The discovery of the Higgs boson

How particles acquire mass

Ivo van Vulpen, Institute of Physics (IoP)
Particle Physics

Elementary building blocks of nature

FNWI

Maurice ‘Sherlock’ Aalbers

Forensic Science

Biology

Christa ‘Darwin’ Testerink

10^{-15} m
Particles

Quarks
Leptons

Anti-Quarks
Anti-Leptons

Forces

1) Electromagnetism
2) Weak nuclear force
3) Strong nuclear force

Building blocks of protons/neutrons

electron
neutrino
The Standard Model
$SU(2)_L \otimes U(1)_Y \otimes SU(3)_C$

Describes all phenomena and measurement to high precision

Massless (force-)particles ≠ Massive (force-)particles
The Higgs field in the vacuum

“If I’m right there has to be a new scalar particle: the Higgs boson”

“It’s properties depend on it’s mass, … a mass that I cannot predict. Go find it!”

- September 1964 -
The Higgs boson Paris Hilton

(In)famous Higgs boson

The Higgs boson Paris Hilton

Being famous is not the same as being important
Energy and mass are equivalent → you can create new particles
The Large Hadron Collider (LHC)
CERN, Geneva, Switzerland

2012: center-of-mass energy = 8 TeV

8000 times the proton mass
energy of a flying mosquito
Colliding beams of protons

40 million collisions per second

Was an (unstable) Higgs boson produced?
De Atlas pixel detector

Nikhef technicians at work
The SCT end-cap: constructed at Nikhef (across the street)
Muons produced in a proton-proton collision

Muon is the brother of the electron from the 2nd family

2 muons produced in a proton-proton collision
Higgs \rightarrow ZZ \rightarrow 4µ candidate

Look for specific excess in collisions that contain:
- 2 photons
- 4 muons
- ...
Result of the ATLAS experiment (juli 2012)
Excess (peak) in the collisions where 2-photons or 4-leptons were produced

Probability to observe such an excess given the Standard Model without the Higgs boson $\sim 10^{-9}$ → We discovered something new!
Discovery of a new particle

- The Large Hadron Collider works
- Discovered the Higgs* boson, so we think we understand how particles acquire mass

*well ok, a Higgs-boson like particle

Few ‘tiny’ unresolved issues

- why the large spread in masses?
- Nature of dark matter?
- Where did all the anti-matter go?
- …

Standard Model of elementary particles

Hope to discover new phenomena

Supersymmetry?