

Why three generations of particles?

Why is there no antimatter?

Why is an atom electric neutral?

Re

1

Recap: Broken Symmetry and Unobservables: Parity

Before 1956 physicists were <u>convinced</u> that the laws of nature were left-right symmetric. Strange?

A "gedanken" experiment: consider two perfectly mirror symmetric cars:

What happens in case the ignition mechanism uses, say, $Co^{60} \beta$ decay?

Recap: Broken Symmetry and Unobservables: CP Violation

Compare $K_L^0 \to \pi^+ e^- \bar{\nu}$ to $K_L^0 \to \pi^- e^+ \nu$

Compare the charge of the most abundantly produced electron with that of the electrons in your body: If opposite: matter If equal: anti-matter

Recap: Weak interaction in three Flavour Generations

- Weak Interaction is 100% parity violating.
 - Wolfgang Pauli: "I cannot believe God is a weak left-hander."
- Implement an SU(2)_L symmetry for *massless* particles:

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} u'_L \gamma_\mu W^\mu d'_L \qquad x3!$$

- Flavour universality: *identical interactions* in three generations.
 - In fact: how to distinguish a massless d' quark from s' quark?

• What happens when particles acquire mass?

Recap: Flavour Universality in very Early Universe

- Quark and lepton generations interact identically
 - No difference between particles of different generation?
 - No matter antimatter asymmetry (CP Violation)?

- Universality violation: Higgs !
 - Higgs coupling is *not universal*, and mixes generations
 - Complex couplings: allows for CP Violation!

Recap: Flavour Universality

• Weak charged current interaction: $(i \leftrightarrow i)$

- Universality violation: Higgs ! $(i \leftrightarrow j)$
 - Higgs coupling is not universal, and mixes generations
 - Complex couplings: allows for CP Violation!

Recap: Flavour Universality \rightarrow Symmetry Breaking

• Weak charged current interaction: $(i \leftrightarrow i)$

Recap: Flavour Universality \rightarrow Symmetry Breaking \rightarrow Flavour Mixing \ast

• Weak charged current interaction: $(i \leftrightarrow j)$

Recap: Flavour Universality –

Weak charged current interaction:

 d^m

 $V = S^{m}$

S^m Vuc

 b^m

+m

- Weak interactions mixes the generations of *mass eigenstates*.
- Complex couplings V_{ij} allow for CP violating phenomena.

 \mathbf{N}

• At least 3 generations required!

• Higgs: redefines quark states in mass eigenstates:

Aixing 9

• CKM in terms of *phases*:

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

Triangle in the complex plane:
$$V_{CKM}^{\dagger} V_{CKM} = 1$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Triangle in the complex plane:
$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Triangle in the complex plane:
$$V_{CKM} = \begin{pmatrix} V_{td} | e^{-i\beta} & V_{tb} | e^{-i\beta}$$

2001

Beauty particles:Timedependent *CP* violation in *B*⁰ meson decays BaBar and Belle collaborations

2004

Beauty particles: Timeintegrated *CP* violation in *B*⁰ meson decays BaBar and Belle collaborations

2013

Beauty-strange particles: Time-integrated *CP* violation in *B*⁰_s meson decays LHCb collaboration

<u>2020</u>

Beauty-strange particles: Time-dependent *CP* violation in *B*⁰_s meson decays LHCb collaboration

TODAY

<u>1964</u>

Strange particles: CP violation in K meson decays J. W. Cronin, V. L. Fitch et al.

