The Relativistic Quantum World

A lecture series on Relativity Theory and Quantum Mechanics

and the second se

Marcel Merk

HCb

CERN Prévessin

CMS

ATL.

LIC

University of Maastricht, Sept 16 – Oct 14, 2020

The Relativistic Quantum World

vity	<u>Sept 16:</u> Lecture 1: The Principle of Relativity and the Speed of Light Lecture 2: Time Dilation and Lorentz Contraction							
Relati	<u>Sept 23:</u> Lecture 3: The Lorentz Transformation and Paradoxes Lecture 4: General Relativity and Gravitational Waves							
Quantum Mechanics	<u>Sept 30:</u> Lecture 5: The Early Quantum Theory Lecture 6: Feynman's Double Slit Experiment							
	<u>Oct 7:</u> Lecture 7: The Delayed Choice and Schrodinger's Cat Lecture 8: Quantum Reality and the EPR Paradox							
Standard Model	<u>Oct 14:</u> Lecture 9: The Standard Model and Antimatter Lecture 10: The Large Hadron Collider							

Lecture notes, written for this course, are available: <u>www.nikhef.nl/~i93/Teaching/</u> Prerequisite for the course: High school level mathematics.

Lecture 9

The Standard Model and Antimatter

How does nature behave in extreme conditions?

How does nature behave in extreme conditions?

Experimentally tested domain of the Standard Model

De Big Bang

The Large Hadron Collider

The 'big open questions'?

- 1. Which are the elementary building blocks of matter?
- 2. Which forces exist in nature and what are their essential differences?
- 3. Is empty space ('the vacuum') truly empty?
- 4. Can we explain the existance of our universe from the *big bang* using the known laws of nature?
- Wanted: a consistent theory that can answer these questions

Elementary Particles

"All things come in three"

Pie de Bökkum,

Ensinck de Kletskop

Flup de Koojstart

Elementary Particles

"All things come in three"

Fons Olterdissen

Elementary Particles

"All things come in three"

Building blocks of Matter

Molecule

Atom

Electron

Proton/Neutron

'Quark'

	Stable Matter on Earth																		
										\downarrow)		
e													u						
1	1 La 1 H	2 Ila											18 Ha	14 Ma	15 Va	13 Vie	17 Vila	13 0 2 He	
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	ZOEI-VIEISf
3	11 Na	12 Mg	3 116	4 Mb	5 Mb	6 Vīb	7 V115	8 Milb	9 VIIIb	10 VIII5	11 Ib	12 Ib	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	ALL STRUCTURE
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	the last and a second second
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	(43) TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	a part of the second of the second
6	55 Cs	56 Ba	•	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra		(104) Rf	(105) Db	(106) Sg	(107) Bh	(108) Hs	(109) Mt	(110) Ds	(111) Rg	(112) Cn	(113) Uut	(114) Fl	(115) Uup	(116) Lv	(117) Uus	(118) Uuo	
Lant	nanider	1	57 La	58 Ce	59 Pr	60 Nd	(61) Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
**Aqti	niden		89 Ac	90 Th	91 Pa	92 U	(93) Np	(94) Pu	(95) Am	(96) Cm	(97) Bk	(98) Cf	(99) Es	(100) Fm	(101) Md	(102) No	(103) Lr		

CERN: *the laboratory*

CERN: the LEP accelerator

Constant All An art and

1989-2000

Large Electron Positron collider

The L3 Experiment

The L3 Experiment

Anything possible is produced

Anything possible is produced

Ger	neratio	on:	The	Elemer	ntary Par	ticles	
	Ι	II	III	<u>Charge</u>			
ıarks	u	C (1976)	t (1995)	+2/3 e		T	
nb	d	S	b	-1/3 e		A gale	
		(1947) i	Vhy n thr	do all ee ide	particles ntical co	s exist opies?	
otons	e (1895)	(1936)	T (1973)	-1 e			
lep	Ve (1956)	Υμ (1963)	V _T (2000)	0 e			
		Matt	er				

Is that all there is?

