The asymmetric uncertainties on data points in Roofit

Few slides on 'easy/trivial' topic that will hopefully leave you confused

Ivo van Vulpen (Nikhef/UvA, ATLAS)

How are our asymmetric uncertainties on data points defined?

Asymmetric
Not $\pm \sqrt{ }$ n

Solving statistics problems in general

Discussions (in large experiments):

- strong opinions, very outspoken 'experts'
- use RooSomethingFancy: made by experts \& debugged
- let's do what we did last time, let's be conservative
- ...

You are responsible for how you summarize your measurement

The tools you use have assumptions, biases, pitfalls, ... , so you know best how others (and you) should interpret your measurement

Six reasonable options

Option 1: assign NO uncertainty

- ± 0.00

The number of observed events is what it is: 4
The uncertainty is in the interpretation step, i.e. on the model-parameters that you extract from it

Comfortable territory: Poisson distribution

Probability to observe n events when λ are expected

Properties of the Poisson distribution

the famous $\sqrt{ } n$

properties

(1) Mean:
$\langle n\rangle=\lambda$
(2) Variance: $\quad\left\langle(n-\langle n\rangle)^{2}\right\rangle=\lambda$
(3) Most likely: first integer $\leq \lambda$

Option 2: the famous sqrt(n)

Poisson variance for λ equal to measured number of events
... but Poisson distribution is asymetric: $\left\{\begin{array}{l}P(4 \mid 2)=0.09022 \\ P(4 \mid 6)=0.13385\end{array}\right.$

Just treat it like a normal measurement

1) construct the Likelihood λ as free parameter

2) Find value of λ that maximizes the Likelihood \downarrow
3) Determine error interval:
$\Delta(-2 \log ($ Lik. $))=+1$

Likelihood

$$
L(n \mid \lambda)=\frac{\lambda^{n} e^{-\lambda}}{n!}
$$

Likelihood
Poisson: probability to observe n events when λ are expected

Option 3: Likelihood

Bayesian: statement on value of λ

What you have:

Likelfhood

Probability to observe $\mathrm{N}_{\text {obs }}$ events
... given a specific hypothesis (λ)

$$
P\left(\lambda \mid N_{o b s}\right)=P\left(N_{o b s} \mid \lambda\right) P(\lambda)
$$

A

Bayesian: statement on value of λ

Posterior PDF for λ
\rightarrow Integrate to get confidence interval

Option 4 \& 5: representing the Bayesian posterior

λ

Option 6: Frequentist approach

Find values of λ that are on border of being compatible with observed \#events

If $\lambda>7.16$ then probability to observe 4 events (or less) <16\%

Note: also uses 'data you didn't observe',
i.e. a bit like definition of significance

$\left[\begin{array}{ll}\longrightarrow & \text { smallest } \lambda(>n) \text { for which } \\ +3.16 & P\left(n \leq n_{\text {obs }} \mid \lambda\right) \leq 0.159 \\ -1.91 & \\ & \left.\begin{array}{l}\text { largest } \lambda(<n) \text { for which } \\ \\ \\ \end{array}\left|n \geq n_{\text {obs }}\right| \lambda\right) \leq 0.159\end{array}\right.$

The six options

$\Delta \lambda: \quad 0.00$
4.00
4.03
4.32
4.11
5.07

The six options

RooFit default

$\Delta \lambda$:
4.00
4.03
4.32
4.11
5.07

Discussions in other experiment:

Example \rightarrow discussion in CDF:
 https://www-cdf.fnal.gov/physics/statistics/notes/pois_eb.txt

We feel it is important to have a relatively simple rule that is readily understood by readers. A reader does not want to have to work hard simply to understand what an error bar on a plot represents.
<...>
Since the use of +-sqrt(n) is so widespread, the argument in favour of an alternative should be convincing in order for it to be adopted.

Summary

- You now know how Roofit 'Poisson errors' are defined Note: choice has no impact on likelihood fits
- Do you agree with RooFit default? What about empty bins then?
- Perfect topic to confuse and irritate people over coffee \rightarrow do it!