<u>1999</u>, <u>2001</u> Strange particles: *CP* violation in decay KTeV and NA48 collaborations

2012 Beauty particles: CP violation in B⁺ meson decays LHCb collaboration

2019

Charm particles: CP violation in D⁰ meson decays LHCb collaboration

Recap: CP violation vs matter – antimatter asymmetry

• To explain the absence of antimatter in the universe *requires* a primordial baryon asymmetry of: $\frac{\Delta n_B}{n} \approx 10^{-10}$

- Jarlskog criterion (1987) for amount of CP violation in SM: $det[M_u M_u^{\dagger}, M_d M_d^{\dagger}] = 2 i J (m_t^2 - m_c^2) (m_c^2 - m_u^2) (m_u^2 - m_t^2)$ $\times (m_b^2 - m_s^2) (m_s^2 - m_d^2) (m_d^2 - m_b^2)$ From CKM: $A_{CP}/T_c^{12} \approx 10^{-20}$ \rightarrow Too small
- Explanation requires existence of **new massive** particles.

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Mixing

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory

3. B-Decays

- a) Effective Hamiltonian
- b) Lepton Flavour Non-Universality

CP violation: a quantum interference experiment

- Quantum process with two amplitudes A_1 and A_2 :
 - Eg.: $A_1 = B^0 \rightarrow J/\psi K_s$ and $A_2 = B^0 \rightarrow \overline{B^0} \rightarrow J/\psi K_s$

 $|A_1| = |\overline{A_1}|, |A_2| = |\overline{A_2}|,$ but $|A_1 + A_2| \neq |\overline{A_1 + A_2}|$

CP violation: a quantum interference experiment

- Quantum process with two amplitudes A_1 and A_2 :
 - Eg.: $A_1 = B^0 \rightarrow J/\psi K_s$ and $A_2 = B^0 \rightarrow \overline{B^0} \rightarrow J/\psi K_s$

$$|A_1| = |A_1|, |A_2| = |A_2|,$$

but $|A_1 + A_2| \neq |\overline{A_1 + A_2}|$

Weak phase from CKM: $e^{-i2\beta} \rightarrow e^{i2\beta}$ Strong phase from mixing process: $e^{i\pi} \rightarrow e^{i\pi}$

CP violation: a quantum interference

 $\mathcal{A}_{J/\psi K^0_{\mathrm{S}}}(t) = \frac{1}{\Gamma(\overline{B}^0(t) \to J/\psi K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to J/\psi K^0_{\mathrm{S}})}$ $= S_{J/\psi K^0_{\mathrm{S}}} \sin(\Delta m_d t) - C_{J/\psi K^0_{\mathrm{S}}} \cos(\Delta m_d t).$

• Eg.:
$$A_1 = B^0 \rightarrow J/\psi K_s$$
 and $A_2 = B^0 \rightarrow \overline{B^0} \rightarrow J/\psi K_s$

$$A_{1} \bigvee_{i} A_{2} \bigvee_{i} (a,c,t) \to V_{k}} \int_{a}^{J/\psi} A = A_{1} + A_{2}e^{i\phi}e^{i\delta} \qquad \bar{A} = A_{1} + A_{2}e^{-i\phi}e^{i\delta}$$

$$|A|^{2} = |A_{1}|^{2} + |A_{2}|^{2} + A_{1}A_{2}(e^{i\phi}e^{i\delta} + e^{-i\phi}e^{-i\delta})$$

$$|\bar{A}|^{2} = |A_{1}|^{2} + |A_{2}|^{2} + A_{1}A_{2}(e^{-i\phi}e^{i\delta} + e^{i\phi}e^{-i\delta})$$

$$|A|^{2} - |\bar{A}|^{2} = 4A_{1}A_{2}\sin\phi\sin\delta$$

$$A_{1} \bigvee_{a,s} \int_{a,s} A_{1} \bigvee_{a,s} \bigvee_{a,s} \int_{a,s} A_{1} \bigvee_{a,s} \bigvee_{a,s} \int_{a,s} A_{1} \bigvee_{a,s} \bigvee$$

 $\overline{B^0}_{\textcircled{0}}$

 B^0

 A_2

$$|A_{1}| = |\overline{A_{1}}|, |A_{2}| = |\overline{A_{2}}|,$$

but $|A_{1} + A_{2}| \neq |\overline{A_{1}} + A_{2}|$

 CP violation is a pure quantum interference effect.

