

Why three generations of particles?

Why is there no antimatter?

Why is an atom electric neutral?

Recap: Flavour Universality in very Early Universe

- Quark and lepton generations interact identically
 - No difference between particles of different generation?
 - No matter antimatter asymmetry (CP Violation)?

- Universality violation: Higgs !
 - Higgs coupling is *not universal*, and mixes generations
 - Complex couplings: allows for CP Violation!

Recap: Flavour Universality in very Early Universe

• Weak charged current interaction: $(i \leftrightarrow i)$

- Universality violation: Higgs ! $(i \leftrightarrow j)$
 - Higgs coupling is not universal, and mixes generations
 - Complex couplings: allows for CP Violation!

Recap: Flavour Universality \rightarrow Symmetry Breaking \rightarrow Flavour Mixing 3

• Weak charged current interaction: $(i \leftrightarrow j)$

Recap: Flavour Universality –

Weak charged current interaction:

 d^m

 $V = s^m$

- Weak interactions mixes the
- generations of mass eigenstates.
- Complex couplings V_{ij} allow for CP violating phenomena.

1*17* +

• At least 3 generations required!

• Higgs: redefines quark states in mass eigenstates:

 V_{-}

 b^m

+m

Aixing 4

• CKM in terms of *phases*:

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

Triangle in the complex plane:
$$V_{CKM}^{\dagger} V_{CKM} = 1$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Triangle in the complex plane:
$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Triangle in the complex plane:
$$V_{CKM} = \begin{pmatrix} V_{td} + V_{ct} + V_{td} +$$

Recap: Flavor Oscillations

- Quantum mechanics with $\overline{B^0}$ and B^0 states: "What is a particle?"
 - Particle antiparticle transitions $\overline{B^0} \leftrightarrow \overline{B^0}$ mesons happen spontaneously.

• Time evolution of B^0 and $\overline{B^0}$ described by an effective Hamiltonian

Recap: B⁰ Oscillations : *flavour specific* final states

Meson Mixing: Summary for all mesons

Blue line: given a P⁰, at t=0, the probability of finding a P⁰ at t. Red Line: given a P⁰, at t=0, the probability of finding a P⁰ at t.

Q: Why does the B_s oscillate so much faster than the B⁰? (Vts/Vtd)

Q: why does the D⁰ meson oscillate very slowly? (Box diagram: beauty mass << top mass)

Q: do you expect any other (neutral) mesons/baryons to mix? (Top decays too fast)

a

Recap: Measuring B_s - $\overline{B_s}$ Oscillations

Experimental Situation:

Ideal measurement (no dilutions)

- + Realistic flavour tagging dilution
- + Realistic decay time resolution
- + Background events
- + Trigger and selection acceptance

Proper-time dependent decay rate:

Recap: Measuring B_s - B_s Oscillations

Proper-time dependent decay rate: Perfect reconstruction + flavour tagging + proper time resolution + background + acceptance $B_s \to D_s^- \pi^+$ (2 fb⁻¹) 2 5 3 Proper time (ps)

Prediction

10

Meson mixing in LHCb: experiment works well

Recap: *B* Decays to *common final states*: eg *CP* eigenstates 12

Recap: How does it give CP violation?

Time Dependent CP violation

t = 0

t Amplitude

$$\begin{array}{lll}
B^{0} & \rightarrow & f_{CP} & A_{f_{CP}} e^{-imt} e^{-i\Gamma t/2} \left(\cos \frac{\Delta mt}{2} + i \ e^{-i\phi_{weak}} \ \sin \frac{\Delta mt}{2} \right) \\
\overline{B^{0}} & \rightarrow & f_{CP} & \overline{A}_{f_{CP}} \ e^{-imt} e^{-i\Gamma t/2} \left(\cos \frac{\Delta mt}{2} + i \ e^{+i\phi_{weak}} \ \sin \frac{\Delta mt}{2} \right)
\end{array}$$

14

$B_s \rightarrow D_s K$: Quantum Interference Experiment @ LHCb

Recap: $B_s \rightarrow D_s K$: Quantum Interference Experiment @ LHCb^s

 \mathbf{R}^{0} decays

$\Upsilon(4S)$: **Coherent** *B* - \overline{B} production (Babar & Belle)

Decay time dependent *CP* violation

CKM triangle: putting all measurements together

	Measured	CKMfitter prediction	UTfit prediction
β	22.7 ± 0.7	23.7 ^{+1.1} _{-1.0}	23.8 ± 1.4
γ	70.0 ± 4.2	65.3 ^{+1.0} _{-2.5}	65.8 ± 2.2
α	93.1 ± 5.6	92.1 ^{+1.5} -1.1	90.1 ± 2.2

CPV in Kaons (K) and Beauty (B): How about Charm (D)?

