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Abstract

In the beginning of the previous century our fundamental view of
nature revolutionised with the birth of the theory of relativity and
of quantum mechanics. In the course of the century a beautiful the-
oretical framework, called the Standard Model, was developed and
its realisation in nature was step-by-step verified with the discovery
of new, fundamental particles, culminating in the recent discovery
of the Higgs boson. The lecture series contains a mini-course of
eight one-hour lectures. We discuss the fundamental elements of the
special and general relativity theory and quantum mechanics with
a particular emphasis on the counter-intuitive aspects of both theo-
ries; the relativistic quantum world is fundamentally different from
our macroscopic world. The course ends with a colloquium-like
overview of recent developements in elementary particle physics.
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Introduction

”If you can’t explain it simply, you don’t understand it well enough.”
-Albert Einstein

”There is nothing new to be discovered in physics now. All that remains is more and
more precise measurements.”
-Lord Kelvin

Around the year 1900, the situation in physics research can be best described with the
above, famous quote from Lord Kelvin. The physics that Kelvin is referring to is what is
currently called ”classical” physics, which includes the mechanics of Isaac Newton, the
theory of electromagnetism of James Maxwell and the statistical mechanics of Ludwig
Boltzmann. There were at that time, however, two unsolved issues:

1. The mysterious existence of the æther: the measurements of the speed of light in
the experiment of Michelson and Morley failed to detect the ”aether”, the medium
that carries electromagnetic waves in vacuum.

2. The stability of the atom: if an atom consists of electrons circulating the nucleus,
it should emit electromagnetic radiation and cannot be stable.

It turned out that these two puzzles led the way to a revolution in physics from
“classical physics” to ”modern physics”. The absence of an aether is at the fundament
of Einstein’s theory of relativity; the stability of the atom is described by quantum
mechanics. Both relativity and quantum mechanics have drawn a lot of attention and
were hotly debated in a wide audience since they describe fundamental concepts in
physics that may well be called counter-intuitive.

The theory of special relativity deals with objects that move with relative velocities
much higher than we are used to in our everyday life experience. We will see that,
based on two fundamental principles, our intuitive picture of time and space at low
velocities will be changed drastically when we compare observers that move at relative
velocities that approach the speed of light. The theory of general relativity introduces
the equivalence between accelerated motion and gravitation leading to the notion of
curved space-time and the phenomenon of gravitational waves.

Quantum Mechanics, in turn, deals with objects and phenomena that occur at much
smaller sizes than we are used to in everyday life; at atomic and even sub-atomic scales.
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2 Introduction

The fundamental behaviour of matter and the character of the physics at the smallest
scales is at least as strange as the theory of relativity.

Although both Einstein’s theory of relativity as well as quantum mechanics have
many counterintuitive aspects, Einstein’s theory was never criticized by scientists, in
contrast to the interpretation of quantum mechanics. The physical interpretation of
the reality of a wave function is still a topic of discussion. However, until today the
Copenhagen interpretation still stands, although in particular the ”collapse” of the wave
function is sometimes considered an unsatisfactory phenomenon.

It should be mentioned that the inventions of the theory of relativity and quantum
mechanics do not make the classical theory ”false”. The old theory is still valid in what
is called the “classical limit”. In the limit of low velocities (compared to the speed of
light) the Galilei laws of adding velocities works with a very high precision, while for
macroscopic sized objects the Newtonian mechanics and Boltzmann statistics are very
well applicable.

These lecture notes belong to a lecture series for first year university science students
introducing the concepts of the theory of Relativity and Quantum Mechanics. Both for
relativity as well as for quantum mechanics we investigate the nature of physics through
several so-called thought-experiments, after the original German name gedankenexper-
imenten. These are hypothetical experiments that we could carry out assuming that
our equipment has no limitations. Although such thought-experiments often cannot be
carried out in practice today, there is no fundamental law in nature that prevents us to
carry them out if our technology would be sufficiently advanced. The purpose of these
examples is to illustrate the essence of the physics involved, if the experiments would
be conducted under ideal circumstances and using perfect equipment.

The use of mathematics in the course is kept to a minimum. This implies that in
particular the quantum mechanics theory is not presented in a rigorous and formal way.
Also, although some historical facts are mentioned, I will not do justice to the correct
historical developments of the theory, including many wrong turns (a very interesting
topic in itself!). Instead, the main emphasis will be on conceptual aspects, trying to
understand the character of physical law. There are a few sections of a slightly more
advanced level, that perhaps involve a bit more mathematics. They are listed with an
asterisk * and can be skipped without loss of continuity of the lectures.

These lecture notes are made in preparation of the lectures. They can be used by the
audience, but should not be distributed. The original material presented in the courses
is taken from books that are listed in the literature list below. Illustrations are often
taken from the web.
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Literature:
The following literature is used in the preparation of this course (the comments

reflect my personal opinion):

Albert Einstein: “Relativity, the special and the general theory”, Routledge Classics,
2001.
Relativity presented by the hands of the master himself, first published in 1916. It is a

concise text suited for beginning physics students, in which Einstein presents the special

relativity theory in 60 pages, using only a minimum of formulae. The first lectures of

this course are mainly based on the material presented in this book.

Sander Bais: ”De sublieme eenvoud van relativiteit”, Amsterdam University Press,
2007.
A visual introduction to the special theory of relativity. Instead of formulae, Sander

Bais uses graphs to illustrate the concepts of simultaneity, time dilation and Lorentz

transformations. Once you understand the diagrams, you never forget the concepts of

relativity. As far as I know it is only available in Dutch.

Bernard F. Schutz: “A first course in general relativity”, Cambridge University Press,
1985.
A complete and excellent introduction on the theory of general relativity. Aimed at

more advanced level undergraduate students, the book gives a thorough mathematical

introduction to the Einstein equations and space-time curvature, gravitational waves,

black holes and cosmology. Very suitable for a follow-up course for students interested

in the mathematical formalism.

John Gribbin: “In search of Schrödinger’s Cat”, Black Swan edition, 1991.
A step by step introduction of quantum mechanics, telling the story of the old quantum

theory of the atom up to the mysterious interpretation of quantum reality. A book with-

out any formulae, explaining the developments in the previous century and expressing

the discussions and doubts of the founders of the theory themselves. A very stimulating

book on the interpretation of reality behind the laws of quantum mechanics.

Richard Feynman: “QED, the strange theory of light and matter”, Princeton University
Press, 2006.
Feynman’s introduction to the theory of Quantum Electrodynamics (QED) using every

day language and visualisations, including the famous Feynman diagrams. An excellent

book to learn the concepts without any mathematics.

Richard Feynman, Robert Leighton, Matthew Sands: “The Feynman Lectures on Physics”,
Addison-Wesley, 1966.
The 3-volume Feynman lectures are a classic for any physics student. Feynman’s unique

and intuitive approach to physics is an eye-opener next to conventional textbooks on

physics. For this course material of part III, ”Quantum Mechanics” was used: Feyn-

man’s famous ”double slit” thought experiment. The Feynman lectures contain enough

material for a full bachelor study on physics.
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Paul Dirac: ”The development of Quantum Theory”, J. Robert Oppenheimer Memorial
Prize Acceptance Speech at the University of Miami, Gordon and Breach science
publishers, 1971.
A concise booklet including a speech in which Dirac reviews his own experience of the

development of quantum mechanics in the first half of the previous century.

John Wheeler and Wojciech Zurech, editors: ”Quantum Theory and Measurement”,
Princeton University Press, 1983.
An extensive collection on groundbreaking articles reviewing the development of quan-

tum mechanics in the last century. It contains articles on the principles and interpreta-

tion of quantum mechanics, including the famous Bohr-Einstein dialogue, the concepts

of hidden variables and complementarity and the role of the measurement process. It is

a very complete set of original articles and commentaries at an advanced level.

In addition to these educational books I have enjoyed reading biographies of Einstein,
Dirac and Schrödinger:

Walter Isaacson: “Einstein, his life and universe”, Simon & Schuster UK Ltd, 2017.
An insightful description of the character and personal life of Albert Einstein. The

biography extends from Einstein’s childhood until his death. In the affectionately written

text the reader gets to understand the ups and downs in Einstein’s life. The ups include

his insightfull moments developing special and general relativity theory, the downs his

hesitation accepting the implications of quantum mechanics and his fruitless search for

a unified field theory of electromanetism and gravity. The reader also gets a picture of

Einstein’s struggles in his personal life and unhappy marriages.

Abraham Pais: “Subtle is the Lord..., The science and the life of Albert Einstein”,
Oxford University Press, 1982.
A comprehensive scientific biography of the life of Einstein and his work, written by the

Dutch physicist Pais, who joined Einstein in many walks during which they discussed

physics. The book focuses on the scientific life of Einstein and is of rather technical

level.

Graham Farmelo: ”The Strangest Man, the hidden life of Paul Dirac, quantum genius”,
Faber and Faber Ltd, 2009.
A very entertaining text on the personal life of Paul Dirac, who is sometimes called the

British Einstein. Dirac was the youngest theoretician ever to win the nobel prize for his

prediction of the existence of antimatter. Farmelo brings the very introvert and strange

personality of Dirac to life in a truly entertaining book.

John Gribbin: ”Erwin Schrödinger and the quantum revolution”, Black Swan, 2013.
The biography shows the personal life of Erwin Schrödinger, the inventor of the famous

equation in his own name, describing fundamental particles as waves. His wave me-

chanics was the alternative interpretation of quantum mechanics to Heisenberg’s more

abstract matrix mechanics, until Dirac demonstrated that both can be seen as two

views of the same fundamental objects. The book reviews Schrödinger’s personal life,

his career, and his hesitations on the interpretation of quantum mechanics.



Lecture 1

The Principle of Relativity and the
Speed of Light

”Everything should be made as simple as possible, but not simpler”
-Albert Einstein

Albert Einstein and Annus Mirabilis 1905

The year 1905 is referred to as Einsteins ”Annus Mirabilis” (miracle year). In that year
Einstein published three groundbreaking papers in the scientific journal ”Annalen der
Physik”. The papers were on three completely different topics:

1. The photo-electric effect: proposing an experiment to prove that light consists of
photon quanta,

2. Brownian motion: explaining the microscopic motion of matter leading to the
evidence that matter consists of atoms,

3. The special theory of relativity: demonstrating how space and time appear differ-
ent for different observers.

Although Einstein is mostly known for his formula expressing the equivalence of
matter and energy (E = mc2), which is a consequence of the theory of relativity, he was
rewarded the Nobel prize in 1922 in particular for his work on the photo-electric effect,
a topic at the fundament of quantum mechanics. Interestingly, Einstein later argued
against the interpretation of quantum mechanics as a correct fundamental theory. Before
discussing quantum mechanics and its interpretation we first address relativity theory.
We will try to understand how different observers, moving relatively to each other with
a constant speed, observe elapsed time between two events and their separation in space
in a different way. Interestingly, this follows by the requirement that the laws of physics
for the two observers must be the same.

5



6 Lecture 1. The Principle of Relativity and the Speed of Light

1.1 Reference systems and the Galilei transforma-

tion

Let us start by considering a first gedankenexperiment. Consider a boat sailing along a
river with a speed of 15 km/h with respect to the land. On the deck of the boat Alice
is running in the same direction with a speed of 10 km/h. What would be the velocity
of Alice if it were measured by Bob, who is standing on the dike watching the boat and
Alice pass by?

Our intuitive calculation tells us to calculate the velocity as: 15 km/h + 10 km/h =
25 km/h. This reasoning is called Galilean addition of velocities.

To express things a bit more formal we consider the boat as a so-called reference
system or coordinate system and label it as S, which moves with a velocity v with
respect to the land, which is a second reference system S ′. For any object that moves
with a velocity w in S, in the same direction of movement of S ′, the law of addition of
velocities is from reference system S to S ′ :

w′ = w + v (1.1)

and the transformation of system S to system S ′ is called a Galilei transformation. We
call the frames S and S ′ inertial frames.

For completeness we note that if Alice would be walking in the opposite direction as
the speed of the boat, the law would of course not be the sum but the difference of the
two velocities: w′ = v − w = −w + v. Since a velocity can be represented by a number
and a direction, represented by ~v or ~w, the general transformation law is: ~w′ = ~w + ~v.

In a similar way we can calculate the speed at which two cars that approach each
other from opposite directions, collide in a head-on accident. If the first car moves at
40 km/h and the second 60 km/h they approach each other and collide with 40 km/h
+ 60 km/h = 100 km/h. Alternatively, if they drive in the same direction with the
faster car behind the slower one, they approach each other with 60 km/h - 40 km/h
= 20 km/h. We know from our everyday experience that the Galilean law of adding
velocities must be approximately correct in practical circumstances. However, perhaps
surprisingly, Einstein teaches us this is not exactly correct, and we will derive the correct
formula later in Section 3.4.

Let us now turn to the two postulates of the Special Relativity, which state that:

For two observers in two so-called inertial frames, i.e. they
move with a constant velocity relatively to each other:

1. The laws of physics for each observer are the same;

2. The speed of light in vacuum for each observer is the same.

We will discuss these postulates below.
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1.2 The principle of relativity

Alice goes into her cabin inside the boat and takes a nap. As she wakes up, the water
is perfectly calm and she can detect no movement. Her cabin has no windows and
Alice wonders if there is a way inside her cabin to find out whether the boat is actually
moving or not. (Since this is a gedankenexperiment we assume that the engine of the
boat makes no sound etc.) To test it she throws a ball in the air and she detects nothing
special in way the ball goes up and down. In particular, it does not ”stay behind” with
respect to the movement of the boat. The ball makes the same trajectory as it would if
the boat would be at rest.

More generally, the principle of relativity states that there is no way that a constant
speed can be detected from within the boat. This is the first postulate of Einstein’s
theory of relativity and it states that all laws of physics are identical in each inertial
frame. To observe the relative speed with respect to the land she has to look outside.

*An Intriguing thought:
This postulate implies that only relative velocities can ever be measured and conse-
quently the meaning of having an absolute velocity becomes unclear. How does one
determine if something is absolutely at rest?

1.3 The speed of light

The second postulate of the theory of relativity is related to the speed of light. As we
learn in school, the speed of light in vacuum is a constant: c = 299 792 458 m/s, about
300 000 km/s. This velocity does not depend on the colour of light, nor on the speed of
the object emitting the light or on the speed of the observer. It is a physical constant and
embedded into the laws of electromagnetism as the velocity with which electromagnetic
waves travel through empty space. We also learn that nothing can travel faster than
light, the light-speed is the ultimate velocity any object can ever have1. The constant
speed of light, however, causes a crisis to the principle of relativity.

1.4 A contradiction between the principle of rela-

tivity and the speed of light?

Let us make a thought experiment of a rocket in space travelling at a very high speed.
Inside the rocket Alice is looking out of the window to a star and she measures that
her velocity with respect to the star is 250 000 km/s. From the opposite direction Bob
approaches her in another rocket, and he measures his velocity to be 200 000 km/s. From
this information Alice and Bob use Galilei’s law of addition of velocities to calculate that

1Some time ago an experiment with neutrino particles reported on an observation of a speed just
above the speed of light, but the measurement was found to be disturbed by a badly functioning optical
connection in a cable.
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they approach each other with a relative velocity of 250 000 km/s + 200 000 km/s =
450 000 km/s, significantly higher than the speed of light!

After Bob passed the star his rocket moves away from the star with 200 000 km/s,
the light shining from the star travels at 300 000 km/s through space and passes Bob’s
rocket. As he measures the velocity of the light, what will he find? Is it 300 000 km/s−
200 000 km/s = 100 000 km/s? But that would be in contradiction with the postulate
of the constant speed of light. Any observer in any reference frame should observe the
same speed of light.

To make the contradiction even worse, consider that the rockets of Alice and Bob
fly in the same direction, Bob leading with 200 000 km/s and Alice following him with
250 000 km/s in the same direction. Alice now takes out a flashlight and shines a beam
of light out her front window, toward the rocket of Bob where it enters in the rear-
window into his cabin. Bob measures the velocity of the light entering his rocket cabin.
What will he find?

What is the velocity of light in the cabin of Alice? What is the velocity of the same
light beam in the interstellar vacuum and finally in the cabin of Bob?

It seems that either the principle of relativity or the constancy of the speed of light
cannot be held. Since the principle of relativity is so intuitive we expect that it is the
constancy of the speed of light that cannot be maintained. Most probably it is due
to the fact that in practice we never travel at such high speeds that we never observe
differences in the speed of light.

Perhaps it is time to turn to a real experiment: the measurement of the speed of
light.

1.5 The Michelson and Morley experiment

In 1849 Armand Fizeau was the first person to measure the speed of light and found
315 000 km/s, within 5% of the correct version. In 1862 Léon Foucault improved the
method and obtained a value of 298 000 km/s. For illustration purpose, the method
used by Fizeau and that of Foucault are shown in fig. 1.1.