2013

- Thought: Assuming CPT symmetry, CP violation imp<mark>lies & guap</mark>
 - Quantum interference $\leftarrow \rightarrow$ arrow of time?

Three types of observable CP violation

Observed CP violation in "Mixing", "Decay", "Induced"

B ⁰ Mixing induced	I CPV CPV in I	B ^o decay CPV ir	B _s decay B _s Mixing	induced CPV
2001 Beauty particles:Tim dependent <i>CP</i> violat in <i>B</i> ⁰ meson decays BaBar and Belle collaborations	ne- tion <u>2004</u> Beauty partie integrated <i>Cl</i> <i>B</i> ⁰ meson de BaBar and Be collaboration	2013cles: Time- P violation in ecaysBeauty-str Time-integra violation in decays LHCb collation	range particles: grated <i>CP</i> n <i>B</i> ⁰ _s meson boration	nge particles: dent <i>CP</i> <i>B</i> ⁰ meson oration
<u>1964</u> Strange particles: <i>CP</i> violation in <i>K</i> meson decays J. W. Cronin, V. L. Fitch <i>et al.</i>	1999, 2001 Strange particles: <i>CP</i> violation in decay KTeV and NA48 collaborations	2012 Beauty particle <i>CP</i> violation in meson decays LHCb collabora	es: B ⁺ tion EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXA	: CP
CPV in K ⁰ mixing	CPV in K decay	CPV in B⁺ de	Primarily CPV in	D ⁰ decay

18

Three types of observable CP violation

- a) "indirect" CP Violation: 1964 (CCFT) • $\operatorname{Prob}(K^0 \to \overline{K^0}) \neq \operatorname{Prob}(\overline{K^0} \to K^0)$ $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$ (PDG)
 - Also called: CPV in mixing

b) (direct// (D) vieletiere, 1000 (NIA 40 0 1/Te)/).

All CP violation processes result from quantum interference including three generations of fermions.

- **c) "mixing induced"** *CP* violation: 2001 (Belle & Babar):
- Also: *CPV in interference of mixing and decay* $sin 2\beta = 0.682 \pm 0.019$ (PDG)

Whisky: Three types of Flavour Violation...

3. "Mixing induced" 1. "In Mixing" 2. "Direct" **Blended** <u>"WTF?"</u> **Single Malt** Moonshine (Caol IIa) (Chivas Regal) CAOL ILA SADLER'S AGED 12 YEARS PEAKY BLINDER Moonshine lery Port Ashair Isle of Is LIMITED EDITION WHITE GRAIN SPIRIT 70cLe 40%vol

→ Interference experiments lead to interesting effects! (Constructive or destructive??)

<u>Type-1</u>: CP violation *in mixing*: $a_{SL}(B_d)$ en $a_{SL}(B_s)$

• Interfere *dispersive* and *absorptive* amplitudes ("indirect"):

20

<u>Type-2</u>: CP violation in *decay*: $B_d^0 \to K\pi$ and $B_s^0 \to K\pi$

21

A story on darts and penguins

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory

3. Rare B-Decays

- a) Effective Hamiltonian
- b) Lepton Flavour Non-Universality

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory
- 3. Rare B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

Flavor Oscillations

- Quantum mechanics with $\overline{B^0}$ and B^0 states: "What is a particle?"
 - Particle antiparticle transitions $\overline{B^0} \leftrightarrow \overline{B^0}$ mesons happen spontaneously.