24

• Look at: $\Delta A_{CP} = A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$ \Rightarrow All detection and production asymmetries cancel \Rightarrow Directly observe CP asymmetry!

2019: Discovery of CP violation in charm mesons!

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory
- 3. (Rare) B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

S.M.: No Flavour Changing reactor correction

• CKM: Flavour changing *charged* currents

• Neutral currents are possible via higher order processes:

 SM does not have Flavour changing neutral currents

B-decays and effective couplings

• Beta decay: "charged current". u

• <u>Rare B decay</u>: "Flavour changing neutral current":

Effective Operators O_i with Wilson coefficients C_i predicted by the Standard Model.

Solution: Effective couplings

- Operator Product Expansion:
 - Integrate out heavy fields
 - Separate perturbative Wilson coefficients C_i^s from non-perturbative local operators \mathcal{O}_i

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{us}^* V_{cb} \left[\frac{\mathcal{C}_1 \mathcal{O}_1}{1} + \frac{\mathcal{C}_2 \mathcal{O}_2}{2} \right]$$

Rare *B*-decays and effective couplings: $b \rightarrow sq\bar{q}$

Rare *B*-decays and effective couplings: $b \rightarrow sl^+l^-$

Rare *B*-decays and effective couplings: $b \rightarrow s \mu^+ \mu^-$

• Effective 4-fermion coupling:

$$\mathcal{H}_{eff} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} \mathcal{C}_i \mathcal{O}_i$$

• Standard Model diagrams:

Beyond Standard Model:

- Experimental test: Compare calculable C_i coefficients to experimental data
 - Sensitivity for NP in Wilson coefficients C_7 , C_9 , C_{10}

Very Rare *B*-Decays

SM: CKM and helicity suppressed: very small B.R. \rightarrow Axial vector coupling C_{10}

NP: Sensitive to new particles

via additional (C_{10} , C_{S} , C_{P})

 \rightarrow eg.: Z' , (pseudo-)scalars, ...

couplings.

$$BR \propto |V_{tb}V_{tq}|^2 \left[\left(1 - \frac{4m_{\mu}^2}{M_B^2}\right) \left| \frac{C_S - C_S'}{M_B^2} \right|^2 + \left| \left(\frac{C_P - C_P'}{M_B^2}\right) + \frac{2m_{\mu}}{M_B^2} \left(\frac{C_{10} - C_{10}'}{M_B^2}\right) \right|^2 \right]$$

Muor

Very Rare *B*-Decays

$$B^0_{{\rm s},d} \to \mu^+ \mu^-$$

- Very strongly suppressed in the SM
- High sensitivity for physics beyond SM
- Hot topic for LHCb

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent *CP* violation
- c) Experimental Aspects: LHC vs B-factory
- 3. Rare B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent *CP* violation
- c) Experimental Aspects: LHC vs B-factory
- 3. Rare B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

B-decays and lepton universality

R_D and R_{D^*}

1) $b \rightarrow c l \nu$:

allowed charged current

$$R(D^{(*)}) = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}\mu\nu)}$$

Potential large effect

Involves particles of 2nd and 3rd generation

Branching fractions of Rare Decays: $b \rightarrow s \ \mu^+ \mu^-$

• Branching fractions related to $b \rightarrow s \mu^+ \mu^-$ transition *consistently lower* than predicted.

Global Fit of $b \rightarrow s \ \mu^+ \mu^-$

1) Increase in some scenarios with RHC

Interpretation as a single cause: contradicting effects?

- 1) $b \rightarrow c \ l \ v$: R_D , R_{D^*}
 - ~ 25% effect at *enhanced tree* level
 - *Large* effect → Large *3rd* generation couplings

- 2) $b \rightarrow s l^+ l^-$: R_K, R_{K^*}
- b ~25% steet at suppressed penguin level

45

• *Small* effect; Small 2nd generation couplings Weak Effective couplings: C_9^{NP} , C_{10}^{NP} 1.60.8 $\mathcal{C}_{10\mu}^{\mathrm{NP}}$ 0.0 ATLAS Belle -0.8SM CMS LHCb -1.6All Data -2.4ACCDMMNV20 -2.4 -1.6-0.80.00.81.62.4 CNP

Similar to Higgs couplings: *large* for 3rd generation, *small* for 2nd generation, *tiny* for 1st generation. → New particle perhaps has similar flavour structure as the Higgs?

2) Favoured scenarios can explain $\langle P' \rangle_{c}$, and

Universality?

...Indian Yoga

Russian Yoga...