I II III <u>Charge</u>

Matter

 $1 MeV = 1.8 \times 10^{-30} kg$

Antimatter and Big Bang

Paul Dirac and Albert Einstein

Rika (antimatter?)

Antimatter and Big Bang

Paul Dirac and Albert Einstein

Paul Adrian Maurice Dirac

- Einstein, Bohr et.al. ~1925:
 - Relativity theory
 - Quantum Mechanics
- Paul Dirac (1928):

Relativistic Quantum Mechanics

(Westminster abbey)

Prediction Dirac 1928: For each matter particle an antiparticle exists!

1928: Dirac predicts anti-particles

1932: Anderson discovers anti-electron

- Anderson saw an electron with "wrong" charge: e⁺
- Observed with bubble chamber

Generation:

Elementary Particles

Ger	Generation: Elementary Particles													
	Ι	II	III	<u>Charge</u>	<u>Charge</u>	Ι	II	III						
ırks	u	С	t	+2/3 e	-2/3 e	ū	Ċ	Ī						
enb	d	S	b	-1/3 e	+1/3 e	đ	S	Б						
ons	e	μ	τ	-1 e	+1 e	ē	μ	τ						
lept	ve	νμ	ντ	0 e	0 e	ve	$\overline{v_{\mu}}$	\overline{v}_{τ}						
		Matt	er			Ar	ntima	tter						

Energy= Matter + Antimatter E=mc²

Matter and antimatter particles go hand-in-hand

Creation: $\gamma \rightarrow e^+e^-$

e⁺

e⁻

e⁻

γ creates via E=mc² Particle + antiparticle

pure energy i.e. light (γ)

Annihilation: $e^+e^- \rightarrow \gamma$

e⁻

et

Particle + antiparticle creates γ 's via E=mc²

pure energy i.e. light (γ)

e⁻

Anti-matter

The ATHENA experiment at CERN

Is there antimatter in nature?

• Does it occur on earth?

No, we would immediately see it:

"Annihilation"

Is there antimatter in cosmic radiation?
The AMS experiment

ANTI-MATTER'

MATTER

No!
Are there antimatter galaxies?

(matter + antimatter = Intense gamma radiation)

No!

Back to the Big-Bang

Assume: creates equal amount of matter and antimatter

The early hot universe Time=0.0000000001 second

MA.

 $(E=mc^2)$

Imagine: *matter:* 1000000001 *antimatter:* 100000000

So: "teeny weeny" more matter particles than antimatter particles

The expanding & cooling universe Time ~1 second

After cooling • and • annihilate matter
antimatter
light

M

What remains: lots of light and a bit of matterRatio: 1000000001

The expanding & cooling universe Time ~1 second

After cooling • and • annihilate

matter
antimatter
light

What remains: lots of light and a bit of matterRatio: 10000000001

The expanding & cooling universe Time ~1 second

After cooling • and • annihilate matter
antimatter
light

What remains: lots of light and a bit of matterRatio: 1000000001

Our current universe....

Cosmic Microwave Background Radiation

1964: Penzias en Wilson discover: "background light" (photons) Remnant of the Big Bang

A temperature map

of the universe

2.7248K

2.7252K

For each matter particle there are a billion photons

The universe as we see it today

Observed Background light:

"many" (100000000)

Remaining Matter particles: "little" (1)

How to get an asymmetry in Big Bang?

Apparenty anti-matter is **not** the exact mirror image of matter!

(+99.999999%

radiation)

How to get an asymmetry in Big Bang?

Dominates

0.000001% materie

(+99.999999% radiation)

Apparenty anti-matter is **not** the exact mirror image of matter!

Z= - + FAU FAU

+ iFØX +h.c. + X: Y:;X:\$\$hc

 $+|\mathbf{D}_{\mathbf{g}}|^{2}-\mathbf{V}(\mathbf{g})$

Particles, Forces and ... the Higgs Boson

Piele (Giel) Hameleers: also standard model?