From the theory of electromagnetism we know that light is a wave of an oscillat-
ing electric and magnetic field that propagates through vacuum, see the illustration in
fig. 1.2. The speed of light is the speed at which electromagnetic waves propagate. It is
related to the value of two constants: the electric permittivity of the vacuum (ε0) and
magnetic permeability of the vacuum (µ0), via the relation c = 1/

√
ε0µ0. A detailed

understanding of this relation is not required here apart from the point that an alter-
native measurement of the speed of light was possible by measuring the electric and
magnetic constants ε0 and µ0. This measurement was done in 1856 by Wilhelm Weber
and Rudolf Kohlraush and was found to be consistent with Foucault’s measurement.

At the time, it was thought that empty space was filled with a so-called æther which
carries the electromagnetic wave (e.g. compare to air carrying a sound wave). A first
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Figure 1.1: Schematic view of the apparatus of Fizeau (left) and that of Foucault (right).
Both measure the time delay of a light beam reflected in a mirror at a distance of several km’s.
Fizeau projects a beam of light on a distant mirror using a rotating cogwheel which obscures
the reflected beam by teeth, while Foucault uses a rotating mirror to project the beam on the
distant mirror and measures the angle of the reflected light beam.

Figure 1.2: An illustration of a beam of light; perpendicular oscillations of electric and
magnetic fields perpendicular to the direction of propagation of the beam.
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attempt by Michelson to measure the motion of the earth through the reference frame
that carried the æther failed due to limited accuracy of the apparatus. The measurement
is based on the idea that the speed of light was a constant with respect to the reference
frame in which the æther was at rest. Since the earth is moving through the æther in a
specific direction, one can therefore measure the difference of the light-speed in different
directions. In 1887 Michelson and Morley precisely determined the speed of motion of
two perpendicular light beams using an improved version of Michelson’s earlier failed
experiment. The concept of the measurement is shown in fig. 1.3, while sketches of the
first apparatus used by Michelson and the improved version of Michelson and Morley is
shown in fig. 1.4.

Figure 1.3: Left: If the universe is filled with an æther then the velocity of the earth through
the æther would vary through the year. Right: An attempt to observe the æther via mea-
surements of the light-speed in perpendicular arms of the Michelson Interferometer, assuming
that the æther wind is from the right. A difference in the delay time of the two beams can be
observed in the interference pattern of the reflected beams. Remember that it takes longer to
swim up and down a distance of 100m in a river parallel to the direction of water flow than
the same distance perpendicular to the flow.

It was expected that due to the earth’s motion through the æther, the measured
light speed would be different in the perpendicular arms. Also they expected to see a
yearly cycle because of the earth’s motion around the sun.

Exercise:
Calculate the expected delay time for the beams if the ætherwind has a velocity v
along the direction of one of the arms of the interferometer, assuming the length of the
interferometer is L.
Answer: tperpendicular = 2L

c
1√

1−v2/c2
, tparallel = 2L

c
1

1−v2/c2

The Michelson-Morley experiment observed that there was no significant time dif-
ference. The velocity of light is the same constant in the two arms. It did not depend
on day or night or the time of year (i.e. the position of the earth around the sun). At
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Figure 1.4: Left: A sketch of the original device used by Michelson. Right: A sketch of the
improved measurement by Michelson and Morley.

the time, this could also be interpreted that the earth is ”dragging” the æther along, so
that the æther is ”at rest” on earth.

To date, it has been verified that the observed speed of light is always the same: c
is a constant independent of the frame of reference!

1.6 Does an absolute velocity exist?

Let us consider a beam of light in vacuum without the presence of an æther. As il-
lustrated in fig. 1.2, in Maxwell’s theory of electromagnetism, light consists of electro-
magnetic waves that propagate through the vacuum with the speed of light given by
the relation: c = 1/

√
ε0µ0. The propagation takes place by oscillations of electric and

magnetic fields perpendicular to the direction of motion (”transverse” oscillations). In
the absence of an æther the propagation of waves occurs in empty space (vacuum) with
a velocity c. But, can one consider a vacuum ”at rest” or, alternatively, can one imagine
a ”moving” vacuum? How can the vacuum look different for me when I am ”at rest” or
when I move ”through it”?

The principle of relativity states that there is no difference of the vacuum as seen
by two relatively moving observers. Empty space is the same for both observers. One
might phrase this alternatively by saying that an absolute velocity with respect to the
vacuum does not exist. There is no way to measure an absolute speed since all laws of
physics for two observers (think of Alice on the boat) are the same, including the laws of
Maxwell and the propagation of the electromagnetic fields. Since there is no difference
of a vacuum seen by a person ”in rest” and a vacuum seen by a person ”in motion”,
both observers will conclude that the speed of light in ”their” vacuum is the same,
independent of the fact that they move relatively to each-other. This is the essence of
the theory of special relativity.
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1.6.1 *The cosmic microwave background

Models of the Big Bang origin of the universe predict that an isotropic remnant electro-
magnetic radiation with a temperature of 3oK should be present. In 1964 Arno Penzias
and Robert Wilson accidentally discovered this so-called cosmic microwave background
(CMB) radiation as a strong background in their attempts to communicate to satellites
using radio waves.

The measurement of the CMB has been carried out in increasing precision by satellite
experiments: first COBE, later WMAP and recently Planck. A detailed sky map of the
temperature (or wavelength) of the radiation has been made. After correction for the
movement of the earth the radiation is seen to be the same across the whole sky (i.e. it is
isotropic), confirming theories of the Big Bang origin of the universe. Before correcting
for the movement of the earth, a strong so-called dipole effect is visible as consequence
of the movement of the earth through the CMB ”wind”.

Food for thought: apparently a special inertial frame in the universe does exist: that
in which the CMB has no dipole effect, i.e. the frame in which it is isotropic.

Figure 1.5: The temperature spectrum of the cosmic microwave background as observed by
the Planck satellite. Left: The spectrum as seen after subtraction of the signals caused by our
own milky way. The structure seen in red and blue is the so-called ”di-pole” effect, caused by
the movement of the earth around the sun and around the galaxy centre. Right: The spectrum
as observed after correcting for the ”di-pole” effect. The average temperature is 2.726 Kelvin
while the temperature difference between the blue and red points is less than 1 mKelvin.



Lecture 2

Time Dilation and Lorentz
Contraction

”When you are courting a nice girl an hour seems like a second. When you sit on a
red-hot cinder a second seems like an hour. That’s relativity.”
-Albert Einstein

2.1 Relativity of Simultaneity

The Galilean transformation law assumes that time is universal for all observers in their
reference systems. What this means is that the occurrence of two simultaneous events
for one observer (Alice) are also simultaneous for another observer (Bob). Before we
investigate this further we have to ask ourselves how to precisely define a simultaneous
occurrence of events that do not take place at the same position. Since we now accept
that the speed of light is an absolute universal constant for all observers we can use it
to define simultaneity of distant events as explained below.

This time we ask Alice to board a fast train speeding along a straight track while
Bob stands alongside the track, watching the train pass by (see fig. 2.1). At a given
point in time Bob observes that lightning strikes at two places at the same time; one
at a distance of 10 km along the train track in one direction (position A), and one at a
distance of 10 km along the train track in the other direction (position B). How does he
know that these events occur at the same time? The light from the lightning at A takes
10/300 000 seconds to reach his eye and the same is true for the light of the lightning
at B. Since the distance to A and B is the same and also the light-speed is the same
for both signals, the delay between the occurrence of each event and Bob’s observation
is the same. If Bob sees, from the corner of his eyes (or by using two mirrors), both
lightning strikes at the same time, he concludes that the two events are simultaneous.

We now take the view of Alice aboard the train. Consider that Alice and Bob happen
to be at the same position at the time that the lightning strikes according to Bob. By the
time that the light has travelled 10 km, Alice, on the train, has moved in the direction
of the velocity of the train so that she is no longer in the middle of positions A and

13
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B. Let us say she moves away from A and towards B. Therefor she will conclude that
the two lightning strokes are not simultaneous. Who is right? Are they simultaneous or
not?

Figure 2.1: Defining the concept of simultaneity. Bob, standing at position C in the middle
of A and B, sees the lightning strokes at A and B simulteneously. But Alice, at position D,
does not!

Intuitively, we are tempted to say that Bob is right since he is not moving with
respect to the earth. But let us reconsider the experiment in the vacuum of space and
replace the train with rockets. In this case there is no external reference system and
the vacuum seen by Alice is completely equivalent to that seen by Bob. Who is moving
and who is standing still? Both will conclude that the light travels towards them from
A and B with the same speed, only one of them will call the events simultaneous while
the other does not.

The conclusion is that simultaneity of events depends on the observer, or the coor-
dinate system. Before relativity we have assumed that time is a global constant for all
frames. In relativity it is not. Each reference frame has its own time label.

2.1.1 Relativity of Distance

We ask Alice in the train to measure the length of the train. The simplest method for her
would be to go through the train with a ruler and measure the distance from the front
to rear ends. She here uses a different method that allows her to compare her results to
a measurement of Bob. We ask her to simultaneously make two tick-marks at the tracks
corresponding to the front and back of the train (remember it is a thought-experiment -
she might use some sort of pen-on-a-stick system). To make a comparison, we now ask
Bob, standing aside at the tracks, to measure the length of the passing train. He also
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does this by setting simultaneous marks at the front-end end rear-end of the train and
subsequently measuring the distance of the two marks with a ruler. Since we have seen
before that Alice and Bob do not agree on simultaneity of two events, Alice will protest
that Bob does not set the tick marks at the same time at the front end rear end of the
train and as a consequence the two measured lengths will not agree.

We conclude that in making a Galilei transformation we have to make two corrections
in intuitive axiom’s:

• a time interval between two events depends on the reference frame,

• a space interval (”distance”) between two events depends on the reference frame.

2.2 Time Dilation

Since the light speed is a perfect constant of nature, independent of the observer, we
can use it to construct a perfect clock to measure time intervals. Take two flat mirrors
and place mirror B at a distance of 1 meter above mirror A, with the two reflecting
sides facing towards each other as indicated in fig.2.2. A light beam that is injected in-
between the mirrors will be reflected infinitely many times between the mirrors, assuming
a thought-experiment of perfect mirrors. In this way we can use it as a clock, since the
distance between the mirrors is a constant of 1 meter and the speed of light is constant.
The unit of time (”a tick of the clock”) can be defined as the time it takes between two
reflections of the light beam (1 [m] / 3× 108 [m/s], or phrased otherwise, one second is
the time it takes for the light beam to be reflected 1.5× 108 times at the top mirror A.

Consider such a ”light-beam clock” in the same fast train, sitting next to Alice. As
the train takes off and reaches a very high speed Alice notices nothing unusual as she is
in rest relatively to the clock.

But let us turn to Bob instead. He observes that the two mirrors move with the
speed of the train and accordingly the light beams have to travel a distance longer than
a meter, which can be calculated simply using the Pythagorean theorem. Let us say
that the fast train travels with half the speed of light, so that it has moved 0.5 meter
during the time that the light has travelled from mirror A to mirror B. In that case the
distance of the light travelled, according to Bob, is

√
12 + 0.52 m =

√
1.25 m ≈ 1.12 m.

Since Bob knows that the speed of light is a constant of 3 × 108 m/s, he will conclude
that the clock on board of the train has slowed down. This phenomenon is referred to
as time dilation.

We proceed to calculate the exact formula for the time dilation. Say that the train
moves at velocity v and that the time it takes the light beam to travel from mirror A
to B, separated by a distance d, according to Alice is ∆t while the corresponding time
for Bob is ∆t′. Bob will see that in the time ∆t′ it requires the light to go from A to B,
the train has moved by a distance v ·∆t′, such that the distance travelled by the light
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Figure 2.2: A clock made out of two mirrors. Left: The mirrors are separated a distance
d from each other, such that the time used by a light-beam to go up and down is ∆tleft =
∆t = 2d/c. Right: The same clock viewed moving to the right relatively to the observer
with high speed. The distance travelled by the light beam now becomes larger and therefore
∆tright = ∆t′ > 2d/c. The clock will tick slower for this observer.

from A to B, according to him, is:

d′ =
√
d2 + (v ∆t′)2 . (2.1)

For Alice the time elapsed is ∆t = d/c, while for Bob the time elapsed is ∆t′ = d′/c.
Substituting d = c∆t and d′ = c∆t′ in the above equation we get:

c∆t′ =
√

(c∆t)2 + (v ∆t′)2 (2.2)

and subsequently:

(c∆t′)2 = (c∆t)2+(v∆t′)2 ⇒ (c2−v2)(∆t′)2 = c2(∆t)2 ⇒ (∆t′)2 =
c2

(c2 − v2)(∆t)2

(2.3)
from which the time dilation factor γ follows by taking the square root of the equation:

∆t′ =
1√

1− v2/c2
·∆t ≡ γ ·∆t.

Since Bob concludes that time has slowed down at the train, does it mean that
consequently Alice concludes time runs faster for Bob? The answer is no, as can be
understood by the way Alice observes a similar clock at the train-station. Relatively to
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Alice, this clock moves with the same velocity v in the opposite direction and its ticking
is slowed down with the same amount. According to the theory of relativity the only
thing that matters is the relative speed and both Alice and Bob will conclude that the
clock of the other has slowed down with the same factor of γ 1.

2.2.1 Muon particles

One might wonder whether the slow-down of the clock for an observer actually corre-
sponds in reality to time proceeding slower. The following example shows the effect for
elementary particles.

The earth atmosphere is bombarded constantly with cosmic ray particles, mainly
consisting of protons. These high energy particles collide with atoms in the atmosphere
and in the cases where the energy of the incoming particle is sufficiently high, new
particles called secondaries, are created. One of these new particles is the muon, which
is a particle that is well known from studies in laboratories. It is an unstable particle
that has a half-life of 1.56 µs. This means that after 1.56 µs a muon has 50% probability
to quantum-mechanically decay into other particles. Alternatively phrased: the number
of surviving muon particles is 50% after 1.56 µs, 25% after 3.12 µs, etc.

These muons can be often produced with a velocity of 98% of the speed of light at
an altitude of 10 km in the atmosphere. According to classical mechanics, this implies
that it would take them about 34 µs to reach the surface of the earth, corresponding
to about 22 times their half-life. This means that in case a million muons would be
created, less than one muon (the calculated average is 0.24) would be expected to arrive
at the surface of the earth.

However, observed from the earth the time-dilation factor for such a high speed muon
is γ = 1/

√
1− 0.982 ≈ 5, such that the observed half-life is 5 times longer tobs = 7.79µs.

In that case the expectation of the number of surviving muon particles out of 1 million
is about 48 000. The situation is depicted in fig. 2.3. Measurements of the number
of arriving muons at the surface of the earth unambiguously show that the relativistic
result is correct.

The following subsection describes a practical application of the relativisitic correc-
tion in navigation technology.

2.2.2 GPS Navigation

GPS navigation devices communicate via electromagnetic waves to satellites. By mea-
suring the delay-times of radio-signals using synchronised clocks at the satellites, dis-
tances are measured. The fact that these satellites travel with speeds of about 40 000
km/h must be taken into account. A speed of 40 000 km/h, or 11 km/s corresponds to a
small time dilation γ that would add up to 60 microseconds per day. Since time is used
to measure the distances of the radio-waves, which travel with the speed of light, this

1Compare it to the following: if you look at someone in the distance he/she appears smaller. If that
person looks back at you, you also appear to look smaller.
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Figure 2.3: Muon particles are typically created with a velocity of 98% of the lightspeed at
an altitude of 10 km. Since they have a half-life of 1.56 µs they are not expected to arrive at
ground level in classical theory. Special relativity, however, gives the correct prediction.
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means that each day an incremental miscalculation of 17 km would be made, if classical
theory would be used. The real accuracy of the devices is about 10 m.

2.3 Lorentz Contraction

2.3.1 Travelling to the stars

Let us consider the consequences for length measurements. Alice now boards a spaceship
and she takes off to the nearest star: proxima centauri. The number of ticks of her clock
during the travel is registered by a counter that records the number of times the light
has reflected in mirror A, leading to a total travel time t′. Knowing her relative velocity
with respect to the stars Alice now calculates the distance L′ to proxima centauri as:

L′ = v · t′ (2.4)

Bob, on earth, agrees with the number of clock ticks that are registered, but he claims
that each tick of Alice’s clock is slowed down by the time dilation factor γ such that
according to him the total travel time is:

t = γt′ (2.5)

Since Bob and Alice agree on their relative velocity, Bob will claim the distance from
earth to proxima centauri is:

L = v · t = v · γt′ = γL′ (2.6)

Since γ > 1, it turns out that Alice sees a shorter distance L′ than Bob L. The fact
that distances shrink at high speeds is called Lorentz contraction. The amount of the
contraction is given by:

L′ = L
√

1− v2/c2 .