Lecture Notes: Chapter 3

• Time evolution of B^0 and $\overline{B^0}$ described by an effective Hamiltonian

26

Solving the Schrödinger Equation

 B^0 , $\overline{B^0}$: Flavour eigenstates

From the eigenvalue calculation:

$$q/p = -\sqrt{\left(M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right)} / \left(M_{12} - \frac{i}{2}\Gamma_{12}\right)$$

Solution: (α and β are initial conditions):

 $\pm \frac{1}{2}\Delta\Gamma$

$$\Rightarrow \psi(t) = \alpha |B_H(t)\rangle + \beta |B_L(t)\rangle$$

Masses

$$\omega_{\pm} = m_{\pm} - \frac{i}{2}\Gamma_{\pm} \quad \left\{ \begin{array}{c} m_{\pm} = M \pm \frac{1}{2}\Delta m \\ \Gamma_{\pm} = \Gamma \pm \frac{1}{2}\Delta\Gamma \end{array} \right.$$

Lifetimes

weak Δm and $\Delta \Gamma$ follow from the Hamiltonian: $\Delta m = 2 \Re \sqrt{\left(M_{12} - \frac{i}{2}\Gamma_{12}\right) \left(M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right)}$ $\Delta \Gamma = 4 \Im \left(M_{12} - \frac{i}{2} \Gamma_{12} \right) \left(M_{12}^* - \frac{i}{2} \Gamma_{12}^* \right)$ Examples $B^0: \Delta\Gamma \approx 0$, |q/p| = 1 B_s^0 : $\Delta\Gamma/\Delta m \ll 1$, |q/p| = 1 K^0 : $\Delta\Gamma/\Delta m \simeq 1$, $|q/p| - 1 \simeq 10^{-3}$

B^0 Oscillation Amplitudes

For an initially (t = 0) produced B^0 or a $\overline{B^0}$ it follows:

 $|\psi(t)
angle$:

$$B^{0}(t) \rangle = g_{+}(t) |B^{0}\rangle + \frac{q}{p} g_{-}(t) |\overline{B^{0}}\rangle$$
with
$$g_{\pm(t)} = \frac{e^{-i\omega_{+}t} \pm e^{-i\omega_{-}t}}{2}$$

$$g_{+}(t) = e^{-imt} e^{-\Gamma t/2} \cos \frac{\Delta m t}{2}$$

$$g_{-}(t) = e^{-imt} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2}$$

$$g_{\pm(t)} = e^{-imt} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2}$$

32

 $|B^{0}\rangle = \frac{1}{2p}(|B_{H}\rangle + |B_{L}\rangle)$ $|\overline{B^{0}}\rangle = \frac{1}{2q}(|B_{H}\rangle - |B_{L}\rangle)$

using:

B^0 Oscillations

So far, so good...?

Hope not...

Observing *CP* Violation

• It's all about imaginary numbers...

31

- Calculate the decay rate of a B-meson into a final state f: $\Gamma_{(B(t)\to f)} = |\langle f|B^0(t)\rangle|^2$
- From solving Schrodinger's equation we already had:

Master formula for neutral *B* decays

• Just by (tediously) writing it out...

$$\begin{split} \Gamma_{(B \to f)}(t) &= \left| A_f \right|^2 \left(1 + \left| \lambda_f \right|^2 \right) \frac{e^{-\Gamma t}}{2} \cdot \\ &\left(\cosh \frac{\Delta \Gamma t}{2} + D_f \sinh \frac{\Delta \Gamma t}{2} + C_f \cos \Delta m t - S_f \sin \Delta m t \right) \\ \Gamma_{(\overline{B} \to f)}(t) &= \left| A_f \right|^2 \left| \frac{q}{p} \right|^2 \left(1 + \left| \lambda_f \right|^2 \right) \frac{e^{-\Gamma t}}{2} \cdot \\ &\left(\cosh \frac{\Delta \Gamma t}{2} + D_f \sinh \frac{\Delta \Gamma t}{2} - C_f \cos \Delta m t + S_f \sin \Delta m t \right) \end{split}$$

• Coefficients D_f , C_f and S_f are measured by experiment → Measurement of CKM parameters via: $\lambda_f \equiv \frac{p}{q} \frac{A_f}{A_f} = \overline{B^0}$