The Standard Model

Particles, Forces and ... the Higgs Boson

Generation: Elementary Particles								
	Ι	II	III	<u>Charge</u>	<u>Charge</u>	Ι	II	III
ırks	u	С	t	+2/3 e	-2/3 e	ū	C	t
enb	d	S	b	-1/3 e	+1/3 e	đ	S	Б
ons	e	μ	τ	-1 e	+1 e	ē	μ	τ
lept	ve	νμ	ντ	0 e	0 e	ve	$\overline{v_{\mu}}$	\overline{v}_{τ}
Matter 3 Gener			ations!	Ar	ntima	atter		

Four fundamental forces of Nature

Gravitation

Acts on particles with mass

Strong Nuclear force

Acts on nuclear particles

Electromagnetism

Acts on all charged particles

Weak Nuclear force

Acts on all particles

Force = quantum exchange!

What is exchanged is a "quantum" -> Quantum Mechanics

- 1) Electromagnetism: Photon γ
- 3) Weak nuclear force: W⁺, W⁻, Z⁰

2) Strong nuclear force: gluon4) Gravitation: graviton ??

The quantum of gravitation is hypothetical.

What is exchanged is a "quantum" \rightarrow Quantum Mechanics

- 1) Electromagnetism: Photon **y**
- 3) Weak nuclear force: W⁺, W⁻, Z⁰

2) Strong nuclear force: gluon4) Gravitation: graviton ??

The quantum of gravitation is hypothetical.

Force = quantum exchange!

What is exchanged is a "quantum" -> Quantum Mechanics

- 1) Electromagnetism: Photon γ
- 3) Weak nuclear force: W⁺, W⁻, Z⁰

2) Strong nuclear force: gluon4) Gravitation: graviton ??

The quantum of gravitation is hypothetical.

How strong are the forces?

	Res A			9
	Gravity	Weak (Electrov	Electromagnetic weak)	Strong
Carried By	Graviton (not yet coserved)	w ⁺ w ⁻ z ^o	Photon	Gluon
Acts on	AII	Quarks and Leptons	Quarks and Charged Leptons and W [↑] W	Quarks and Gluons
Strength	0,00000000000000 0000000000000000 000000	0.0001	1	60