Flavour Physics at high mass: GGL model

- Effective New Physics operators point at *left-handed vector* coupling
- New physics occurs above weak scale (~TeV)
 - Before EWSB: physics that is invariant under SU(3)_C x SU(2)_L x U(1)_Y
 - Operates on massless interaction states
- 3^{rd} generation is special (eg. $Y_{top} = 1$)
- Glashow, Guagdagnoli, Lane (GGL) model:
 Operator for NP in 3rd generation:
 - $G\left(\overline{b'}_L \gamma_\mu b'_L\right) (\overline{\tau'}_L \gamma^\mu \tau'_L)$

Where does GGL operator come from?

- Glashow, Guagdagnoli, Lane (GGL) model: operator for NP:
 - $G\left(\overline{b'}_{L} \gamma_{\mu} b'_{L}\right) (\overline{\tau'}_{L} \gamma^{\mu} \tau'_{L})$
- Relate massive particles to massless states:
 - $b'_L = V^d_{31} d + V^d_{32} s + V^d_{33} b$ and
 - $\tau'_L = V^l_{31} e + V^l_{32} \mu + V^l_{33} \tau$

$$V_{CKM} = (V^{u}V^{d\dagger})_{ij}$$
$$V_{MNS} = (V^{\nu}V^{l\dagger})_{ij}$$

- CKM Hierarchy suggests:
 - $V_{33}^d \simeq V_{33}^l \simeq 1$ and $V_{31}^{d,l} \ll V_{32}^{d,l} \ll 1$
- GGL operator becomes:
 - $G\left[V_{33}^{d} V_{32}^{*d} | V_{32} |^2\right] (\bar{b}_L \gamma_\mu s_L) (\bar{\mu}_L \gamma^\mu \mu_L)$
- Large effect in 3rd generation, small effect in 2nd generation

GGL operator – more general

- Allow effective operators that are SU(2) x U(1) invariant: $Q' = \begin{pmatrix} t' \\ h' \end{pmatrix}$ and $L' = \begin{pmatrix} v_{\tau}' \\ \tau' \end{pmatrix}$
 - Singlet neutral current:

• $O_S^{NP} = G_S \left(\overline{Q'}_L \gamma_\mu Q'_L \right) \left(\overline{L'}_L \gamma^\mu L'_L \right)$

• Triplet neutral current + two charged currents:

•
$$O_T^{NP} = G_T \left(\overline{Q'}_L \gamma_\mu \sigma^I Q'_L \right) \left(\overline{L'}_L \gamma^\mu \sigma^I L'_L \right)$$

- These operators with CKM hierarchy "naturally" give simultaneous explanation of:
 - R_D , R_{D^*} , charged current, 3rd generation
 - \rightarrow large effect
 - R_K , R_{K^*} , $b \rightarrow s \ \mu^+ \mu^-$,neutral current, 2nd generation
 - → small effect

Which particle/field could it be?

• LFNU is currently a hot topic, many theory papers, see eg. arXiv:1706.07808 for overview.

R'

 G_T

30

W'

0.04

0.06

Which particle/field could it be?

• LFNU is currently a hot topic, many theory papers, see eg. arXiv:1706.07808 for overview.

o FREAKING excited!!

THIS IS MY

3 (() | 1 | 1 | 1 | 1 | 1 | 1

- LeptoQuarks LQ \overline{b} LQ B^{0} d COh my gosh....
- Best Single LQ model:
 - Vector LQ U1(3,1,2/3)
 - Scale of NP should be ~2 TeV
 - Possible UV completions:
 - Pati-Salam models SU(4)
 - Lepton $\leftarrow \rightarrow$ 4-th color
 - SU(5) GUT
 - 4321 model
 - S₁ & S₃, etc., etc.
 - Shine light on flavour puzzles?!

<u>Recent</u>: direct search for specific 3rd generation leptoquarks 51

• CMS search for direct LQ production, arXiv:2012.04178, <u>7 Dec 2020</u> Exclusion limit (98%): $M_{LQ} < 0.98 - 1.73$ TeV (depending on the model parameters) • LQ production at LHC:

Conclusions

- CP Violation requires three generations of particles.
 - Does *not* explain the matter antimatter asymmetry in the universe.
 - LHC has not yet directly observed new massive particles.
- Forces are flavour universal across particle generations.
- Higgs is strongly non-universal, coupling mainly to 3rd generation.
- Precision measurements *hint* at the existence of new particles with non-universal couplings:
 - LeptoQuark candidate; couples to quarks and leptons
 - LeptoQuarks are a long sought particles that may address:
 - The matter antimatter asymmetry of the universe,
 - Why proton has equal but opposite charge wrt electron.

• Updates expected in winter conferences.

Conclusions & Outlook

Nikhef

Why 3? → no antimatter?
Non Universality → why 3?
EWSB super interesting
Flavour probes deeply into quantum (CP, rare decays)
LHCb→Upgrade1→Upgrade2
Belle2, ...

Thank You

Don't be afraid to ask questions...