 V_{cb}

 \bar{c} J/ψ

How does it give CP violation?

$$\underbrace{t = 0}_{q_{g}(t)} \underbrace{t}_{A_{f_{CP}}} A_{f_{CP}}(g_{+}(t) + \lambda g_{-}(t)) \\ g_{0}(t) = \frac{q}{p} \underbrace{\overline{A}_{f_{CP}}}_{f_{CP}} A_{f_{CP}}(g_{+}(t) + \lambda g_{-}(t)) \\ g_{0}(t) = \underbrace{f_{CP}}_{f_{CP}} \lambda_{f_{CP}} = \frac{q}{p} \underbrace{\overline{A}_{f_{CP}}}_{A_{f_{CP}}} g_{+}(t) = \frac{e^{-i(m-\Delta m/2)t} e^{-\Gamma t/2} + e^{-i(m+\Delta m/2)t} e^{-\Gamma t/2}}{2} \\ = e^{-imt} e^{-\Gamma t/2} \cos \frac{\Delta m t}{2} \\ g_{+}(t) = \underbrace{f_{CP}}_{q_{g}(t)} e^{-\Gamma t/2} - e^{-i(m+\Delta m/2)t} e^{-\Gamma t/2}}{2} \\ e^{-imt} e^{-\Gamma t/2} - e^{-i(m+\Delta m/2)t} e^{-\Gamma t/2}} \\ g_{-}(t) = \underbrace{f_{CP}}_{q_{g}(t)} e^{-\Gamma t/2} - e^{-i(m+\Delta m/2)t} e^{-\Gamma t/2}}{2} \\ e^{-imt} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2} \\ g_{+}(t) = \underbrace{f_{CP}}_{f_{CP}} \overline{A}_{f_{CP}} \left(g_{+}(t) + \frac{1}{\lambda}g_{-}(t)\right) \\ g_{0}(t) = \underbrace{f_{CP}}_{q_{g}(t)} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} \overline{A}_{f_{CP}} \left(g_{+}(t) + \frac{1}{\lambda}g_{-}(t)\right) \\ g_{0}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta m t}{2} \\ g_{-}(t) = \underbrace{f_{CP}}_{f_{CP}} e^{-T t/2} i \sin \frac{\Delta$$

Interfering Amplitudes

t = 0		t	Amplitude
B^0 $\overline{B^0}$	\rightarrow \rightarrow	fср fср	$A_{f_{CP}}\left(g_{+}(t) + \lambda g_{-}(t)\right)$ $\overline{A}_{f_{CP}}\left(g_{+}(t) + \frac{1}{\lambda}g_{-}(t)\right)$

$$g_{+} = e^{-imt} e^{-\Gamma t/2} \cos \frac{\Delta mt}{2}$$
$$g_{-} = e^{-imt} e^{-\Gamma t/2} i \sin \frac{\Delta mt}{2}$$
$$\lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-i\phi_{weak}} \quad (CKM)$$

Interfering Amplitudes

t = 0		t	Amplitude	Λmt
R^0	\rightarrow	fan	$A_{f_{CP}}(a_1 + a_2 e^{-i\phi_w} e^{i\pi/2})$	$g_+ = e^{-imt} e^{-\Gamma t/2} \cos \frac{2\pi t}{2}$
$\overline{B^0}$	\rightarrow	ГСР f _{CP}	$\overline{A}_{f_{CP}}(a_1 + a_2 e^{+i\phi_w} e^{i\pi/2})$	$g_{-} = e^{-imt} e^{-\Gamma t/2} \mathbf{i} \sin \frac{\Delta m t}{2}$
				$\lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-i\phi_{weak}} (CKM)$

37

Interfering Amplitudes: CP violation!