Particles, Forces and Higgs

Theory: the Standard Model

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{\vec{q}}_s^{\tau}\gamma^{\mu}q_j^{\sigma})g_{\mu}^{a} + \bar{G}^a\partial^2 G^a + g_sf^{abc}\partial_{\mu}\bar{G}^aG^bg_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^2 \widetilde{W}^+_\mu W^-_\mu - \frac{1}{2} \partial_\nu Z^0_\mu \partial_\nu Z^0_\mu - \frac{1}{2c_w^2} M^2 Z^0_\mu Z^0_\mu - \frac{1}{2} \partial_\mu A_\nu \partial_\mu A_\nu - \frac{1}{2} \partial_\mu H \partial_\mu H -$ $\tfrac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+ \check{\phi^-} - \tfrac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \tfrac{1}{2c^2}M\phi^0\phi^0 - \beta_h[\tfrac{2M^2}{a^2}$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu + \psi^-_\mu)] + \frac{2M}{a^2}M_\mu + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{1}{2}(H^2 + \phi^0\phi^-)] + \frac{1}{2}$ $\begin{array}{l} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) + \\$ $g^{2}s^{2}_{w}(A_{\mu}W^{+}_{\mu}A_{\nu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}] + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - A_{\mu}A_{\mu}W^{-}_{\nu}W^{-}_{\nu}] + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\nu}W^{-}_{\mu}W^{-}_{\nu}] + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\nu}W^{-}_{\nu}] + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\nu}W^{-}_{\mu}] + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}W^{-}_{\mu}] + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\mu}W^{-}_{\mu}W^{-}_{\mu}] + g^{2}s_{w}c_{w}C^{0}_{\mu}W^{-}_{\mu}] +$ $W^{+}_{\nu}W^{-}_{\mu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{c^{2}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - \phi^{-}\partial_{\mu}\phi^{0}] - \phi^{-}\partial_{\mu}\phi^{0}] - \phi^{-}\partial_{\mu}\phi^{0}] - \phi^{-}\partial_{\mu}\phi^{0} - \phi^{-}\partial_{\mu}\phi^{0}] - \phi^{-}\partial_{\mu}\phi^{0}] - \phi^{-}\partial_{\mu}\phi^{0}$ $W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\bar\phi^0)] + \frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H) - W^-_\mu(H\partial_\mu\phi^+-\phi^-\partial_\mu H) - W^-_\mu(H\partial_\mu^+-\phi^-\partial_\mu H) - W^-_\mu(H\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu H) - W^-_\mu(H\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_\mu^+-\phi^-\partial_$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{u}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{\bar{0}} - \phi^{\bar{0}}\partial_{\mu}H) - ig\frac{s^{2}_{u}}{c_{u}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$
$$\begin{split} & igs_w M A_{\mu} (W_{\mu}^+ \phi^- - W_{\mu}^- \phi^+) - ig \frac{1 - 2 z_w^2}{2 c_w} Z_{\mu}^0 (\phi^+ \partial_{\mu} \phi^- - \phi^- \partial_{\mu} \phi^+) + \\ & igs_w A_{\mu} (\phi^+ \partial_{\mu} \phi^- - \phi^- \partial_{\mu} \phi^+) - \frac{1}{4} g^2 W_{\mu}^+ W_{\mu}^- [H^2 + (\phi^0)^2 + 2 \phi^+ \phi^-] - \end{split}$$
 ${\textstyle \frac{1}{4}g^2 \frac{1}{\ell^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{2}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{4}g^2 \frac{s_w^2}{C_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + g^0_\mu) + 2(2s_w^2 - 1)^2 \phi^- (W^+_\mu \phi^-) + 2(2s_w^2 - 1)^2 \phi^- (W^+$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}))$
$$\begin{split} W^{-}_{\mu}\phi^{+}) + &\frac{1}{2}i\bar{g}^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{s_{w}}{c_{0}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}^{\lambda}_{j}(\gamma\partial + m_{u}^{\lambda})u^{\lambda}_{j} - \bar{d}^{\lambda}_{j}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}^{\lambda}_{j}(\gamma\partial + m_{u}^{\lambda})u^{\lambda}_{j} - \bar{d}^{\lambda}_{j}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}^{\lambda}_{j}(\gamma\partial + m_{u}^{\lambda})u^{\lambda}_{j} - \bar{d}^{\lambda}_{j}(\gamma\partial + m_{u$$
 $\begin{array}{l} \bar{m}_{d}^{\lambda}]d_{j}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma u_{j}^{\lambda}) - \frac{1}{3}(\bar{d}_{j}^{\lambda}\gamma d_{j}^{\lambda})] + \frac{ig}{4c_{w}}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{\nu}))] + \frac{ig}{4c_{w}}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu$ $(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})u_{j}^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})u_{j}^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})u_{j}^{\lambda}) + (\bar{e}^{$ $(\bar{d}_j^\lambda\gamma^\mu(1-\frac{8}{3}s_w^2-\gamma^5)\bar{d}_j^\lambda)]+\frac{ig}{2\sqrt{2}}W^+_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\bar{\gamma}^5)e^\lambda)+(\bar{u}_j^\lambda\gamma^\mu(1+\bar{\nu}^5)e^\lambda)+(\bar{u}_j^\lambda\gamma^\mu(1$ $\gamma^{5}C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] +$ $\frac{ig}{2\sqrt{2}}\frac{m_{\nu}^{\lambda}}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\right.$ $i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)]$ $\gamma^{5} d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}} \phi^{-} [m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}] - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}] - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^$ $\frac{g m_{\dot{u}}^{\lambda}}{2M} H(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}) - \frac{g m_{\dot{d}}^{\lambda}}{2M} H(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}) + \frac{ig m_{\dot{u}}^{\lambda}}{2M} \phi^{0}(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \frac{ig m_{\dot{d}}^{\lambda}}{2M} \phi^{0}(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}) - \frac{ig m_{\dot{d}}^{\lambda}}{2M} \phi^{0}(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}$ $\bar{X}^{+}(\partial^{2}-M^{2})X^{+}+\bar{X}^{-}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{r^{2}})X^{0}+\bar{Y}\partial^{2}Y+$ $igc_wW^+_\mu(\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_wW^+_\mu(\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ Y) +$ $igc_w W^{\mu}_{\mu}(\partial_{\mu}\bar{X}^-X^0 - \partial_{\mu}\bar{X}^0X^+) + igs_w W^{-}_{\mu}(\partial_{\mu}\bar{X}^-Y - \partial_{\mu}\bar{Y}X^+) +$ $igc_w Z^0_\mu(\partial_\mu \bar{X}^\top X^\top - \partial_\mu \bar{X}^- X^-) + igs_w A_\mu(\partial_\mu \bar{X}^\top X^\top - \partial_\mu \bar{X}^- X^-) -$ $\tfrac{1}{2}gM[\bar{X}^+X^+H + \bar{X}^-X^-H + \tfrac{1}{c_w^2}\bar{X}^0X^0H] + \tfrac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ \bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+}w^{-}\bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] +$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