These equations express that an observer looking at occurrences and objects that
are moving with a constant velocity with respect to him, sees that the progress of time
slows down and that distances and sizes of objects become shorter as compared to when
they are at rest. In the next lecture we will see how this can lead to paradoxes if not
evaluated very carefully. The amount of time dilation and distance contraction is the
relativistic factor γ and depends on the relative velocity involved. For velocities we are
accustomed to in every day life the effect is very small. It becomes significant when the
velocities become of the order of the light speed. The graph in fig. 2.4 shows the value
of the factor γ as a function of the velocity v.

The following subsection gives an alternative derivation of the Lorentz contraction,
but can be skipped without loss of continuity.
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Figure 2.4: The relativistic time dilation and distance contraction factor γ as a function of
the speed β = v/c. Notice that for low velocities (close to ”0”) there is almost no effect, while
for velocities approaching the speed of light (close to ”1”) the effect becomes very large.

2.3.2 *The length of a speeding train

An alternative way to derive the Lorentz contraction formula can be done using the
thought experiment of the speeding train. Alice stands at the rear end of the train and
she sends a light beam across the train from the rear to the front, where it is reflected
by a mirror. She measures the delay time of the light beam and calculates the length
of the train, L, using the formula: 2L = c ∆t = c ∆t1 + c ∆t2. Although she does not
measure the individual travel times from rear to front (∆t1) and for the return from
front to rear (∆t2) she will assume they are identical.

Now, let us see how Bob, standing at the platform calculates the length of the
train: L′. During the time the light takes Alice’s light beam to travel from the back to
the front of the train (∆t′1), the train has actually moved a small additional distance
(∆L′1 = v∆t′1). For the time it takes the light to go back to the rear (∆t′2) the distance
is reduced by (∆L′2 = v ∆t′2). So, in total Bob calculates that the time from back to
front and front to back are given by:

∆t′1 =
L′ + v ∆t′1

c

∆t′2 =
L′ − v ∆t′2

c

Eliminating ∆t′1 and ∆t′2 gives the expression for the total expected time:

∆t′1 =
L′

c− v ; ∆t′2 =
L′

c+ v
(2.7)

and for the total time:

∆t′ = ∆t′1 + ∆t′2 =
L′(c+ v)

c2 − v2 +
L′(c− v)

c2 − v2 =
2L′

c

1

(1− v2/c2) (2.8)

Alternatively, Bob observes that time is running slower for Alice according to the time
dilation formula so that he knows that his time interval is related to that of Alice
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according to:

∆t′ = ∆t
1√

1− v2/c2
=

2L

c

1√
1− v2/c2

(2.9)

Since the two expressions for ∆t′ are valid we can relate L′ to L:

2L′

c

1

(1− v2/c2) =
2L

c

1√
1− v2/c2

(2.10)

and therefor that

L′ = L
√

1− v2/c2 .

In other words, the length of the moving train as seen by Bob is shorter than the length
as seen by Alice on the train. The fact that distances shrink at high velocities is called
Lorentz contraction.

The Lorentz contraction and time dilation are often expressed in terms of the relative

speed ratio β = v/c and the Lorentz factor γ = 1/
√

1− v2/c2:

L′ = L ·
√

1− v2/c2 = L ·
√

1− β2 = L/γ

∆t′ = ∆t · 1√
1− v2/c2

= ∆t · 1√
1− β2

= ∆t · γ

2.3.3 Muon particles revisited

Let us turn our attention back to the muon particles that are created at a height of 10
km in the earth’s atmosphere. In the reference system of the particles, i.e. considering
a muon itself as an observer, the half-life of these unstable particles is 1.56 µs. How do
these particles manage to survive the distance of 10 km between their point of creation
and their point of decay? For an observer on earth their half-life is 7.79 µs, but that is
not true as seen by the muon particle. The muon particle relatively sees the surface of
the earth approaching with high velocity (a value of γ = 5). Therefore it will see the
distance from the point of creation to the point of decay as contracted to 10 km / γ =
2 km.

So the observer on the earth concludes that the muon particles live longer by a factor
γ so that it can arrive at the earth, while the observer travelling with the muon particles
concludes that the distance reduces by a factor γ. Comparing their conclusions, they
will both, however, predict the correct number of particles arriving at the surface of the
earth.

It seems there is arbitrariness when we try to define sizes of objects or length of
time spans as they depend on the reference frame of the observer. As a general rule the
size of objects and the lifetime of particles are always specified for an observer that is
relatively in rest with respect to the object. We call this the rest frame and we speak
of proper time and proper length.



22 Lecture 2. Time Dilation and Lorentz Contraction



Lecture 3

The Lorentz Transformation and
Paradoxes

”Imagination is more important than knowledge.”
-Albert Einstein

3.1 The space-time coordinate system

The occurrence of an ”event” (e.g. the start of a football match) is specified by giv-
ing its position (the Geusselt-stadium in Maastricht) and time of occurrence (Octobre
1, 2014, 20h00). In physics we indicate the location of an event by three space co-
ordinates (x, y, z) with respect to a given reference point (0, 0, 0) and a single time
coordinate (t) with respect to an origin in time. The reference system for space-time
is called Minkowski-space, after the German mathematician Hermann Minkowski. In
such a reference frame an event ”a” is specified by four numbers (ta, xa, ya, za). We have
learned that according to the relativity principle the laws of physics are the same in
reference systems that move with constant relative velocities. All such reference frames
are equivalent.

To simplify the discussion we assume here that movements occur along the direction
of the spatial x-axis. This is not a loss of generality as we can always choose the axis in
the direction we wish.

What we have done in the previous lecture is to compare a given event (eg. a
lightning strike) in two different reference frames (eg. Alice’s: a moving train, and
Bob’s: the platform). Imagine the lightning strikes at position x and time t in Alice’s
reference system S, we can try to find the corresponding coordinates x′ and t′ in Bob’s
reference system S ′ moving with relative velocity v along the x-direction.

In general, if an event occurs in reference system S at the space-time location
(t, x, y, z), we ask what would be the corresponding co-ordinates in reference system
S ′, which moves at a velocity v along the x-direction. The situation is illustrated in
fig. 3.1.

If physics would behave according to Galilei’s reasoning, the transformation would

23
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x 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S 
Event 

Figure 3.1: The same event has different coordinates in two reference systems S and S′. The
translation from S to S′ is given by the Galilei transformation in classical theory and by the
Lorentz translation in special relativity.

be:

t′ = t

x′ = x− vt
y′ = y

z′ = z (3.1)

The first line refers to the universality of time in Galilei transformations, while the
second line gives the ”intuitive” addition (or subtraction) of velocities. We have seen
in the previous lecture, however, that time is not universal and that relative stretches
of time and space are different for different observers. What is then the corresponding
transformation for an event going from frame S to S ′? The answer is called the Lorentz
transformation:

t′ =
t− (v/c2)x√

1− v2/c2

x′ =
x− vt√
1− v2/c2

y′ = y

z′ = z (3.2)

Using the Lorentz transformations we specify how the coordinates of a given event as
seen by observer S: (t, x, y, z) translate to the coordinates for an observer S ′: (t′, x′, y′, z′)
who is moving relative to S with a velocity v in the x-axis direction.
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The Lorentz transformations can be written in a more concise way introducing the
parameters β and γ:

β = v/c

γ =
1√

1− v2/c2
,

where β is the fractional speed with respect to the light speed and γ is the relativistic
factor we encountered in lecture 2. The Lorentz transformations then become:

x′ = γ (x− βct)
ct′ = γ (ct− βx)

and the inverse transformations are:

x = γ (x′ + βct′)

ct = γ (ct′ + βx′)

From experience in everyday life we are accustomed to observers who move with low
relative velocities, which means that v is much smaller than c, such that β ≈ 0. In that
case the numerical value of the relativistic factor γ is very close to 1. As a consequence
the Lorentz transformation becomes equal to the Galilei transformation. In other words,
our every day life observations are well in agreement with the Galilei transformation,
which is the reason that we intuitively feel that this must be correct.

However, when the velocity c approaches the speed of light: so v/c = β → 1, the
relativistic factor γ becomes a large number and the transformation is very different
from what we are used to!

We conclude that the classical theory remains correct in the limit of low velocities.
Only when we consider observers that move with relative speeds approaching the speed
of light, our intuitive (i.e. classical) transformation is no longer correct.

3.2 *Derivation of the Lorentz Transformation

We have seen before that the principle of relativity and a constant light-speed lead to
Lorentz contraction and time dilation. We will use this to derive in a simple way the
coordinate transformation law between two reference systems S and S ′. Let us start
with the case of the Galilei transformation law. The transformation, and the reverse
transformation, are:

x′ = x− vt
x = x′ + vt′ (3.3)
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These equations are in agreement with the principle of relativity but do not respect the
law of constant light-speed. Let us make a minimal modification by multiplying these
equations by a factor γ, which at this point is unknown:

x′ = γ (x− vt)
x = γ (x′ + vt′) (3.4)

Next, consider a beam of light in system S. Since it indeed travels with the speed of
light we should have the equation x = ct for the position of the front of the light-beam.
Seen from system S ′ the same light-beam is described by the corresponding equation:
x′ = ct′, since it also travels with the same speed c in S ′. If we now substitute these
equations in the transformation laws of x′ and x we find:

ct′ = γ (ct− vt)
ct = γ (ct′ + vt′) (3.5)

Eliminating t′ and t we obtain:

t′ = γ
(c− v)

c
t

t = γ
(c+ v)

c
t′ (3.6)

By substituting the first into the second we find:

t = γ2
(c+ v)

c

(c− v)

c
t (3.7)

from which we can derive the equation for γ by deviding by t:

1 = γ2
(c2 − v2)

c2
(3.8)

and the expression for γ follows:

γ =
1√

1− v2/c2
(3.9)

We therefore see that the transformation law that keeps the speed of light constant for
different obervers S and S ′ is:

x′ = γ (x− vt) =
x− vt√
1− v2/c2

(3.10)

x = γ (x′ + vt′) =
x′ + vt′√
1− v2/c2

(3.11)

Subsequently, we derive the transformation laws for time t by solving eqs. 3.10 and
3.11 for t and t′:

γvt = γx− x′
γvt′ = x− γx′ (3.12)
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By substituting x′ = γx − γvt (the first equation) into the second equation it follows
that:

γvt′ =
(
1− γ2

)
x+ γ2vt (3.13)

which, using eq 3.9 and therefore (1− γ2)/γ = −γ v2/c2, gives:

t′ = γ
(
t− vx/c2

)
=

1√
1− v2/c2

(
t− vx/c2

)
(3.14)

Similarly, the reverse transformation leads to:

t = γ
(
t′ + vx′/c2

)
=

1√
1− v2/c2

(
t′ + vx′/c2

)
(3.15)

3.3 Paradoxes

Contrary to Galilei transformations, simultaneity of events and consequently the length
of objects and time intervals are not the same for observers that move relatively to each
other. This leads to amusing apparent contradictions, or paradoxes. A few of these are
discussed in the remainder of this chapter. In all cases the paradox can be solved by a
careful consideration of the Lorentz transformations between the different observers.

3.3.1 Causality

Imagine a crime scene situation in which Alice enters a room, sees Bob at the far end
of the room and shoots him (remember, it is only a gedankenexperiment!). Sherlock
Holmes, standing next to Alice, observes that Alice has shot the gun at a position xA
and a time tA. He also sees that Bob gets shot and dies at a position in the far end of
the room xB, and at a time tB. Since the gun is fired before Bob is hit he sees: tB > tA.
Watson instead, is observing the crime scene from a high speed train, moving relative
to Sherlock with a speed of 60% of the light speed (v = 0.6c or β = 0.6). What does he
conclude?

The answer can be found directly from the Lorentz transformations. Let us simplify
the calculation by assuming that Sherlock sees Alice firing the gun at a time tA = 0 and
that the position at the doorstep is xA= 0.

Since Watson is speeding along with v = 0.6c he observes things with a γ factor

given by γ = 1/
√

1− v2/c2 = 1/
√

1− 0.36 = 1.25. Using the equation ct′ = γ (ct− βx)
and substituting t = tA = 0 and x = xA = 0 Watson will conclude that Alice fires the
gun at t′A = 0, the same as Sherlock. Subsequently, substituting t = tB and x = xB he
will conclude that Bob dies at a time corresponding to: ct′B = 1.25 (ctB − 0.6xB).

But then Watson observes a peculiar phenomenon: if ctB − 0.6xB is less then zero
(remember tA = 0), i.e. if the distance xB is more than ctB/0.6, then the time that Bob
dies is actually before Alice fires the gun! Clearly, Alice cannot have killed Bob before
she shot the gun!
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Sherlock, as usual, solves the riddle on second thought. In the situation he observed,
the distance between Alice and Bob was actually larger than the distance travelled by
a light beam in a time between the firing of the shot tA and the arrival of the bullet tB.
So, even if the bullet had travelled with the light-speed, it could not have reached Bob
within this time-span. That means that the original conclusion of Sherlock that Alice
has killed Bob was not correct. Perhaps Bob just had a heart-attack.

3.3.2 A ladder in a barn

In a next example consider that Alice is running towards a barn and horizontally caries
a long ladder of 5 meter length. Imagine that she approaches the barn with a speed
v = 0.8c. Bob, standing next to the barn sees that the barn is 4 meters deep. However,
when he measures the length of the ladder carried by Alice, he sees that it is shortened
(Lorentz contracted) by a factor 1/γ =

√
1− 0.82 = 0.6. Bob concludes that the ladder

is 5m x 0.6 = only 3 meters long and that it will comfortably fit in the barn.

Alice instead sees the barn approaching relative to her with v = 0.8c, and that the
barn is reduced in length by a factor 0.6. Instead of 4 m she observes it to be only 2.4
meters deep, and concludes that there is no way that her 5 m long ladder will fit.

Bob decides to do the following experiment: Alice keeps on running into the shed
and at the same time that the front of her ladder hits the back-wall of the shed he slams
the entrance door closed. What will happen? Is Alice with her ladder inside or not?
The situation is depicted in fig. 3.2.

The essential point is Bob’s statement that he closes the door at the same time that
the ladder reaches the back wall. Let us calculate this time for both Bob (reference
frame S) and Alice (reference frame S ′).

The coordinates in S (Bob’s view) when Alice’s ladder reaches the entrance of the
shed are taken to be x1 = 0 and t1 = 0. Alice moves in the direction of the positive
x-axis with a velocity v = 0.8c and it follows from the Lorentz transformations that
Alice (system S ′) also calls this space-time point x′1 = 0 and t′1 = 0.

But when does the front of the ladder reach the back wall of the shed? According to
Bob this is the spacetime point x2 = 4m and t2 = 4m/0.8c = 5m/c. The corresponding
time as seen by Alice is found using the Lorentz transformation with β = 0.8 and
γ = 1.67:

ct′2 = γ (ct2 − βx2) = 1.67 (5m− 3.2m) = 3m (3.16)

Since the relative speed of Alice and the shed is 0.8 c, Alice at this time t′2 has only
entered the shed by a distance of 3m/c · 0.8c = 2.4m. So, Bob wants to shut the door
at a time when Alice has only entered 2.4 m, much less than the 5 m ladder. Alice and
Bob don’t agree on the simultaneity of the time the door must be closed.
In conclusion, lengths can only be compared in the same coordinate frame.
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Figure 3.2: Left: Bob sees a Lorentz contracted ladder approaching the barn and concludes
that at some point it will be fully in the bar, such that the bar can be fully closed at a given
time. Right: Alice sees a Lorentz contracted garage approaching and concludes the ladder will
not fit at any point in time. In her view the back-door already opens before the front door
closes.

*Compressed ladder

A careful reader will note that, independent of the simultaneity of the closure of the two
doors, in Bob’s case the ladder is inside while in Alice’s case it is not. The details of
the paradox are hidden in the fact that we consider the stopping ladder as a perfectly
rigid object. Relativistically it is not. When the front of the ladder stops by the force
of the wall, the stopping-force is transmitted by the ladder molecules from the front
to the back of the ladder with a speed less than the speed of light. In other words,
when the front stops, the back does not know it yet and continues to move, such that
the ladder compresses and becomes shorter. Objects do not stay perfectly rigid under
special relativity.

3.3.3 Twin Paradox

A particular famous paradox is known as the twin paradox. In this case we consider
identical twins Jules and Jim. Jules (after Jules Verne) is the more adventurous of the
two and decides to travel with very high speed (about 99.5% of the light speed) to the
nearest star: proxima centauri. It takes him a year to get there and a year to return to
earth. When he returns to earth he finds that his twin brother, Jim, has become about
9 years older than he is. What happened?