 B^0

$$\frac{t = 0}{B^{0}} \xrightarrow{t} Amplitude} \qquad g_{+} = e^{-imt} e^{-\Gamma t/2} \cos \frac{\Delta m t}{2} \qquad g_{+} = e^{-imt} e^{-\Gamma t/2} \cos \frac{\Delta m t}{2} \qquad g_{-} = e^{-imt} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2} \qquad g_{-} = e^{-imt} e^{-\Gamma t/2} i \sin \frac{\Delta m t}{2} \qquad \lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-i\phi_{weak}} \quad (CKM)$$

Interfering Amplitudes: time dependent CP violation!

39

From Amplitude to Decay rate

$$\frac{t = 0}{B^{0}} \xrightarrow{t} \frac{\text{Amplitude}}{A_{f_{CP}}} e^{-imt}e^{-i\Gamma t/2} \left(\cos\frac{\Delta mt}{2} + i\lambda \sin\frac{\Delta mt}{2}\right)$$

$$\overline{B^{0}} \xrightarrow{} f_{CP} \qquad \overline{A}_{f_{CP}} e^{-imt}e^{-i\Gamma t/2} \left(\cos\frac{\Delta mt}{2} + i\frac{1}{\lambda}\sin\frac{\Delta mt}{2}\right)$$

$$\lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-i\phi_{weak}}$$

• Decay rate is the *square* of the amplitude (work it out):

$$B^{0} \to f_{CP} : \left| \cos \frac{\Delta mt}{2} + i \lambda \sin \frac{\Delta mt}{2} \right|^{2} \propto 1 + \frac{(1-|\lambda|^{2})}{(1+|\lambda|^{2})} \cos \Delta mt - \frac{(2\Im\lambda)}{(1+|\lambda|^{2})} \sin \Delta mt$$
$$\overline{B^{0}} \to f_{CP} : \left| \cos \frac{\Delta mt}{2} + i \frac{1}{\lambda} \sin \frac{\Delta mt}{2} \right|^{2} \propto 1 - \frac{(1-|\lambda|^{2})}{(1+|\lambda|^{2})} \cos \Delta mt + \frac{(2\Im\lambda)}{(1+|\lambda|^{2})} \sin \Delta mt$$

Time Dependent CP violation

t = 0

 $\lambda_{f_{CP}} = \frac{q}{p} \, \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = e^{-i\phi_{weak}}$

t Amplitude

$$\begin{array}{lll}
B^{0} & \rightarrow & f_{CP} & A_{f_{CP}} e^{-imt} e^{-i\Gamma t/2} \left(\cos \frac{\Delta mt}{2} + i \ e^{-i\phi_{weak}} \ \sin \frac{\Delta mt}{2} \right) \\
\overline{B^{0}} & \rightarrow & f_{CP} & \overline{A}_{f_{CP}} \ e^{-imt} e^{-i\Gamma t/2} \left(\cos \frac{\Delta mt}{2} + i \ e^{+i\phi_{weak}} \ \sin \frac{\Delta mt}{2} \right)
\end{array}$$

Where were we?

"Mr. Osborne, may I be excused? My brain is full."

Time Dependent CP Asymmetry

43

Similarly with this method of time dependent CP violation:

 \rightarrow B_s physics is mainly done at the LHC ...

How are you doing?

How are you doing?

How are you doing?

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory
- 3. Rare B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory
- 3. Rare B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

$B_s \rightarrow D_s K$: Quantum Interference Experiment @ LHCb

48

$B_s \rightarrow D_s K$: Quantum Interference Experiment @ LHCb

$B_s \rightarrow D_s K$: Quantum Interference Experiment @ LHCb

$B_s \rightarrow D_s K$: Quantum Inter

CP violation

50

$B_s \rightarrow D_s K$: Quantum Interference Experiment @ LHCb

The LHCb Detector? dOHJ

The LHCb Detector!