"The Formula"

"Elementary quanta of Nature"

 $\begin{aligned} \lambda &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i F B \gamma + h.c. \\ &+ \gamma_i \gamma_{ij} \gamma_j \phi + h.c. \\ &+ \gamma_i \gamma_{ij} \gamma_j \phi + h.c. \\ &+ |\Omega_{a} \phi|^2 - V(\phi) \end{aligned}$

"The Formula"

"Elementary quanta of Nature"

Q

"The Formula"

"Elementary quanta of Nature"

Forces

V

G

Building blocks of matter

Quarks

C

dsb

 V_{τ}

 V_{μ}

U

e

Ve

Leptons

"The Formula"

"Elementary quanta of Nature"

Higgs

Forces

G

The 'Higgs' field

fills the vacuum

Brout

Englert

1964: Standard Model <u>prediction:</u> empty space is not empty!

"The Formula"

"Elementary quanta of Nature"

Kobayashi Maskawa

Mass is generated by the Higgs Field!

1972: With 3 copies of particles an asymmetry between matter and antimatter is possible!

How did antimatter disappear in the Big Bang?

49.999999% anti-matter 50.00001% matter

Dominates

0.00001% matter

(+99.999999% radiation)

Antimatter no the exact mirror image of matter!

Theoretically this requires three copies of all particles!

X-tra slides

Cosmic Radiation (1909)

Copy electron: Muon (1936)

Cosmic muons Made visible in The Nikhef hall

Slept well? Each night a million muons through your body!
The weak interaction is left-handed

 Parity: Right-handed vs Left-handed

The weak interaction is left-handed

 Parity: Right-handed vs Left-handed

 The Experiment of Mme Wu
Radioactive decay: n→p e v is purely left-handed

• W. Pauli: "The Lord is a weak left hander"

Violation of Parity Symmetry

Before 1956 physicists were c**onvinced** that the laws of nature should be left-right symmetric. Strange?

A "gedanken" experiment: two perfectly mirror-symmetric cars:

What happens if the ignition makes use of a radio-active decay?

Antimatter: maintaining the symmetry?

Charge-Parity Symmetry = Matter vs Antimatter symmetry

CERN 1993: There are 3 particle generations!

CERN 1993: There are 3 particle generations!

Escher's impression on the matter - antimatter difference

matter

colour

anti-colou

