The asymmetric uncertainties on data points in Roofit

Few slides on 'easy/trivial' topic that will hopefully leave you confused

Ivo van Vulpen (Nikhef/UvA, ATLAS)

2/20

Solving statistics problems in general

Discussions (in large experiments):

- strong opinions, very outspoken 'experts'
- use **RooSomethingFancy**: made by experts & debugged
- let's do what we did last time, let's be conservative

- - - -

You are responsible for how you summarize your measurement

The tools you use have assumptions, biases, pitfalls, ..., so you know best how others (and you) should interpret your measurement

Six reasonable options

Basis for this talk: http://www.nikhef.nl/~ivov/Statistics/PoissonError/BobCousins_Poisson.pdf

5/20

Option 1: assign NO uncertainty

The number of observed events is what it is: 4

The uncertainty is in the interpretation step, i.e. on the model-parameters that you extract from it

Comfortable territory: Poisson distribution

Probability to observe *n* events when λ are expected

Properties of the Poisson distribution

Option 2: the famous sqrt(n)

Poisson variance for λ equal to measured number of events

... but Poisson distribution is asymetric: $\begin{cases} P(4 \mid 2) = 0.09022 \\ P(4 \mid 6) = 0.13385 \end{cases}$

Just treat it like a normal measurement

Likelihood

$$L(n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$

Likelihood Poisson: probability to observe nevents when λ are expected

Option 3: Likelihood

Bayesian: statement on value of λ

Likelihood

Probability to observe N_{obs} events ... given a specific hypothesis (λ)

pdf for λ

What can we say about theory (λ) ... given # of observed events (4)

$$P(\lambda | N_{obs}) = P(N_{obs} | \lambda)P(\lambda)$$

Bayesian: statement on value of λ

Posterior PDF for λ \rightarrow Integrate to get confidence interval

Option 4 & 5: representing the Bayesian posterior

15/20

Option 6: Frequentist approach

Find values of λ that are on border of being compatible with observed #events

If $\lambda > 7.16$ then probability to observe 4 events (**or less**) <16%

Note: also uses 'data you didn't observe', i.e. a bit like definition of significance

The six options

The six options

Discussions in other experiment:

Example → discussion in CDF: https://www-cdf.fnal.gov/physics/statistics/notes/pois_eb.txt

We feel it is important to have a relatively simple rule that is readily understood by readers. A reader does not want to have to work hard simply to understand what an error bar on a plot represents.

<...>

Since the use of +-sqrt(n) is so widespread, the argument in favour of an alternative should be convincing in order for it to be adopted.

Summary

- You now know how Roofit 'Poisson errors' are defined Note: choice has no impact on likelihood fits
- Do you agree with RooFit default? What about empty bins then?
- Perfect topic to confuse and irritate people over coffee \rightarrow do it!