From the point of Jim on earth, Jules travels with high speed to a star at a distance
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Figure 3.3: One half of an identical twin travels with high speed to proxima centauri and
returns to earth. The time elapsed for the travelling twin can be a year, while the time elapsed
for the twin remaining at earth is many years.

of about 5 years from earth. If he travels almost at the speed of light it will take
Jules 5 years to get there and 5 years to return, such that Jim has aged 10 years when
Jules comes back. Jim, on earth, has studied relativity theory and understands that
his brother has only aged one year, since Jules travels at 99.5% of the light-speed, time
goes slower for him with a factor γ = 10 such that Jules aged only one year while Jim
aged 10.

However, Jules may argue as follows: the only thing that matters is the relative
speed between Jim and Jules. So when Jules, from his spaceship looks back at earth, he
sees that time on earth goes slower. He therefore concludes that Jim should be younger
than him when he returns, rather then older! Their conclusion is opposite!

The answer of the paradox is hidden in the fact that we have only considered ob-
servers moving at a constant velocity. However, Jules speeds to proxima centauri, where
he has to slow down turn around and accelerate back to earth. A more careful analy-
sis shows that during his turnaround, time on earth progresses very fast, such that in
the end both Jim and Jules agree on the same conclusion: Jules will be older when he
returns to earth.

3.3.4 An Experimental Verification

In October 1971, Joseph C. Hafele, a physicist, and Richard E. Keating, an astronomer,
took cesium-beam atomic clocks aboard commercial airliners (see fig. 3.4) to test the
theory of relativity. They flew twice around the world, first eastward (with the rotation
of the earth), then westward (against the rotation of the earth), and compared the clocks
to another one that remained at the United States Naval Observatory. When reunited,
the three clocks were found to disagree consistent with the predictions of relativity
theory.
(The difference between the clock travelling eastward and westward was about 300 nsec.)
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Figure 3.4: Atomic clocks were synchronized and taken on board of planes flying eastward and
westward around the earth. After arrival they were compared and the prediction of relativity
was seen to be correct.

Exercises
Calculate the relativistic reduction in distances for the following cases.

1. Driving by car with a speed of 120 km/h from Amsterdam to Maastricht, assuming
the distance is exactly 200.0 km for an observer in rest with the surface of the earth,
when driving by car with a speed of 120 km/h.

2. Flying in a rocket with a speed of 40 000 km/h from the earth to the moon,
assuming the distance is exactly 384 000 km for an observer in rest relatively to
the earth and the moon.

3. Following a neutrino particle over a distance from the sun to the nearest star,
Proxima Centauri, a distance of 4.243 lightyears when relatively in rest with re-
spect to the sun, when the neutrino, a very, very light particle, travels at a speed
that is only 0.0000001% less than the speed of light.

4. Following a light particle across the universe.

3.4 Addition of Velocities

Finally we are ready to address the law of addition of velocities as we set out to do in
Lecture 1. If Alice runs with 10 km/h on the deck of a boat sailing with 15 km/h, what
is the observed speed of Alice with respect to Bob, who is standing alongside the river?
Intuitively, using the Galilei translation, we expected this to be 15 km/h.
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However, we saw that the relativity principle is in contradiction with the Galilean
law of addition of velocities, since the light-speed is always the same for each observer,
be it Alice on the boat, or Bob on land.

Are we sure the intuitive law of adding velocities is exactly valid? In the following
we will see that this law is almost correct for low relative velocities (compared to the
speed of light), while it does not work at all for high relative velocities (close to the speed
of light).

Let us first see how to derive the law of adding velocities for a Galilei transformation.
We say that the moving boat has a velocity v and Alice runs with velocity w on the boat,
assuming that both velocities are in the x-direction. Therefore, the position of Alice on
the boat (in reference system S) is given as: x = wt. The corresponding position of
Alice with respect to Bob on the shore is: x′ = w′t′. How can we calculate the speed w′

with respect to the shore (in reference system S ′) when we know the velocity of Alice
on the boat w, and the speed of the boat v?

Using the Galilei transformation laws:

x′ = x+ vt (3.17)

t′ = t (3.18)

we can make the following substitution steps:

x = w t ⇒ x = w t′ ⇒ x′ − v t = w t′

⇒ x′ − v t′ = w t′ ⇒ x′ = (v + w) t′ ⇒ x′ = w′ t′ .

The last step is the equation of moving at a speed w′ equal to v + w, which is our
intuitive law for adding velocities.

We can repeat the same exercise, but now we use the rules of special relativity. Again
we will start with Alice running on the boat according to x = wt, but this time using
the Lorentz transformation:

x′ = γ (x+ v t) (3.19)

t′ = γ
(
t+

w

c2
x
)

(3.20)

The idea is the same as in the Galilei transformation, only the mathematics is a bit
more complicated. (The derivation of the formula can be skipped.) We start with the
Lorentz transformations:

x′ = γ x+ γ v t (3.21)

t′ = γ t+ γ
v

c2
x (3.22)

Substituting x = wt gives:

x′ = γ (v + w) t (3.23)

t′ = γ
(

1 +
vw

c2

)
t (3.24)
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Inverting eq. 3.24 gives:

t =
1

γ

(
1

1 + vw
c2

)
t′ (3.25)

and substituting this in eq. 3.23 finally leads to:

x′ =
v + w

1 + vw
c2

t′ ≡ w′t′ (3.26)

such that we arrive at the law for adding velocities:

w′ =
w + v

1 + wv
c2

This means that the intuitive addition of velocities is almost correct if w and v are
small compared to the speed of light c. In that case the correction factor 1 + vw/c2 is
approximately equal to 1 and we find back the Galilei transformation.

Let us return to the example of lecture 1 where Bob and Alice approach each other
in two rockets, Alice with 250 000 km/s and Bob from the other side with 200 000 km/s,
the speed with which they approach each other is:

w′ =
250 000 + 200 000

1 + 0.555
= 289 000 km/s ,

less than the speed of light!
Similarly, in case Alice is travelling in a rocket with a speed of 99% speed of light

and if she shoots a bullet inside the rocket close to the speed of light (again, say 99%),
the intuitive law changes completely. In that case Bob, on a planet, does not see the
bullet flying almost two times the speed of light, but with a speed of 0.99995 times the
speed of light! (Try it using the formula.)

Even in the extreme case where we take w = c and v = c we find w′ = 2c/2 = c! A
velocity higher than the speed of light never occurs!

We conclude that our intuitive law for adding velocities is not correct. For all
practical purposes in everyday life it gives almost the correct result. However, at high
velocities a relativistic correction is needed and as a result nothing can travel faster than
the speed of light!

3.5 *The law E = mc2

Perhaps the most famous equation of all time is Einstein’s equivalence of energy and
mass equation: E = mc2. Let us, as a final subject in the relativity lectures, reproduce
Einstein’s elegant reasoning to derive this relation. Einstein considered a floating box
somewhere in the vacuum of deep space. He then imagined that inside the box a bit of
light is being emitted by the left wall of the box. The light travels to the right of the
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E/c 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MΔx 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m 

E = mc2 

Figure 3.5: Left: The derivation of the law E = mc2, see text. Right: Photograph of Einstein
during a lecture when he derives his famous equation.

box where it is absorbed by the right side wall. The situation is sketched in fig. 3.5,
which also shows a picture of Einstein as he is deriving his famous formula.

From Maxwell’s classical equations of electrodynamics Einstein knew that light car-
ries momentum. At the time the light is emitted to the right, Newton’s law of action
and reaction states that the box should move a tiny bit to the left, just enough to com-
pensate the momentum of the light to the right. Alternatively, when the light impacts
on the right wall it will move the box, with the same amount to the right. However
we know that, since no force is active on the total system of the box and the light,
the centre of mass of the system stays in rest during the whole process. The following
equations describe this thought experiment and lead to the famous equation of Einstein.

The momentum of light follows from Maxwell’s equations 1 :

plight =
E

c
, (3.27)

while the momentum of the box is given by:

pbox = Mv , (3.28)

where M is its mass and v its velocity. Let us call the size of the box (i.e. the distance
of left to right wall) L, then the time it takes for the light to go from the left wall to
the right wall is: ∆t = L/c. During this time the box has moved a little bit to the left,
say a distance ∆x, such that the box had a velocity to the left, equal to:

v =
∆x

∆t
=

∆xc

L
(3.29)

1It is perhaps surprising that a light particle, a photon, which is known to be massless can have
momentum, since Newton’s momentum is calculated as: p = mv. However, the correct relativistic
equation for momentum is: p = mγv, where γ is the relativistic factor. For light m is zero, but γ is
infinite! In fact the product mγ is the effective mass of the photon.
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The law of conservation of momentum plight = pbox gives then from eqs. 3.27 and 3.28:

Mv =
E

c
(3.30)

and substituting the result for v above:

M∆x =
EL

c2
(3.31)

Let us now assign a hypothetical mass m to the light particle and calculate the center
of mass position, x, for the box + light system:

x =
Mx1 +mx2
M +m

, (3.32)

where x1 and x2 are the respective center positions of the box and the light. If we say
that the photon starts at the left wall of the box and define this position to be x2 = 0,
then the center of mass at the time the light is emitted is:

x =
Mx1
M +m

(3.33)

and at the time the light is absorbed at the right hand wall it is:

x =
M (x1 −∆x) +mL

M +m
(3.34)

Relating the two above equations 3.33 and 3.34, we find:

Mx1 = M (x1 −∆x) +mL , (3.35)

or, perhaps as expected:
mL = M∆x . (3.36)

Now, using eq. 3.31, we obtain:

mL =
EL

c2
, (3.37)

which, after eliminating L and rearranging, gives the final result:

E = mc2
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Lecture 4

General Relativity and
Gravitational Waves

”Do not worry about your difficulties in Mathematics. I can assure you mine are still
greater.”
-Albert Einstein

4.1 The Ehrenfest Paradox

Paul Ehrenfest, an Austrian physicist and close friend of Einstein, was professor in
Leiden on the position formerly held by Hendrik Antoon Lorentz. Ehrenfest was an ex-
cellent teacher, well known for his clarifying explanations of paradoxes in both relativity
theory and quantum mechanics. Perhaps the most famous thought experiment paradox
in relativity theory was named after him: the Ehrenfest paradox.

Consider a rigid rotating cylinder with a radius r, as shown in fig.4.1. Two measuring
rods are laid out along the cylinder: one of them is attached to the cylinder, while the
other is attached the floor just next to it, as is shown in the figure. The circumference
of the circle C is given by the formula C = 2πr. If the cylinder rotates with angular
velocity ω, where ω is the number of radians it rotates per second, then a fixed point on
the edge of the cylinder rotates with a velocty v = ωr. A person standing next to the
cylinder (“Alice”) will see that the ruler attached to the cylinder shrinks according to
the Lorentz contraction factor 1/γ, such that the circumference becomes smaller with
a factor 1/γ:

CAlice =
2πr

γ
=
√

1− v2/c2 2πr < 2πr . (4.1)

However, since the direction of the radius r is perpendicular to the motion and therefor
does not contract in the rotating motion, this leads to a contradiction since the circum-
ference of a circle is always C = 2πr. The paradox further deepens if we consider the
point of view of a person sitting on the disk (“Bob”). Bob will see that the measuring
rod connected to the floor outside the cylinder will move relative to him with an equal
but opposite velocity v. He will conclude that the ruler on the outside undergoes Lorentz

37
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Figure 4.1: The Ehrenfest paradox of a rigid rotating disk. Atoms on the edge of the disk
have a velocity equal to v = ωr. The circumeference of the disk should not change as it is
equal to 2πr, but according to special relativity an observer outside the disk will measure that
the circumference will shrink, while a person on the disk will measure that it becomes larger.

contraction such that more of them will fit along the circumference. He will find that
the circurference is equal to:

CBob = γ 2πr =
2πr√

1− v2/c2
> 2πr . (4.2)

The solution to the Ehrenfest paradox, and other similar ones, are that in special
relativity we have always considered inertial frames, i.e. systems that move with relative
constant velocity to each under and undergo no external force. For the rotating disk this
is certainly not the case since the points on the edge of the fast rotating cylinder feel a
strong centrifugal force: they undergo an acceleration that points towards the center of
the disk.

4.2 The principle of Equivalence

In the first lecture the principle of relativity was introduced, which states that the laws
of physics are the same for observers that move with a constant relative velocity, i.e.
in inertial frames. These are observers on which no external forces act. On earth such
frames do not exist since we will always feel the presence of gravity. In order to extend
the notion of inertial systems to presence of gravitation Einstein considered a though
experiment analogous to the one of Alice in the cabin of her boat, who failed to detect
absolute motion.

In the his thought experiment Einstein now imagines that Bob boards a spaceship.
The spaceship takes off and travels to interstellar space, far away from the presence
of stars and planets. When the engines of the ship are switched off, Bob moves with
constant velocity and it is impossible for him to detect absolute motion. In addition,
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Figure 4.2: The principle of equivalence. Left: an observer in a closed spaceship cannot
tell the difference whether he is freely falling in the earth gravitational field or floating in
interstellar space, as all objects will make the same path. Right: an observer similarly cannot
tell the difference between standing at rest in a gravitational field or by accelerating in a rocket
in free space without the presence of gravity, as all objects fall in the same way.

as there now is no gravity present, he will float weigtless in his cabin: there is no force
acting upon him.

Consider now that the direction of the ship happens to be precisely back to earth,
and it enters earth’s gravitational field. The velocity will no longer be constant, as the
ship will accelerate in free fall towards the earth surface (please remember it is a though
experiment and we may assume that parachutes will be employed to save our astronaut
Bob in the end). Due to a unique aspect of the gravitational force, all objects fall with
the same acceleration. Therefor, since all objects around Bob in his cabin are falling
together with him, it turns out Bob feels no force acting and there is no way that he
can detect the difference between “floating in empty space” and “accelerating in free fall
towards the earth”. The two situations as illustrated on the left side of fig. 4.2 are fully
equivalent. In a lecture that he gave in at Glasgow University Einstein refer’s to this
realization as his happiest thought: “If a person falls freely he will not feel his own
weight”.

Let us return to Bob in the interstellar spaceship and now assume that the engines
of the spaceship are turned on. The situation is illustrated on the right side of in fig.4.2.
As soon as the ship accelerates, all objects that were before floating freely inside the
cabin, now fall to the ground with an acceleration equal and opposite to the acceleration
of the spaceship (they stay “at rest” wrt. space as before). All objects will fall with the
same acceleration. As Galilei had demonstrated, this is equivalent to how all objects fall
on earth, ie. in a gravitational field. Phrased differently, due to the acceleration Bob
will feel a force on his body directed to the floor of the spaceship, which is the same as a
gravitational field from a planet. Again, while staying within the cabin of the spaceship,
there is no experiment possible such that Bob can distinguish the two situations; they
are equivalent.
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4.3 The Eötvös Experiment

This principle of equivalence is often described by the statement: the inertial mass is
identical to the gravitational mass. The inertial mass mi of an object is defined by
Newton’s law of inertia which describes an object’s resistence to acceleration:

F = mi a (4.3)

where F is the force applied and a is the resulting acceleration. Similarly the gravita-
tional mass mg is defined by Newton’s law of gravitation:

G = mg g (4.4)

where G is the force of gravity and g the gravitational acceleration. The principle of
equivalence implies that there is only one mass

mi = mg ≡ m (4.5)

for all objects.

The equivalence of inertial mass and gravitational was verified with high precision
by the Hongarian physicist Loránd Eötvös using a torsion balance. The experiment is
sketched in fig. 4.3. The left side of the picture illustrates the directions of the forces
felt by an object at a given position on earth. On the one hand the object feels the
gravitational force G, which points towards the center of he earth. Since the earth is
rotating around the polar axis, all objects on the center of the earth undergo also a
centrifugal force F , which points outward and perpendicular to the axis of rotation, as
is illustrated in the figure. The key point is to realize that the centrifugal force follows
from Newtons’s law of inertia:

F = mi a with a =
v2

R
, (4.6)

while the gravitational force follows from the force of gravity:

G = mg g with g =
GM⊕
R2

, (4.7)

where G is Newton’s gravitational constant, M⊕ is the mass of the earth, and R is the
radius of the earth. If inertial mass is identical to gravitational mass (mi = mg), then for
different masses m1 and m2 one must always find that F1/G1 = F2/G2. This is tested
in an elegant way in the Eötvös experiment using a large and a small mass connected
by a rod as illustrated in the right side of fig.4.3. The system is suspended by a thin
wire that can rotate freely, while the rotation is monitored by a mirror on the rod. If
the ratio of the gravitational force and the centrifugal force of the two objects is not
identical a net force will cause the system to turn along with the rotation of the earth.
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Figure 4.3: Illustration of the Eötvös experiment. Left: Illustation that shows the direction
in which gravitational and centrifugal forces act on a mass on earth. Right: schematic setup of
the experiment. If the ratio of forces F1/G1 and F2/G2 differ the resulting forces on m1 and
m2 have a different direction and the setup will rotate with the earth rotation. The mirror
together with a light beam is used to detect any such rotation, which in the end was not
detected.

