (March 03)

Ivo van Vulpen

Preshower: (π^0/γ - separation)

Performance: Look at π^0 -rejection @ 90% γ -efficiency

• Still not as expected, but nothing wrong in ORCA

Ivo van Vulpen

Conclusions & outlook

- No disasters / ORCA seems ok, but a bit worse than expected
- Study the extrapolation (ECAL --> Preshower) inside ORCA
 Any error will smear profile and thereby worsen separation power
- Simulate samples with the tracker & look at converted photons

Personal conclusions:

Experience was not what I expected
 Idea: quick physics study with a bit of C++, but ... BlackBox.cxx
 --> I summarised my efforts and it will be continued by
 [Aristoteles Kyriakis & Chia-Ming Kuo]

Higgs search flavour independent

in one slide!

Ivo van Vulpen

Maybe give a presentation once for interested people

"Higgs is produced associated with a Z, but ... "

... the Higgs might not couple to fermions (fermiophobic Higgs)
... the Higgs might decay into 'stable' SUSY particles (invisible Higgs)
... the Higgs not couple to b-quarks
... the Higgs decays predominantly into a pair of gluons
... the Higgs decays into 'radions' (no idea what that is) (but it is very popular)
... each of the above with a cross section 1.2345 times smaller/larger than SM
Many other models that will come up in the (near) future You want the predictions from these models to be tested against the LEP data

Experimentalists: exclude HZ cross section (Mh) (H --> hadronically) (for DELPHI I promised to write the paper)

- 5 different analyses from people who are working on 4 different experiments now, sometimes difficult and slow to communicate.
- Exclude cross sections for Higgs masses from 4 GeV/c² -- 110 GeV/c²
- Analysis: Gluon jets are broader than quark jets (higher multiplicity)
 - <u>Selection efficiency</u> higher for gluon-events than for quarks
 - <u>Mass resolution</u> in quark events better than for gluons

What until 01-05-2004 ECAL Testbeam in H4 CMS Energyflow & physics analysis

Testbeam:

(finally at a stage where I can do some real analyses)

• Study in more detail the weights method

How to correct for differences between crystals Prepare weights method: work with/build on/adapt from Pascal Paganini ('s work)

• Start a more serious and detailed analysis

Intercalibration / small signal efficiencies

→ Impact on Clustering, Energy resolution, Energy flow

Also try using simple 'MC' to understand specific issues

Hopefully more interaction and openness within H4 community
 I'll try to do my part

Energy flow & physics analysis :

(finally in a place (I hope) where I can really learn & talk C++ and LHC physics)

- Start working (in a group) with set-up from Patrick & Melissa Lots to do, first improve C++ and work with WhiteBox.cxx
- Combine various sub-detectors & do 'full' physics analysis Physics groups will start up in near future ... help building an analysis framework