The LHCb Detector

Measure time dependent B and \overline{B} decay rates

B_s Physics at LHCb

Detector Requirements:

- Vertex reconstruction
- Momentum and mass reconstruction
- Particle identification (π, K, μ, e, γ)
- Trigger (Online reconstruction)

Physics Requirements:

- Signal selection and background suppression
- Flavour tagging: B or \overline{B} at production
- Decay time measurement: t = md/p

B_s Physics at LHCb - Vertex reconstruction

B_s Physics at LHCb - Vertex reconstruction

B_s Physics at LHCb

B_s Physics at LHCb – momentum and mass determination 59

B_{s} Physics at LHCb – momentum and mass determination

59

B_s Physics at LHCb

B_s Physics at LHCb – Particle Identification with RICH

61

B_s Physics at LHCb – Particle Identification with RICH

B_s Physics at LHCb

B_s Physics at LHCb – Trigger/Tag with Calorimeters and Muon⁶³

B_s Physics at LHCb – Trigger/Tag with Calorimeters and Muon⁶³

Measuring $B_s - B_s$ Oscillations

(Self tagging $B_s \rightarrow D_s \pi$)

Experimental Situation: Ideal measurement (no dilutions)

<u>Experimental Situation:</u> Ideal measurement (no dilutions) + Realistic flavour tagging dilution

Experimental Situation: Ideal measurement (no dilutions) + Realistic flavour tagging dilution + Realistic decay time resolution

Experimental Situation: Ideal measurement (no dilutions) + Realistic flavour tagging dilution + Realistic decay time resolution + Background events

Proper-time dependent decay rate: Perfect reconstruction 1000 + flavour tagging + proper time resolution + background 800 Events 600 $B_s \to D_s^- \pi^+$ (2 fb⁻¹) 400 200 0 5 0 3 Proper time (ps)

Experimental Situation:

Ideal measurement (no dilutions)

- + Realistic flavour tagging dilution
- + Realistic decay time resolution
- + Background events
- + Trigger and selection acceptance

Meson mixing in LHCb: does is actually work?

Meson mixing in LHCb: does is actually work?

B meson production in e^+e^- Collisions

.

10.54

) (4S)

10.58

10.62

• Electron-Positron collider:

 $e^+e^- \rightarrow \Upsilon(4s) \rightarrow B^0 \overline{B^0}$

14-6

10.00 10.02

r(1s)

9.46

9.44

r(2S)

25

20

10

 \rightarrow Hadrons)(nb)

σ (e⁺e

- Only 4S resonance or higher produces B meson pair
- Low B production cross-section: ~1 nb

Babar, Belle

- Clean environment, coherent $B^0\overline{B^0}$ production

Y(3S)

10.37

Mass (GeV/c⁻)

10.34

= 0.28

 $\sigma(hadr)$

• e⁺

(4 GeV)

$\Upsilon(4S)$: Coherent *B* - \overline{B} production

• Production at $\Upsilon(4S) J^{PC} = 1^{--}$:

 $B^0\overline{B^0}$ system evolves coherently until one *B* decays (EPR!)

$$\left| \left(B^0 \overline{B^0} \right)_{P=-} (t) \right\rangle = e^{-\Gamma_B t/2} \frac{1}{\sqrt{2}} \left| B^0 \left(\vec{k} \right) \overline{B^0} \left(-\vec{k} \right) \right\rangle - \left| B^0 \left(-\vec{k} \right) \overline{B^0} \left(\vec{k} \right) \right\rangle$$

- P = -1: Wave function is odd under particle exchange.
- The first decay of the two B's "starts the clock".
- Instead of flavour tag at production, *B* mesons have opposite flavour at the time the first meson decays.
 - Work with Δt
 - Half of the time the signal *B* decays first ($\Delta t < 0$)
- Coherent production improves flavour tagging performance

$\Upsilon(4S)$: Coherent *B* - \overline{B} production (Babar & Belle)