4.4 Bending of Light

The principle of equivalence has far reaching consequences. They can be seen, as we
did in special relativity, again by considering a beam of light. Let us proceed with
the thought experiment of astronauts in a spaceship. Imagine that a spaceship has
transparant windows and a beam of light is shone from the outside of the spaceship
through the window, as in fig. 4.4. Consider the following three situations where an
astronaut outside the spaceship shines his torch light in the same way “horizontally”
into the window of the rocket.

1. “zero motion”: the spaceship is at rest next to an astronaut outside the ship
who shines the beam of light into the ship. The view from an astronaut inside is
indicated on the left of the picture; both for the astronaut outside as well as inside
the lightbeam is represented by the horizontal beam.

2. “constant velocity”: the spaceship passes the astronaut with constant velocity. By
the time it takes for the beam of light to travel from the left side of the rocket
to the right side, the rocket has moved some distance in the upward direction.
While the astronaut outside claims the beam of light is horizontal (he shines it
horizontally), the rocket passes him in the upward direction, such the astronaut
inside the rocket will see a beam of light that travels in a straight line angled
downward with respect to his own reference system.

3. “acceleration”: the most interesting situation occurs when the rocket has the
engines turned on and it passes the outside astronaut as it accelerates in upward
direction. Again the outside observer simply sees the same horizontal beam, but
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Figure 4.4: The path of a lightbeam inside a rocket in three situations: Left: the rocket in
rest relative to the outside astronaut, Middle: the rocket passes the outside astronaut with
constant velocity, Right: the rocket accelerates as it passes the astronaut. In the first two
cases the beam of light is a straight line, in the third case the light makes a curved trajectory
in the reference frame of the rocket.

for inside observer the beam of light changes more and more the angle as the rocket
accelerates. The beam of light will follow a curved path in the reference frame of
the person inside the rocket.

These three situations are illustrated in fig. 4.4. The result of this thought experiment
becomes highly interesting when we consider the principle of equivalence: there is no
difference between an accelerated rocket and a rocket resting in a gravitational field, as
eg. on the surface of the earth. The beam of light must also follow a curved path if the
rocket in the final example would rest on the surface of the earth.

Clearly, in daily life we do not see curved rays of light, since the acceleration required
is very high, or alternatively, the gravitational field must be very strong. On May 29,
1919 Sir Arthur Eddington led an experiment that tested Einsteins statement of the
bending of light in the gravitational field of the sun during a solar eclipse. During the
eclipse he measured the positon of a star he observed in a direction close to the sun,
and compared that with its regular position. The star seemed to have changed position!
Einstein was proven right as the light from the star slightly curved in the gravitational
field as it closely passed the sun as is shown in fig. 4.5. The result of the measurement
was published in newspapers around the world and instantly made Einstein a world
famous scientist.

Einstein suggested that light always choses the shortest path through space, but
that space itself is curved near a massive object in a similar way that distances contract
at large speeds relative to being in rest. A beam of light follows the shortest path
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Figure 4.5: Illustration of the situation observed during the solar eclipse in 1919. As seen
from the earth, the moon causes a solar eclipse such that we can look at stars in the direction
close to the sun. A distant star that should have been hidden behind the sun turned out
to be visible since the light from the star was curved around the sun by 1.75 arcseconds, in
agreement with the theory of relativity.

through curved aspace, a so-called geodesic. A nice analogy of this effect, given by
Stephen Hawking, is the comparison of light in curved space with the distorted path of
the shadow of an airplane flying in a straight line over hilly terrain.

The phenomenon is currently well known and is often used in astrophysics imaging
using a mechanism that is called gravitational lensing. A very massive object can bend
the passing light from objects that are positioned beyond it in a similar way as a lens
focusses light in a telescope. An example of gravitational lensing is shown in fig. 4.6.

Figure 4.6: Example of gravitational lensing where images of a distant galaxy are observed
through gravitational lensing of a massive quasar object in the line of sight between the distand
object and the earth.
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4.5 The Harvard Tower Experiment

Einstein proposed a thought experiment to examine the effect of a gravitational field
on light. This thought experiment tests the so-called gravitational red-shift of light.
Imagine, as is illustrated in fig. 4.7, that we drop a particle with mass m from a high
tower with height h in the gravitational field of the earth. At the top the particle has
an energy equal to:

Em
top = mc2 . (4.8)

As the particle falls down it increases its kinetic energy such that at the bottom it has
an energy:

Em
bottom = mc2 +

1

2
mv2 = mc2 +mg h , (4.9)

where the second step follows after calculating the velocity at the bottom, v =
√

2gh
and g is the gravitational acceleration constant. Einstein, in his thought experiment,
proposes a device that converts the particle at the bottom, without loss of energy, into
a photon that is emitted at the bottom of the tower back towards the top. The energy
of that photon is equal Eγ

botttom = Em
bottom. Since a photon can only travel at the speed

of light it would mean that at the top we would have Eγ
top = Eγ

bottom. If we convert that
again into a particle according to Em

top = m′c2, we would end up with a new particle
with mass m′ > m, and we created a perpetuum mobile that clearly violates energy
conservation.

The conclusion is that a photon loses energy as it climbs up in the gravitational field.
The energy of a photon is given by the quantum mechanical relation with its frequency
f : E = hf , where h = Planck’s constant. Einsteins concludes that the photon reduces
frequency as it climbs the gravitational field such that:

Eγ
bottom

Eγ
top

=
hfbottom
hftop

=
mc2 +mgh

mc2
= 1 +

gh

c2
, (4.10)

such that energy is again conserved at the top compared to the initial situation. In the
above we assumed that the gravitational acceleration g does not change with height and
that the particle velocity is relatively small (non-relativistic). The fraction of energy
the photon loses (gh

c2
) as it climbs the gravitational field is therefore relatively small.

Einstein’s prediction that the frequency of light should reduce as it climbs in the
gravitational potential was tested by Robert Pound & Glen Rebka in 1960 in Jefferson
lab in what is called the Pound-Rebka or the Harvard Tower Experiment. They used
a source of iron (57Fe) emitting gamma rays and detectors at both the bottom and the
ceiling of the building with a height of 22.5 meters. To detect this tiny effect they had to
remove any effect from the Doppler effect that is caused by (very low) relative velocities
between the floor and the ceiling. To isolated the Doppler effect they placed the iron
source in the center of a loudspeaker cone vibrating between 10 Hz and 50 Hz, such that
they could determine both the Doppler effect and the gravitational components in the
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Figure 4.7: Einstein’s thought experiment to prove that a photon must lose energy as it travels
upward in a gravitational field. First a particle with mass m is dropped to gain kinetic energy;
second it is converted at the bottom into a photon without loss of energy, and finally it is
converted again to a particle at the top. If the photon would not lose energy a contradiction
arises as the newly created particle at the top would have more energy than that of the originbal
particle, violating energy conservation.

wavelength shift. The setup is illustrated in fig. 4.8. They found a result that was in
agreement with Einsteins relativity theory.

4.6 Space-Time Curvature

How can the photon become red-shifted as it climbs the gravitational potential? Ac-
cording to relativity theory not only space, but also time is curved in the presence of a
gravitational field. Time slows down in a gravitational potential, such that a clock tick
goes faster at high altitude and slower at low altitude, see the illustration in fig. 4.9.

The amount of curvature of space-time can be calculated as follows. From special
relativity we have seen that time dilates and sizes contract when objects move at high

speeds, where the Lorentz factor is equal to the factor
√

1− v2/c2. Consider now an
object of mass m that falls towards the earth with mass M⊕. Assuming that the mass
starts with velocity v = 0, what will it’s velocity be when it reaches the surface? The
potential energy U of the object w.r.t. the earth is given by Newton’s law:

U = F · r = −GM⊕m
r

, (4.11)

where G is newton’s gravitational constant, M⊕ is the mass of the earth and r the
distance towards the center of the earth. Conservation of energy implies that at all
times the object will have a velocity such that the sum of kinetic and potential energy
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Figure 4.8: Left: Principle of the Pound-Rebka experiment: a photon travelling upward
in the earth gravitational field reduces in frequency (is “redshifted”), a photon travelling
downward increases in frequency (“blueshifted”). Right: The set-up used in the experiment
where radioactive sources where placed in the center of loudspeakers, such that the wavelength
shifting Doppler effects could be precisely determined and extracted.

Figure 4.9: Two equivalent statements: (Left) a clock at higher altitude ticks faster than
an identical clock at lower altitude, (Right) a photon travelling upward in the Pound-Rebka
experiment is red-shifted.
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is zero:
1

2
mv2 −GM⊕m

r
= 0 , (4.12)

from which we obtain that the velocity of the object as it approaches the earth is:

v =

√
2GM⊕
r

= vesc . (4.13)

Reversing the trajectory we see that this velocity is exactly equal to the minimal escape
velocity (vesc) an object requires to be able to escape from the earth, which is about
40 000 km/s. If we plug in the expression of the escape velocity vesc into the Lorentz
factor we obtain that time slows down and space contracts close to the earth according
to the factor: √

1− v2/c2 =

√
1− 2GM⊕

rc2
. (4.14)

4.7 A Black Hole

A black hole is a region of space-time which causes such strong gravitational field that
not even light can escape. In that case we insert vesc = c in the equation above to find
that these conditions happen at a distance of a given mass M of:

1− 2GM

rc2
= 0 or r =

2GM

c2
(4.15)

This distance is called the Schwarzschild radius, named after Karl Schwarzschild, who
calculated it first in 1916. It can be calculated for any object of given mass M . The
Schwarzschild radius of the earth is about 9 mm. An object becomes a black hole if all
of its mass is contained within the Schwarzschild radius, which clearly is not the case
for earth.

4.8 Gravitational Waves

It is beyond the scope of this course to discuss the Einstein equations and derive the
propagation of gravitational waves. Let us, instead, consider their existance in equiva-
lence to electrodynamics. In the theory of electrodynamics we learn that when charged
particles are accelerated they cause electric and magnetic fields that change in time
and cause electromagnetic waves. Electromagnetic waves are oscillating electric and
magnetic fields that carry energy through the vacuum and propagate with the speed of
light. Similarly, gravitational waves are caused by accelerated massive objects. Known
astronomical objects of sufficient mass that may produce observable gravitational waves
are systems of binary stars; in particular binary systems involving neutron stars or
black holes. In these systems massive objects rotate relatively closely around each other
with high velocities, such that the varying gravitational fields cause waves analogous to
electromagnetic waves.
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Figure 4.10: Schematic diagram of a gravitational wave interferometer. The interferometer
detects a change in the length of the light storage arms between the test masses. The length
of the arms is tuned such that the beams interfere destructively in the photodetector (the
so-called “dark fringe”). Passage of a gravitational wave will cause an oscillation in the length
of the arms such that the light-waves of the two arms no longer fully cancel each other.

4.9 Detection of Gravitational Waves

In the case of electromagnetic radiation electric and magnetic fields oscillate perpen-
dicular (i.e. transverse) to the direction of propagation. Similarly, in gravitational
deformations of space occur transverse to the propagation of the waves. The passing of
a gravitational wave can be observed by detecting the change of distance between two
free falling test-masses in the temporary contracting and expanding space dimensions.

A relatively simple device to detect gravitational waves is called a Weber bar, named
after Joseph Weber. It consists of a large solid metal bar that is shielded from outside
vibrations. A detection occurs if a passing gravitational wave temporarily deforms the
bar and excites the bar’s resonant frequency, which can be amplified and detected.
Several of these devices exist but their sensitivity is such that only the most powerfull
gravitational waves may be detected.

The most sensitive gravitational wave detectors are interferometers that measure
transverse minute changes in the distances of kilometer-long arms of their set-up, using
interference of laser beams. The setup is conceptually the same as the Michelson Morley
experiment, apart form the fact that the lightspeed is now known to be constant and
the experimental sensitivity is much higher. The principle of operation is illustrated in
fig. 4.10.

The Laser Interferometer Gravitational Wave Observatory (LIGO) in the US includes
two interferometers with light storage arms of 4 km; one located in Livingston, Louisiana
and one in Hanford, Washington. Gravitational waves were first detected on September
14, 2015, 100 years after Einstein predicted their existence. The observed event was
caused by a collision followed by a so-called merger of two black holes of respectively 29
and 36 times the mass of the Sun. The event took place about 1.3 billion years ago and a
total energy of about 3 times the total mass of the Sun was converted into gravitational
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Figure 4.11: Left: The expected gravitational signal of two inspiralling black hole, where the
strain is the relative deformation of space per unit of length. Right: The top-left plot labelled
H1 is the observed signal of Hanford, the top-right plot is the observed signal of Louisiana
with the H1 signal superposed. The bottom plots show the reconstructed signal together with
the calculation of numerical relativity theory.

wave energy. The observed signal of the LIGO detectors is shown in fig. 4.11. Recently
the Virgo detector, located near Pisa, has joined in a combined detection run with
LIGO.

The LIGO and Virgo detectors have a sensitivity to observe, in addition to massive
black hole mergers, also merging neutron stars in the relative vicinity of our galaxy. The
Einstein Telescope (ET) is a so-called third generation gravitational wave detector that
has the possibility to observe such mergers all through the visible universe.

The LIGO and Virgo detectors have a sensitivity to observe, in addition to massive
black hole mergers, also merging neutron stars in the relative vicinity of our galaxy. The
Einstein Telescope (ET) is a so-called third generation gravitational wave detector that
has the possibility to observe such mergers all through the visible universe. Currently,
one of the candidate locations being investigated for this facility is in the “heuvelland”
in south Limburg.
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Lecture 5

The Early Quantum Theory

”If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.”
-Niels Bohr

”Gott würfelt nicht (God does not play dice).”
-Albert Einstein

5.1 A Deterministic Universe?

The founding father of the physics we now refer to as classical physics is Isaac Newton
(1642 - 1727). At the foundations of classical physics are his three laws:

1. The law of inertia: a body in rest moves with a constant speed.

2. The law of force and acceleration: F=m a

3. The law: Action = - Reaction

These laws, together with the idea that everything in the universe consists of funda-
mental constituents of matter (”particles”) leads to a philosophical dilemma that, once
given the initial position of all particles and their velocities, one can in principle predict
the future of any system like a pre-programmed clock. In such a deterministic universe
there is little room for something like the concept of free-will. As we will see quan-
tum mechanics introduces a fundamental principle of chance into the laws of physics,
allowing only statistical predictions. It has a fundament based on in-determinism: the
so-called Heisenberg uncertainty principle. Einstein did not like this fundamental statis-
tical uncertainty principle in the laws of nature, which is the reason of his famous quote
on quantum mechanics. The uncertainty principle is linked to a fundamental constant
of nature, similar to the speed of light, and is called Planck’s constant. The discovery
of its existence goes back to the nature of light: does light consist of particles or is light
waves?

51
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5.2 The Nature of Light: Particle or Wave

The authoritative Isaac Newton believed that light consisted of a stream of particles,
called corpuscles. He maintained that these light-particles travelled faster in dense
media, similar to the fact that sound travels faster in water than in air, and using this
he could explain diffraction of light (eg. look at a pencil sticking into a glass of water).

Figure 5.1: Left: The nature of light: does it consist of particles (Newton) or waves (Huygens)?
Right: With both hypotheses, the phenomenon of refraction can be explained.

Alternatively, Christiaan Huygens, 13 years older then Newton, developed the theory
that light consisted of transverse waves, comparable to those that move across the surface
of water. Instead of water, light used the æther as the medium that oscillates.

In 1803 Thomas Young performed a decisive experiment by interfering waves, clearly
illustrating that light has a wave character. To understand the nature of this measure-
ment let us first have a closer look at the nature of waves.

5.2.1 Water Waves

It is perhaps easiest to consider water waves that are created if we drop a pebble in
a lake. The water molecules make a vertical oscillation motion and via the molecular
forces acting between the water molecules the wave propagates horizontally along the
surface of the water, causing a spreading circle. In other words, the waves travel in a
direction perpendicular (or transverse) to the vertical oscillations of the molecules. A
water wave is schematically illustrated in the left picture of fig. 5.2. In physics class we
learn that the wavelength of the water waves (λ) is related to the oscillation frequency
of the molecules (f) via the equation: λ = v/f , where v is the velocity of propagation
of the wave.
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Figure 5.2: Left: a picture of a wave and its characteristics. Right a picture how waves can
interfere: where peak meets peak the wave is amplified, where peak meets trough the wave is
cancelled.

An essential aspect of waves is that they can cancel each other. Consider the picture
on the right of fig. 5.2, where two stones are dropped in the water next to each other.
Each causes a circle of waves, but where the two waves meet they can either reinforce
(where peak meets peak) or cancel each other (where peak meets trough).

We are familiar with a similar phenomenon of sound waves cancelling one another in
head-phones with noise-cancellation functionality. Sound-waves are caused by oscillating
atoms of air that in this case are longitudinally propagating pressure waves. In noise-
cancellation devices the sound-waves in the environment are used to create additional
sound waves with opposite amplitudes, as illustrated on the left in fig. 5.3. Adding
together the two opposite waves, the end result is no waves, or silence!

5.2.2 Light Waves

How does this work for light? Light is a wave formed by oscillations of the electromag-
netic field as was illustrated in fig. 1.2. Similar to water waves an electric field and a
magnetic field oscillate perpendicular to each other and generate a light wave that prop-
agates through empty space with the speed of light c, in the direction perpendicular to
both the electric and magnetic field oscillations.

Thomas Young’s experiment, illustrated on the right of fig. 5.3, showed that one can
create darkness by adding two sources of light, a phenomenon which was not possible
to explain with light consisting of classical particles, and as such this was seen as the
convincing argument that light must consist of waves. The particle-wave debate seemed
finally settled. This was further worked out by Maxwell who gave a full description
of light as oscillations of electromagnetic field waves. Similarly to sound waves, which
are longitudinal oscillations of a medium (air), it was originally expected that light
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Figure 5.3: Left: Active Noise Reduction: sound waves cancel each other. Right: The inter-
ference experiment of Young, showing light and dark areas on a screen resulting from light
passing through two slits in screen, seems to make the decisive answer: light consists of waves.

waves would be longitudinal oscillations of the æther. However, in Maxwell’s theory of
electromagnetism, light waves are transverse oscillations of electric and magnetic fields
that propagate in vacuum.

In all cases, water waves, air waves, light waves, the energy or the intensity of
the wave signal is equal to the square of the amplitude of the oscillations: I ∝ A2.
Two waves with the same phase (peak meets peak) sum up to a wave with double
amplitude, so-called constructive interference, creating more light, sound, etc., while two
waves with opposite phase (peak meets trough) cancel each other to zero amplitude, so-
called destructive interference, creating darkness, silence, etc. The interference aspect
is essential for the wave-light character of phenomena.

5.2.3 Quantized Light

The first discovery leading to the development of quantum mechanics was related to
the frequency of light emitted by heated material. The spectrum of electromagnetic
radiation emitted by a heated so-called black-body object could not be explained using
the classical theory. The German Physicist Max Planck discovered in the year 1900 that
the spectrum was very well described if one assumed that the radiation could only be
emitted as multiples of an elementary unit: the quanta. At the time it was not believed
yet that light consisted of quanta, but that somehow it was always emitted in discrete
quanta. The relation of the energy in a given quantum and the corresponding frequency
of the radiation is:

E = hf , (5.1)
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where h is the famous Planck constant of action. Planck, to his own frustration, never
managed to understand the origin of the quantized radiation.

The value of Planck’s constant is very small, 6.6262× 10−34 Js, which is the reason
that it only plays a role at an atomic level rather than in macroscopic processes. One
interesting aspect to notice is that its unit is a unit [Js] is the unit of action, which is
energy × time. This means that the numerical value of Planck’s constant h, similar to
the speed-of-light constant c, is the same for any observer in any difference frame. (A
unit of energy would depend on the chosen reference frame.)

5.2.4 The Photon as a particle

In the same year he published the special theory of relativity Einstein also published
a paper to explain the nature of a phenomenon known as the photo-electric effect.
In this phenomenon, discovered in 1887 by Heinrich Hertz, electrons are emitted in
certain materials if ultraviolet light was shone on them, see the left side of fig. 5.4. A
surprising fact was discovered by Philipp Lenard in 1902 that the energy of the emitted
electrons did not depend on the intensity of the light source, but only on its frequency.
Under a given threshold frequency, no electrons emerged from the material, while for
frequencies above the threshold light frequency, the energy of the emerging electrons
was proportional to the energy or frequency of the light, according to the formula of
Planck. Again, such behaviour could not be explained using Maxwell’s description of
electromagnetic radiation, since in a wave-theory the energy depends on the amplitude
of the waves, thus on the intensity of light source.

Figure 5.4: Left: Illustration of the photoelectric effect. Depending on their frequency photons
can knock out electrons of a material. Right: The Compton effect. A photon of wavelength λ
comes in from the left, collides with an electron and another photon of wavelength λ′ comes
out, together with the electron. The energies of the incoming and outgoing photons and the
electron agree with the laws of scattering particles.

Einstein boldly posed in his Nobel prize winning paper that this is explained by
the nature of light: light consists of individual quanta of light which individually cause
emission of the electrons from the material. For light of high frequency (e.g. ultraviolet),
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the energy of the quantum is high and electron is knocked out at high speed; for light of
low frequency (e.g. infrared), the energy is low and insufficient to knock out an electron.

The Newton vs Huygens debate of the nature of light, particle vs wave, was open
again! Only after Arthur Holly Compton in 1923 (Nobelprize 1927) performed measure-
ments that showed that the energy of emerging electrons was perfectly described by a
process of a colliding photon particle with an electron (see the right side of fig. 5.4, the
community was convinced: light must sometimes be described as a stream of particles!
Einstein had derived that the relation between the energy of the photon and the fre-
quency of light is: E = hf , and similarly that photons have a momentum p = E/c, such
that:

p =
hf

c
(5.2)

Since the relation between wavelength and frequency for light is λ = c/f (and
therefore f = c/λ), we can translate Einstein’s relation between momentum frequency
into p = h

λ
, usually written as:

λ =
h

p
, (5.3)

showing that the wavelength of light is inversely proportional to the momentum of the
photon.

5.3 The Wave Nature of Elementary Particles

5.3.1 Instability of the classical atom

Rutherford had shown that the atom consists of a small, dense, positively charged
nucleus surrounded by negatively charged electrons, similar to planets in an orbit around
the sun. What remained a mystery was how atoms could in this case be stable. What
keeps the positively charged nucleus together? Why don’t the surrounding electrons
radiate energy in the form of electromagnetic waves as predicted by Maxwell’s theory?

An electrically charged particle is surrounded by an electric field. If such a particle
undergoes an accelerated motion, it will cause a changing electric field and according
to the laws of Maxwell it will generate electromagnetic waves. In the classic atomic
theory, the electrons are therefore expected to radiate electromagnetic waves and lose
energy. In fact, according to the theory of Maxwell, it would only take a millionth of a
millionth of a second until the electron would collapse into the nucleus of an atom. In
other words: stable atoms cannot exist according to classical theory.

5.3.2 De Broglie waves

In 1924 the French physicist Louis de Broglie suggested that the wave-particle dual-
ism that applies to light also applies to particles. He proposed that the same formula
applicable to photons would also apply to particles:

λ =
h

p
or λ =

h

mv
. (5.4)
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The consequences of this idea are far reaching: not only light is described by both
particles and wave characteristics, but also particles: electrons and protons. Unlike in
the cases of water waves, sound waves or electromagnetic field waves, it was not at all
clear what is oscillating in these particle waves.

De Broglie’s hypothesis was confirmed in 1927 when it was seen that electrons, similar
to light wave show a diffraction behaviour, and therefore indeed behave like waves. The
nature of these waves is still a mystery. In the next chapter we discuss in detail the
interference character of particle waves.

Exercises:

• Calculate the wavelength of an electron (m = 9.1 × 10−31 kg) travelling at 10%
of the lightspeed. (Planck’s constant = 6.6× 10−34Js). Compare the result to the
size of an atom, typically 10−10m .
Answer: λelectron = 0.024 nm = 0.24× 10−10m.

• The wavelength of visible light is 400 nm to 700 nm. Can you explain why it takes
an electron microscope to see atoms?

• Calculate the wavelength of a fly (m=0.1 g) travelling at a speed of 10 m/s.
Why are quantum effects more relevant for electrons than for macroscopic objects?

5.3.3 Bohr’s quantum mechanical atom

We celebrated recently the 100-th anniversary of the Bohr model of the atom, which
actually was a mixture of quantum theory and classical theory. He assumed that only
for specific orbits of the electron, given by quantum numbers, the atom would be stable.
The electron could jump from one orbit to another by either emitting or absorbing a
quantum of light.

Bohr’s model of the atom was understood by Erwin Schrödinger using De Broglie’s
idea of the wave nature of electrons. An electron wave circling in many orbits around
the nucleus would interfere with itself as it goes around and around. If the length orbit
is such that it is exactly equal to n=1, 2, 3 etc... times the wavelength of the electron,
the electron wave would positively interfere with itself, resonating in a standing wave
around the orbit. In this case there is no longer a picture of an accelerated charge in
orbit around a nucleus, but a stable standing wave with a given energy level of the atom.

The requirement for the first standing wave is that the wavelength of the electron
is equal to the circumference of the orbit: 2πr = λ. But also orbits with the following
condition 2πr = 2λ, or in general 2πr = nλ, meet the requirements for positive interfer-
ence: peak meets peak. In all other conditions, e.g. 2πr = 1.2λ, the result after many
revolutions is that the negative interference cancels the wave.

In classical mechanics we learn that the angular momentum is defined as L = r × p,
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such that substituting this for r in 2πr = 2λ and also using λ = h/p, the Bohr quanti-
zation rule follows:

2πL = nh or L = nh̄

where the so-called reduced Planck constant h̄ = h/2π is introduced. This is the main
quantum rule of the Bohr atom.

Using the quantisation of the orbits Bohr predicted the corresponding energy levels
belonging to each of the orbits. Electrons could sit in different discrete energy levels in
an atom and they could jump from one level to the next by either emitting or absorb-
ing a quantum of energy corresponding to the difference in energy between the orbits.
Jumping from a high energy level to a low energy level, the atom would emit a photon;
jumping from a low energy level to a high energy level, the atom would need to absorb
a photon of the corresponding energy. The atomic model of Bohr was a great success as
the jumping of electrons joined by the absorption or emission of photons described the
observed light spectrum of hot atomic gases. In fig. 5.5 the Bohr model for the atom is
illustrated and the spectrum of hydrogen gas, with the so-called Balmer lines, is shown.

Figure 5.5: The Bohr atom. Top Left: The electron waves illustrated for the lowest three orbits
in an atom. Top Right: Electrons can jump between orbits by either emitting or absorbing
a photon of just the right energy. Bottom: The Balmer spectrum: the light emission lines of
hydrogen, which were explained by Bohr’s model of the atom.

Not only did Bohr’s model allow to explain the emission of photons, it also predicted
how many electrons could sit in each orbit for different elements. Wolfgang Pauli had
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discovered that no two electrons could occupy the same quantum state, which is known
by the Pauli exclusion principle. As a consequence all orbits of electrons of different
atoms could be calculated. For chemical reactions between elements, or bonds between
atoms, the number of electrons in the outermost shell are most important. The ”inner
shells” are hidden and play no role in chemistry. As such, the Bohr model led to the
statement: ”chemistry is explained.”

5.4 Particle Wave Duality

Subatomic matter does not behave like waves and it does not behave like particles. It
does not behave like anything we know from the macroscopic world. Fortunately, elec-
trons and light at least behave in a similar way. We say that on a subatomic scale matter
behaves like particle waves. The bad news is that we can’t explain quantum behaviour.
At the end of the lectures you will probably not understand it. The reason is that no-
body really understands it. We can describe how it works using mathematics. But, why
it behaves completely different than macroscopic matter nobody knows. Alternatively,
why would fundamental particles behave the same as macroscopic particles? The fact
that they are fundamental, ie. indivisible, makes them different from anything we know
by our experience or intuition.

5.4.1 *Matrix Mechanics of Heisenberg vs Wave Mechanics of
Schrödinger

In 1925, before De Broglie’s wave hypothesis, quantum theory was in chaos. Quantum
rules seemed to work, but no-one understood why. In that year Werner Heisenberg got
the idea to describe atomic phenomena with the obscure mathematics of so-called non-
commuting numbers. Algebraically this means that he used numbers a and b for which
a × b is not the same as b × a. Such quantities are called matrices. Heisenberg found
that he could derive the atomic energy levels if he would make the assumption that
the variables for space (x) and momentum (p) would behave according to the following
equation:

px− xp =
h̄

i

where h̄ is Planck’s constant and i is the so-called imaginary number
√
−1. This is the

famous Heisenberg uncertainty relation. The equation implies that if we first measure
the momentum and then the position of a particle, we don’t get the same as first
measuring position and then momentum, or, we cannot know at the same time the
momentum and the position. The usual formulation of the Heisenberg uncertainty
relation expresses this:

∆x∆p ≥ h̄

2
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Heisenberg and others found that by replacing the classical numbers of x and p
in Newton’s equations by matrix numbers they obtained a new theory that explained
quantum atoms. At the same time the new theory included the old Newton theory for
macroscopic objects, in a similar way that the relativistic theory of Einstein includes
the Galilei theory for low velocities. The uncertainty relation is at the heart of quantum
mechanics and is related to the particle-wave complementarity of quantum mechanics,
as we will illustrate below.

While the abstract matrix mechanics of Heisenberg was being developed, the Aus-
trian physicist Erwin Schrödinger learnt of particle wave nature of De Broglie and re-
placed the classical description of Newton’s second law of motion by a wave equation,
which is now known as Schrödinger’s equation. He assigned the symbol ψ to the wave-
function, which is also often called the ψ-function. Schrödinger’s wave mechanics gives
a more intuitive picture to illustrate the uncertainty relation then Heisenberg’s matrix
mathematics.

Within a year after Heisenberg and Schrödinger presented their description of quan-
tum mechanics the brilliant Englisch theoretical physicist Paul Dirac presented a third,
and even more fundamental description of quantum mechanics and showed that both
Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics are two aspects of the
same fundamental physics. We will limit ourselves here to Schrödinger’s description.

5.4.2 Particle waves and the uncertainty relation

Erwin Schrödinger assumed that the underlying nature of particles were physical waves
of some kind. Figure 5.6 shows how we can try to unite particle and wave concepts
in Schrödigers picture. Consider a wave, as shown in black on the left in the figure.
If you add it together with another wave, shown in blue, with a somewhat different
wavelength, the picture on the right side emerges. In the center, the two waves interfere
constructively, while at the sides they cancel each other. Using the interpretation that
the amplitude of the wave is related to the probability of presence of the particle, we
arrive at the following picture.

• On the left we see pure waves, they have a large amplitude anywhere and have a
precisely defined momentum p given by De Broglie: p = h

λ
.

• On the right we see a sum of waves of different wavelength. They only have a
large amplitude in the center with a spread in position, and their momentum is
not exactly known as it is a sum of different wavelengths.

In general we can add many waves together. The more different waves we add, the
better the position of the particle is limited, but the more unknown is the momentum.
Alternatively, the less waves we add, the better we know the particle’s momentum, but
the more unknown becomes the momentum. This is Heisenberg’s uncertainty relation:
we cannot define at the same time the position and the momentum of a particle.
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Figure 5.6: Left: Two cosine waves with slightly different wavelength. Right: The sum of the
two cosine functions, a wave packet limited in space.

5.4.3 Diffraction of light and the uncertainty relation

The same uncertainty also holds for light. It can be demonstrated by a relatively simple
example. Consider a beam of laser light as is generated by a simple laser pointer. If
we shine the beam directly on a screen we will see a clean spot of light. However if we
let the laser light-beam pass through a narrow slit, we will notice that the light spot on
the screen widens exactly in the narrow direction of the slit. The narrower we make the
slit, the wider becomes the light spot on the screen. This is illustrated in fig. 5.7.

Figure 5.7: Left: The setup of a simple experiment using a light beam shining from the left
through a thin slit onto a screen. Right: The resulting image on the screen. The narrower the
slit, the wider the image on the screen, as predicted by the uncertainty relation.

What happens is that the narrow slit determines the position (x) of the photons. If
we do that, as a consequence of the uncertainty relation, the momentum along the x-
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direction becomes undefined. This means that by restricting the position of the photons,
they are now composed of a wide range of different momenta, in other words, the
direction of the photons becomes less defined. The narrower the slit, the wider becomes
the spot of light on the screen.

Interestingly, this phenomenon can be correctly calculated classically using the inter-
ference of waves as well as quantum mechanically using the uncertainty relation. They
both predict an identical effect.

5.5 Conclusion

The uncertainty relation is a fundamental aspect of quantum nature. It is not a con-
sequence of our limitations in the measurement, it is a fundamental aspect of quantum
reality. Although Schrödinger believed that particles consisted of a physical wave, the
German physicist Max Born could not accept this existence of a ”real” wave. He stated
that the only physical meaning of the wave was that the square of its amplitude is
equal to the probability of finding the particle at that particular point. This is what is
called the famous Copenhagen interpretation, strongly advocated by Niels Bohr and Max
Born. This interpretation brings back a fundamental role of probability and chance into
physics laws and removes the determinism which is present in classical physics. Einstein
and Schrödinger resented this statistical aspect in the laws of physics.

The mathematics for the probability-wave function ψ was similar to the intensity of
classical waves, apart from the fact that the wave function was a complex number, while
the real probability was found as:

Prob(x, t) = |ψ(x, t)|2 = ψ(x, t) ψ∗(x, t) .

This equation states in words that the probability to observe a quantum mechanical
object at a given point in space, x, and a given point in time, t, is given by the square of
the amplitude of the wave-function at that point in time and space. The wave function
itself cannot be observed directly, only its square. Although it leads to very exciting
consequences in physics, we will here ignore the complication of complex numbers.

In the next lecture we will be confronted by the surprising nature of the complemen-
tary wave-particle description of quantum mechanics via Feynman’s beautiful thought
experiment of the double slit experiment.



Lecture 6

The Double Slit Experiment

”It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If
it doesn’t agree with experiment it’s wrong.”
-Richard Feynman

6.1 Introduction

On an atomic level, matter and light behave like nothing we have any direct experience
with. In the previous lecture we have seen that electrons and photons have particle
properties, but also wave properties. The double slit experiment is a famous thought
experiment that illustrates the essential aspects of quantum mechanics; in particular
it beautifully demonstrates the wave particle duality. In the words of Feynman, the
experiment illustrates the only mystery of quantum mechanics which nobody truly un-
derstands. We can only consistently describe it and use it to make statistical predictions
for the outcome of experiments.

In the following three ”cases” we will repeat similar thought experiments with respec-
tively ”bullets”, ”waves” and ”electrons”, to demonstrate the behaviour of respectively
a classical particle, a classical wave and finally a quantum particle. The experiment
with the electron will turn out to be impossible to be described in any classical way.
It demonstrates the true mystery of quantum mechanics and also shows the role of the
observer in the experiment.

6.2 Case 1: ”Bullets”

The first experiment is illustrated in Fig. 6.1. Consider a particle gun that shoots bullets
in a random direction. At some distance of the gun there is a wall with two adjacent
thin openings, labelled 1 and 2, which are wide enough to let the bullets pass. Behind
the wall there is a backstop which can ”absorb” the bullets as they arrive, for example
a wall of wood. This wall contains a “detector” (e.g. a box of sand) that can count
the bullets as they arrive at the backstop. By placing the detector at each position
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along the backstop for some time and counting the number of bullets that arrive we
can reconstruct the probability of the arrival bullets per unit time as a function of the
coordinate x, the distance from the centre.

The question we ask ourselves in this experiment is: ”What is the probability that a
bullet arrives at the backstop at a distance x from the centre?”. To find the experimental
answer we count the bullets at each position and then divide that number by the total
amount of bullets that were fired.

Figure 6.1: Feynman’s double slit experiment with classical particles.

Let us first consider the case where only opening 1 is present and opening 2 is closed.
The bullets that go through the opening may scatter from the sides of it and we observe
the probability distribution given as P1 in the figure. The maximum of the distribution
is in a straight line behind the opening and there is some scattering to the sides. The
distribution reflects the probability distribution where a bullet, to be fired, may arrive.
Alternatively, if opening 1 is closed and 2 is opened, we observe a similar probability
distribution P2, which now has a maximum straight after slit 2. If in a third and final
case both opening 1 and 2 are opened, we expect to observe the distribution labelled as
P12, and we can check the result:

P12 = P1 + P2 . (6.1)

The probability distribution for the two open holes is given by the sum of the probability
distributions for each of the two cases with one slit open. This means that if we were
to calculate the probability for a subsequent bullet to arrive at a given position x, we
would take into account probability distribution P12. The fact that P12 is the sum of
the probabilities P1 and P2 of independent experiments is translated in words by saying
that there is no interference between the processes of bullets going through 1 and bullets
going through 2.
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6.3 Case 2: ”Waves”

Next, we replace the gun and bullets by a generator of waves. This could be water
waves, sound waves, or electromagnetic light waves. Let us use the case of water waves
and construct a similar setup as before, depicted in Fig. 6.2. On the left there is a
source of waves, generating circular waves e.g. by dropping a stone in the water. The
stone will make the water molecules oscillate up and down where it hits the water and
generate circular waves. The waves spread out and arrive again at a wall that has two
openings. The water in the openings 1 and 2 will move up and down and in turn operate
as new sources generating waves behind the wall. Again there is an absorber wall, which
contains a detector. In this case the detector measures the ”intensity” of the arriving
waves at a given position at the wall. This implies that the detector is sensitive to the
height h of the oscillating wave, but it is calibrated in such a way that it registers the
square of the amplitude of the wave. Remember that in waves the intensity (or energy)
is related to the height of the wave as: I = |h|2, such that the detector measures the
amount of energy that is carried by the wave to a given position on the screen.

Immediately we note a difference with the case of bullets. Whereas the bullets arrive
in quantum lumps, one by one, there is no such “lumpiness” or quantum behaviour of the
waves. The further away we put the screen, the lower become the observed amplitudes,
since the energy of the waves is spread out in a larger circle, such that the amplitude
at a given position reduces with the distance from the source. Contrary to the case of
bullets, the intensity of the waves can have any value, even an infinitely small one.

Figure 6.2: Feynman’s double slit experiment with classical waves.

Let us consider first the case that only slit 1 is open. The water inside the slit (or the
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Figure 6.3: Interference of water waves. The fishing rod of each fisher creates circular waves;
where they meet interference occurs.

electromagnetic light wave in an equivalent wave experiment) will oscillate and behave
as a new point source of waves, emitting again circular waves. The detector will register
an intensity curve given by I1 = |h1|2 as shown in the figure. Similar to the case of the
bullets, the intensity is highest directly behind the opening and becomes smaller further
away to the sides. Again, opening only the second slit by itself would give a similar
Intensity curve, denoted I2 = |h2|2 in the figure.

But, consider next the case where both slides are open at the same time. Both points
1 and 2 are emitting circular waves but the phenomenon of interference occurs, as was
already discussed in the previous lecture. Where the maxima of the waves meet the
amplitude of the waves is increased (”constructive interference”) and where a maximum
meets a minimum the waves cancel each other (”destructive interference”). Perhaps
such interference patterns are familiar for adjacent sources of water waves as shown in
Fig. 6.3.

What is important to notice is that the instantaneous heights of the interfering waves
are added, while the detector at the screen records the intensity of the resulting wave.
In that case:

I = |h1 + h2|2 , (6.2)

which is crucially different than eq. 6.1. At some places at the screen no intensity of
waves are detected while at other places the intensity more than doubles.

6.3.1 *Calculation of the Interference

Let us try to calculate the interference. For a given point in the water at the detection
screen the wave oscillation is represented by a cosine oscillation in time, where the
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position of the water as a function of time is given by:

h cos (ωt+ φ) . (6.3)

Here, h is the maximal amplitude of the oscillation, ω = 2πf where f is the frequency
of the oscillation, and finally φ is the so-called phase, which depends on the position
of the oscillation in the cycle at time t = 0. Since we have two independent sources of
light we have to add up the individual waves into a resulting wave R(t):

R(t) = h1 cos (ωt+ φ1) + h2 cos (ωt+ φ2) (6.4)

where the phases φ1 and φ2 now depend on the distance from respectively slit 1 and slit
2 to the position at the screen.

For simplicity we assume that the height of wave 1 is the same as that of wave 2:
h1 = h2 = h and we can use the trigonometry rule:

cosA+ cosB = 2 cos
1

2
(A−B) cos

1

2
(A+B) (6.5)

to find that:

R(t) = 2h · cos
(

1

2
(φ1 − φ2)

)
cos

(
ωt+

1

2
(φ1 + φ2)

)
(6.6)

This means that there is an oscillation taking place with a resulting amplitude h′:

R(t) = h′ cos
(
ωt+

1

2
(φ1 + φ2)

)
with h′ = 2h · cos

(
1

2
(φ1 − φ2)

)
and the observed intensity is the square of this:

I = R2 = h′2 cos2
(
ωt+

1

2
(φ1 + φ2)

)
(6.7)

The amplitude h′2 can be further reduced using the trigonometry rule that states:
cos2A = 1

2
+ 1

2
cos 2A, to obtain:

h′2 = 2h2 + 2h2 cos(φ1 − φ2) . (6.8)

In the more general case that h1 6= h2 the expression is:

h′2 = h21 + h22 + 2h1h2 cos(φ1 − φ2) . (6.9)

The term φ1 − φ2 is called the phase difference of the interfering waves and follows
from the difference δ in path lengths of each of the interfering waves to the detector,
multiplied by one full oscillation phase of 2π:

φ1 − φ2 =
d1 − d2
λ

2π . (6.10)
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Figure 6.4: Young’s experiment of interfering light waves. Left: Artistic view of the setup
and the light and darkness pattern that such experiment might show. Right: Real picture of
a double slit interference pattern obtained with a laser.

We see that if the difference in path length divided by the wavelength is equal to an
integer number of wavelengths (n = 0, 1, 2, ..), there is constructive interference, while
if it is a half-integer (2n + 1)/2 there is destructive interference. Also note that in
the case there is constructive interference the amplitude is given by |h′| = 2|h|, such
that the intensity of the resulting wave I = 4|h|2, which is more than the sum of the
individual intensities! At the screen we see a pattern of fast changing signals of high and
low intensities (see Fig. 6.3), which is certainly not equal to the sum of the individual
intensities I1 and I2.

This experiment was carried out with light in the famous experiment by Young (see
Fig. 6.4) and was considered to be the decisive argument that light must indeed consist
of (electromagnetic) waves.

6.4 Case 3: Electrons

Instead of classical particles or waves we are now ready to repeat the experiment with
quantum particles: electrons. By heating a tungsten wire electrons are emitted. Putting
the heated wire in a box with a small hole gives us an electron gun similar to the bullet
gun in case 1 above. In Fig. 6.5 we have again a sketch of a similar double slit setup as
before. The detector in this case could be eg. a geiger counter, which produces a ”click”
each time an electron is detected at a given position at the screen.

Immediately we notice that the counter produces clear ”clicks”. There is no continu-
ous signal arriving and an electron is always registered at one specific point at the screen,
unlike a wave, which spreads out and arrives at many places at the same time. Our first
conclusion therefore is that electrons ”come in lumps”, quoting Richard Feynman.

Similar to the case of bullets we can scan the counting rate of the arriving bullets as
function of the coordinate x. In other words, we measure the probability for electrons
to arrive at position x. Again, we first do the measurements with only one slit open
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Figure 6.5: Feynman’s double slit experiment with electrons.

and reproduce the probability curves P1 and P2, which are similar to the case of bullets.
Since we have seen that electrons ”come in lumps” we expect that they either pass
through slit 1 or through slit 2 and that opening both slits gives us the same result as
the case of the bullets: adding the individual probabilities corresponding to slit 1 and
slit 2.

However, when we repeat the experiment with both slits open, surprisingly, we ob-
serve the curve P12, which has the pattern of interfering waves, even though the electrons
still arrive in lumps.1 Clearly, in this case P1 + P2 6= P12.

In fact, the observed spectrum of the number of arriving electrons is exactly the
same as that of the intensity of waves. Similar to the water waves we can assign a
mathematical wave to the electrons and calculate the curves by adding up the amplitudes
of the waves from slit 1 and slit 2. In case both slits are open we find:

A12 = A1 + A2 (6.11)

where A1 and A2 are the amplitude of the individual electron waves (similar to eq. 6.4):

A12 = A1 cos (ωt+ φ1) + A2 cos (ωt+ φ2) (6.12)

and the probability curves are obtained by

P12 = |A12|2 = |A1 + A2|2 (6.13)

1It should be noted that in practice this is a difficult experiment to carry out in reality since the
distance of the slits has to be very small, but it has been done!
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which is of the same form as eq. 6.2 of case 2: the interfering waves. Therefore the result
will be the same interference pattern that we calculated for waves in section 6.3.1.

Surprisingly, with both slits open the electrons in this experiment behave exactly
like the waves. The first suspicion is that perhaps the individual electrons interfere with
another, so we reduce the average rate at which electrons are fired to make sure we have
single electrons at a time, for example by shooting one electron per second. However,
the pattern remains the same.

The experiment is consistent with De Broglie’s idea that electrons have a quantum
wave behaviour, where the wave goes partly through slit 1 and partly through slit 2, and
the amplitudes are added up again at any point in space after the slits. The probability
to observe the electron at any place is found as the square of the wave function.

The question remains: what are these waves?

6.5 Case 4: Watching the Electrons

Let us try to be smarter and simply observe through which hole the electron goes by
looking closely at the individual slits. Since electrons scatter light we can do this by
shining light toward the slits and by seeing a photon in detector D1 or D2 we can
reconstruct whether the electron actually went through slit 1 or slit 2. The set-up is
shown in Fig. 6.6 and Fig. 6.7.

Figure 6.6: The double slit experiment with
a light source and two detectors D1 and D2

added, such that we can ”see” through which
slit the electron passes.

What happens is that each time a pho-
ton arrives at the detector screen we will
also see a photon in either D1 or D2. We
never see simultaneous signals in D1 and
D2. So, when we watch them it turns
out that electrons either pass slit 1 or
slit 2, and never does some electron wave
go through two holes at the same time!
But how do we get the interference, then?
In fact, by our action of watching a slit
we have killed the interference pattern on
the detection plane! Our experiment now
gives the same results as that achieved
with the classical bullets: now the total
probability P12 is now equal to the sum of
the individual probabilities P ′12 = P1 +P2.
By watching the electrons passing through
the slits we have destroyed the interfer-
ence!

Maybe the light source is too intense and it disturbs the photons, so let us turn down
the intensity of the light. Since there are now only a few photons available sometimes
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Figure 6.7: Feynman’s double slit experiment with electrons while they are being watched.

no signal is seen in either of the detectors D1 and D2 and we don’t know whether
the electron went through slit 1 or slit 2. For all these cases the observed probability
spectrum is like interfering waves. For the cases where we do observe which slit the
electron went through the probability curve does not show interference!

Perhaps the photon disturbs the electron due to the ”kick” it gives it? Let us make
the photon ”softer” by choosing a different wavelength of the light (remember p = h/λ).
What happens then?

As long as the wavelength of the photon is smaller than the distance between the
slits 1 and 2 nothing changes and we observe the classical pattern. As soon as the
photon wavelength is larger than the distance between the gaps we see the interference
pattern appear again, independent on whether the photon is observed in D1 or in D2.
However, due to the limited resolution of light of this wavelength we can no longer relate
the signal in one of the detectors to slit 1 or slit 2!

Finally we can only come to one conclusion: if we do not observe through which slit
the electron passes there is interference; if we observe through which slit the electron
passes there is no interference.

It is important to realise that this is not a limitation of any equipment but a fun-
damental aspect of nature. This is a specific example of the uncertainty principle of
Heisenberg invoked by the measurement of the position (measuring through which slit
the particle passed) and the momentum of the electron (represented by the direction of
the electron and leading to the interference pattern).
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6.6 Conclusion

At quantum level both ”particle” and ”wave” are equally valid, complementary proper-
ties of the same reality. This aspect is referred to as complementarity in the Copenhagen
interpretation of quantum mechanics. Under some measurement circumstances an ob-
server can decide which property becomes reality. If he chooses not to put the detectors
there, then the ”wave”-like interference pattern will become reality; if he does put the
detectors there, then the ”particle”-like paths will become reality. The fact that an
observer can not observe at the same time particle-like and wave-like characteristics is
guaranteed by the uncertainty relation. Nature does not allow us to measure them at
the same time.

Finally, it is important to realise that quantum mechanics only predicts probabilities.
In the case where the observer choses to measure the path of the particle, the choice
whether the particle goes through slit 1 or slit 2 is completely random and contrary to
classical theory quantum mechanics is not deterministic. Nature herself does not know
which way the electrons go.



Lecture 7

The Delayed Choice Experiment
and the EPR Paradox

”Your theory is crazy, but not crazy enough to be true.”
- Niels Bohr

”I don’t like it, and I’m sorry I ever had anything to do with it.”
- Erwin Schrödinger, on the interpretation of quantum mechanics.

7.1 The delayed choice experiment

The way a quantum particle behaves is related to the question we ask it. If we ask
the quantum: “Do you behave like a particle and go through one slit?”, it will answer:
“Yes!”. If we ask the quantum: “Do you behave like a wave and pass through both
slits?”, it will also answer: “Yes!”.

The complementarity principle states that the particle has both wave-like and particle-
like properties, which are implicitly included in the wave-function, as long as the system
developes without disturbance from an observer. As soon as we disturb it by making
an observation, we force the system to chose a reality, either particle-like or wave-like.
In the Copenhagen interpretation the act of the measurement causes what is called the
collapse of the wave function.

To investigate this further John Wheeler in 1978 proposed a new modification of the
double slit experiment. Let the particles first pass undisturbed through the double slit,
and wait until later before asking the question: “Are you a particle?” or “Are you a
wave?” In terms of Feynman’s example, what he proposes is to put the measurement
screen at a large distance from the two slits, and to put two telescopes behind the
screen to watch whether the particle goes to slit 1 or slit 2. Since, in this setup, the
screen is blocking the view of the telescopes, the particles are not watched and the
usual interference pattern will occur caused by the quantum particle ”seeing” both slits.
However, if we could suddenly make the screen transparent at a time after the photon
has already passed the slits, we could still afterwards reconstruct whether it has gone
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T1	  

T2	  

Figure 7.1: Delayed choice experiment of Wheeler. Left: The detectors are replaced by
telescopes T1 and T2 positioned behind the screen, which focus on slit 1 and slit 2 respectively.
Right: If the screen is in place the particle distribution will follow the black interference
pattern, if the screen is removed the telescopes will observe the classical distribution without
interference.

through slit 1 or slit 2. What happens in this case?

The double slit setup is modified as shown in Fig. 7.1. In this case the detectors D1

and D2, which look at the slit are now replaced by telescopes that are positioned behind
the screen. The telescope T1 is focussed on slit 1 and T2 on slit 2. However, with the
detection screen in place the telescopes see nothing and we have Feynman’s double slit
experiment with interference. However, if the screen would be removed the telescopes
detect which slit the particle went through and there would be no interference.

But, does this make sense if we could make the distance between the slits and the
screen very large and randomly decide long after the particle went through the slits to
suddenly make the screen transparent? How would the particle know to behave while
passing the slits?

7.1.1 The Experiment of Aspect

The delayed choice experiment of Wheeler has recently been carried out by the French
physicist Alain Aspect and his colleagues, in 2007. The setup is somewhat different then
in the case of Feynman’s thought experiment, but in essence it is the same. In Aspect’s
experiment photons are used as quantum particles and the double slit is replaced by a
so-called beam-splitter, an optical device that splits a beam of light in two paths as is
illustrated in Fig. 7.2. For a single photon quantum it means that it has a 50%-50%
probability to be reflected or to be transmitted.

The idea of the experiment of Aspect is shown in Fig. 7.3. Single photon pulses enter
the setup from the left side and are split in two paths at beamsplitter BSinput: ”half”
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Figure 7.2: A beam splitter: half of the incoming photons (path 1) carry on along path 2
and half of them are reflected along path 3. For a single photon this reproduces the 50%-50%
choice of the double slit experiment.

Figure 7.3: Left: Conceptual setup of the Aspect experiment where two photon wave functions
travel along path 1 and path 2 and interfere before entering the detectors. Right: Graph A,
on top, shows the situation with interference, when BSoutput is switched on. Graph B, below,
shows the situation with no interference, when BSoutput is switched off.
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goes straight and ”half” is reflected vertically, in an equivalent way as it would chose
between slits 1 and 2 in the double slit experiment. Using a mirror the photons are sent
along ”Path 1” and ”Path 2”, which are long distances. A second mirror brings the
photons back to a second beam-splitter BSoutput. Here again the photon can go straight
or be deflected. But, now the waves that follow path 1 and go upward to detector D1
will meet and interfere with the waves from path 2 that are deflected upward and go
to detector D1. So detector D1 will see an interference pattern from the light coming
from the two paths. A similar interference is seen at detector D2. If the two paths 1
and 2 are of exactly equal length the waves interfere coherently (“crest meets crest”),
if the path-lengths differ by half a wavelength they interfere destructively (“crest meets
trough”). This can be tested by slightly changing the relative path length of Path 1 and
Path 2.

So-far we are repeating the double slit experiment. We might, however, decide to
suddenly remove the second beam-splitter BSoutput from the set-up. In practice this is
done by a fast switch of the optical properties of the BSoutput beam-splitter such that it
becomes fully transparent. In that case there are no joining light waves in the detectors
and the detector D1 just sees the light that travels along path 1 and the detector D2
only sees the light that travels along path 2.

The graphs on the right-hand side of Fig. 7.3 represent the results seen if there is
interference (A), or if there is no interference (B). If the length of paths 1 and 2 are made
slightly different, the oscillation behaviour of graph A clearly shows that the two paths
interfere, while the constant count rate of graph B shows that there is no interference.

The essence of the delayed choice experiment is to make the distance along paths 1
and 2 very long and only decide at the last moment, after the photon has long passed
BSinput whether to remove BSoutput or not. In practice it is even done in a completely
random way. The striking observation is that we get the same result as in the standard
double slit experiment. It does not matter if we ask the question before or after the
photon passed the beam splitter.

From the point of view of the photon the situation can be represented as if it asks
the observer when it passes BSinput: ”OK, what’s your question: should I behave as
a particle or as a wave?”, but the experimenter says: ”I’m not yet going to tell you.
First pass through and I will ask my question later.” Finally, when the photon arrives at
BSoutput the observer asks: ”Were you a wave when passing BSinput?”, and the photon
will answer: ”Yes”. Alternatively, if the observer asks: ”Were you a particle when
passing BSinput?”, it will also answer: ”Yes!” because detectors D1 and D2 never see
anything at the same time in that case.

In the real experiment of Aspect in 2007, schematically shown in Fig. 7.4, a 48
meter long path is used and the removal of the second beamsplitter is accomplished
with technology that uses light polarisation, of which the details are not relevant here.
The essential point is that the experiment can switch between a situation with or without
BSoutput present while the photon is underway, but has already passed BSinput.

The experiment demonstrates that the predictions of quantum mechanics are correct.
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Figure 7.4: A more detailed representation of the Aspect experiment, taken from the
publication of Aspect and co-workers.

7.2 Schrödinger’s Cat

The way reality is described in the so-called Copenhagen interpretation, advocated by
Niels Bohr and others, is that the quantum-mechanical wave-function keeps all possi-
bilities of an experiment “open”. Only at the time a measurement is done the wave
function is forced to “collapse” into one of the possible outcomes. That outcome is
not deterministic, only a probability can be given corresponding to the square of the
amplitude of the wave function. This led to the famous quote of Einstein: ”Gott würfelt
nicht!” (God does not play dice!)

In an attempt to show that this leads to ridiculous consequences Erwin Schrödinger
invented the famous cat-paradox, which leads to a cat that is at the same time alive and
dead. In his view the concept of the collapse of the wave function could not be held.

Imagine you lock a cat in a closed box in which there is no way to make a measure-
ment inside. In the same box there is a radiative source which might trigger a mechanism
to break a glass containing poison causing the cat’s death. The radioactive source is
of such intensity that the probability that it radiates is exactly 50% after 15 minutes.
This means that a 50%-50% quantum decision, whether an atom has emitted radiation
leading to a dead cat or not, only becomes reality at the time when we open the box.
Since this is a delayed quantum decision experiment, the cat must be considered in a
quantum state of both alive and dead before the measurement of looking into the box
is carried out.

This problem is generally referred to as the measurement problem in more philosoph-
ical physics debates. A topic of debate has been whether it requires human observation
or not. Perhaps the cat is already an observer that can collapse the wave function.
Alternatively, one can consider the experiment being carried out by one person in a
closed laboratory. Only when he comes out and announces his results to the press the
wave-function for the outside world collapses, etc. etc.
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Figure 7.5: Representation of the quantum wave-function that simultaneously includes both
possible realizations of dead and alive cat.

The discussion, which is mainly of a philosophical nature, is not fully settled. The
interpretation of Schrödingers cat thought experiment is still a topic of discussion for
physicists. The issue is purely our intuition, since mathematically quantum mechan-
ics gives correct predictions for experiments. The discussion becomes of a relatively
philosophical nature.

In the second half the last century Hugh Everett, a student of John Wheeler, pub-
lished in his thesis the so-called many worlds interpretation. He maintains that each
possible outcome of a measurement becomes reality, but all these realities exist in par-
allel worlds or disconnected universes. Each quantum decision leads to a split-off of a
new world.

However, recently also less radical theories are being developed that show that while
for atomic phenomena these quantum effects play a large role, they become less and less
relevant for more complex, macroscopic systems. Such that in a natural way macroscopic
objects do not experience superpositions of quantum states. The larger the system, the
more susceptible it becomes to a disturbance from the outside to collapse the wave
function.

7.3 Einstein revisited: the EPR Paradox

The result of the delayed choice experiment confirms the interpretation that quantum
mechanics can only make a prediction of a probability in any experiment. Einstein
considered the Copenhagen interpretation, including the wave function collapse not
reasonable, and believed that there must exist some, yet unknown, fundamental quantity
based on which the quantum particle behaves in a deterministic way.
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ptotal = p1 + p2

Figure 7.6: Alice and Bob carrying out an EPR experiment. Since the total momentum of
the two particles is known a measurement of Alice on particle 1 instantaneously effects the
quantum state of Bob’s particle 2, even though they are separated by a large distance.

In 1935, Einstein and his colleagues Podolsky and Rosen wrote a famous paper in
which they proposed an experiment that was intended to illustrate that the Copenhagen
interpretation could not be correct. The thought experiment is illustrated in Fig. 7.6.
Imagine that two particles are produced and the sum of their total momentum is known;
this is well possible according to the rules of quantum mechanics. These particles fly a
long distance apart until a measurement on one of these particles is done. Imagine that
Alice measures the momentum of ”her” particle with great precision, then automatically
the momentum of Bob’s particle is known, since p1 + p2 = ptotal. Quantum mechanics
dictates that Alice, in doing a precise measurement of the momentum, she has destroyed
the information on her particles position, due to Heisenberg’s uncertainty relation:

∆x∆p ≥ h̄

2

But, since now the momentum of Bob’s particle is also known, she also destroyed the
position information of Bob’s particle.

Along the same line of reasoning, if Alice decides to measure the position of her
particle its momentum becomes unknown, and therefore also the momentum of Bob’s
particle. What seemed completely unreasonable to Einstein was that a decision of Alice
to measure the choice of measuring either the momentum or position of her particle
would instantaneously affect Bob’s particle, using some ”spooky” action at a distance
in contradiction with causality. Einstein, Podolsky and Rosen stated that no reasonable
version of reality could be expected to permit this.

This ”reasonable” version of reality is usually referred to as local realism. It implies
that all objects must have pre-existing values for any possible measurement that is
made. In the Copenhagen interpretation of quantum mechanics the wave function of
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the system does not contain a pre-existing value for a measurement. At the time of
the measurement the outcome occurs randomly and the wave function instantaneously
collapses.

7.3.1 *An EPR Experiment

In 1964 John Steward Bell proposed an experiment to carry out the EPR test based on
spin measurements on pairs of entangled electrons. The idea is similar to the measure-
ment of momentum and position, but uses the measurement of two spin directions of
two particles, see Fig. 7.7, which are limited by the same fundamental Heisenberg un-
certainty relation. Bell designed mathematical criteria (the famous Bell inequalities) to
performa a decisive measurement to answer the question: does nature behave according
to local realism or is there instantaneous ”spooky” action at a distance?

Figure 7.7: Alice and Bob carrying out an EPR experiment with two particles that have
opposite spin. If Alice measures spin along the z-direction, Bob’s spin point also along the
z-direction. However, if Bob decides to measure along another axis, the outcome will be
uncertain.

In the mean time several such experiments have been carried out and the outcome is
clear: nature does not follow the ”reasonable” laws of local realism. The ”spooky action
at a distance” is what occurs. Einstein has unfortunately not lived to see the outcome
of these experiments. Being an honest man, he would certainly have been persuaded by
the outcome of these experiments.

7.4 Antimatter

In 1928, Dirac combined Einsteins equation E = mc2 of special relativity with the wave
equation of Schrödinger into a relativistic wave equation, now called the Dirac equation.
This equation, which was purely derived using a mathematical symmetry of space and
time for different observers (see the relativity lectures), had two unexpected features:
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Figure 7.8: Electron positron pair creation from gamma rays. Left: A photograph from elec-
tron - positron creation events obtained with a particle detector. Right: Schematic explanation
of the photograph on the left.

Figure 7.9: Illustration of annihilation of electrons and positron in a particle collider. First the
electrons and positrons are annihilated into pure energy. The energy in turn creates different
particle and antiparticle pairs that are detected in the apparatus.
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• it predicted correctly that electrons should have a spin=1/2 quantum number
behaviour.

• it predicted, from its symmetry, that for each particle solution of the equation
there should also exist an antimatter mirror particle.

The last point was a complete surprise and was received with scepticism, until in 1932
Anderson discovered the positron, the anti-particle of the electron, when he was studying
cosmic rays. A particle and its anti-particle conjugate have exactly equal mass, but all
internal quantum numbers, like charge, are opposite. As a consequence, pairs of a
particle plus an antiparticle can be spontaneously created as soon as enough energy is
available. For example, since the mass of an electron (and also positron) is 9.1×10−31kg,
it requires 2 × 8.2 × 10−14J of energy to create a electron-positron particle pair out of
pure energy. The inverse is also true: if a particle meets its anti-particle, they annihilate
into an amount of energy that corresponds to the sum of their masses.

7.5 Feynman Diagrams

Using the symmetry of Dirac’s description of particles and anti-particles Richard Feyn-
man discovered that an anti-particle is mathematically identical to an ordinary particle
that is travelling backwards in time. If we would be able to let time proceed backwards
an electron suddenly becomes a positron in the time-reversed world.

Feynman subsequently introduced a new intuitive way to display interactions of
particles as well as antiparticles using space-time diagrams. He plotted the world lines
of the particles and photons as they undergo an interaction. An example of such a plot
is shown in Fig. 7.10. In this diagram the event of an electron and positron accidentally
colliding and annihilating into a gamma-ray photon is instead seen as an electron that
emits a gamma ray and suddenly turns back in time!

John Wheeler suggested once in a telephone call to Richard Feynman the following
idea: maybe the whole universe contains just one single electron that is moving forwards
and backwards in time. At least that would explain why they all have exactly the same
electric charge.

Why does this not work? It would require that we see the same number of electrons
and anti-electrons (positrons) in the universe. The observed large matter anti-matter
asymmetry is one of the puzzles in particle physics today.

7.6 Quantum Field Theory: the vacuum in turmoil

The Heisenberg uncertainty for momentum and space (∆x ∆p ≥ h̄/2) also holds for
time and energy: ∆E ∆t ≥ h̄/2. The equation implies that if a system is considered for
a very short time span ∆t, its amount of energy during that time period is not precisely
defined, similar to the case that the momentum is not well defined for a very short
distance scale.
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Figure 7.10: Two different views of the same process: Left: In ”Time” order: initially, an
electron and a photon exist. The photon creates a positron and an electron. The positron
meets the first electron and annihilates into a new photon. Finally only a photon and an
electron exist Right: in ”Feynman” order: An electron comes in and decides to radiate off a
photon and turn back in time. Subsequently it radiates off another photon and turns again in
the positive time direction.

A curious possibility arises if the uncertainty of energy becomes so large that it
allows a temporarily creation of a particle anti-pair: the vacuum creates a particle -
antiparticle pair, which a very short time later annihilate again! This is referred to as
virtual creation of particles. Looking at the vacuum for such very short periods of time,
it is not ”empty” at all: many particles are created and annihilated in a continuous
dance. The shorter the timescale, the more exotic is the vacuum.

In the theory of quantum electrodynamics charged particles interact with each other
via the exchange of a photon. The corresponding Feynman diagram for two electrons
that interact in the field of each other’s charge is shown in Fig. 7.11. The diagram
shows that the force occurs via the exchange of a virtual photon, which is temporarily
”borrowed” from the vacuum. The photon is called the force-carrier particle of the
electromagnetic interaction.

Since experiments carried out at CERN in 1984 we know that radioactivity is another
fundamental force, which is generated by the exchange of Z,W+,W− bosons. These
force carriers are similar to photons apart from the fact that in contrast to the massless
photons, they have a high mass. As a consequence of their high mass a radioactive
interaction requires to borrow more energy from the vacuum, which can only be done at
shorter time scales. As a result the radioactive interaction is weaker than electromag-
netism and generally referred to as the weak interaction. The recently discovered Higgs
particle provides an explanation for the mass of the weak force carriers: the W and Z
bosons.
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Figure 7.11: A Feynman diagram of an electromagnetic interaction between two electrons.
The electrons approach each-other until they are close enough to exchange a photon that is
created within the energy restrictions of the Heisenberg uncertainty relation. This is how the
particles “feel” each others field.

The strong nuclear force, in turn, is generated by massless gluons. Gluons differ from
photons due to the fact that they interact with themselves such that the net effect at a
distance is that there is no interaction. A photon has no electric charge and therefore
does not ”feel” itself. Although the strong force dominates over electromagnetism inside
an atomic nucleus (it is the binding force of atomic nuclei), it has no effect outside it.

Finally, the last fundamental force of nature is gravity. Einstein has spent the second
half of his later career to find a combined field theory for gravity and electromagnetism,
but did not succeed. The current theoretical efforts to create a quantum theory for
gravity are still at a hypothetical level.