 $A_{CP}(t) = \sin 2\beta \sin \Delta m t$

Babar: $\sin 2\beta = 0.657 \pm 0.036 \text{ (stat)} \pm 0.012 \text{ (syst)}$ Belle: $\sin 2\beta = 0.670 \pm 0.029 \text{ (stat)} \pm 0.013 \text{ (syst)}$

Babar & Belle

Decay time dependent *CP* violation

 \mathbf{R}^0 decays

CKM triangle: putting all measurements together

	Measured	CKMfitter prediction	UTfit prediction
β	22.7 ± 0.7	23.7 ^{+1.1} _{-1.0}	23.8 ± 1.4
γ	70.0 ± 4.2	65.3 ^{+1.0} _{-2.5}	65.8 ± 2.2
α	93.1 ± 5.6	92.1 ^{+1.5} -1.1	90.1 ± 2.2

CPV in Kaons (K) and Beauty (B): How about Charm (D)?

77

• Look at: $\Delta A_{CP} = A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$ \Rightarrow All detection and production asymmetries cancel \Rightarrow Directly observe CP asymmetry!

2019: Discovery of CP violation in charm mesons!

- Which type of machine would you use?
 - e^+e^- or pp, pp or $p\overline{p}$ collider or fixed target? Why?
- At which energy do you want to run this machine?
- You will measure *CP* asymmetry in $B_s \rightarrow D_s^{\mp} K^{\pm}$ with BR=10⁻⁴
 - Estimate how many collisions you need for a precision of $\gamma {=} 1^{\circ}$
- You measure $B_s \to D_s^{\mp} K^{\pm}$ and $\overline{B_s} \to D_s^{\mp} K^{\pm}$
 - How do you determine the flavour of the B_s at production?
 - Are there intrinsic limits to this precision?
 - How would you calibrate the wrong tag fraction?
- There is a potential large background from another B_s -decay.
 - Do you know which it could be?
 - With which detector technology would you remove this background?
- What is the formula to reconstruct the B_s meson decay time in an event in observable quantities?
 - Which subdetectors would you require to measure it?

- Which type of machine would you use?
- e^+e^- or pp, pp or $p\overline{p}$ collider or fixed target? Why?
- At which energy do you want to run this machine?

Points to consider:

- e^+e^- at $\Upsilon(4S)$: electromagnetic production, clean, no B_S , coherent production: B^0 only time dependent CPV, requires asymmetric beams, good flavor tagging.
- e^+e^- at $\Upsilon(5S)$: B_s , lower cross section, no resolution for time dependent *CPV*.
- e^+e^- at Z-peak. Weak production, not coherent, interesting...?
- *pp* collisions: Strong production and lots of stat's, "messy" events, large backgrounds requiring excellent detectors.
- Fixed target vs collider: low cross section vs long decay distance.
 - b-quark cross section increases with high energy
- $pp \text{ vs } p\overline{p}$: "colour drag" asymmetry. Extra cross check for pp.

- You will measure *CP* asymmetry in $B_s \rightarrow D_s^{\mp} K^{\pm}$ with BR=10⁻⁴.
 - Estimate how many collisions you need for a precision of γ =1°
 - B_s mesons: Let's assume pp collisions at LHC using LHCb
- For ~1% measurement precision (0.01) on asymmetry:
 - Number of perfectly measured $B_s \rightarrow D_s^{\mp} K^{\pm}$ events:
 - Fraction of collisions that produce *b*-quarks:
 - Fraction of events where B_s meson is produced from b-quark:
 - Fraction of B_s that decay into $B_s \rightarrow D_s^{\mp} K^{\pm}$ channel
- → So in total

perfectly reconstructed events required

- Next, assumed measured by the LHCb experiment:
 - Acceptance x Reconstruction (background, resolution):
 - Trigger:
 - Tagging Power:
- In total

$pp\ {\rm collisions}\ {\rm must}\ {\rm be}\ {\rm collected}$

• Assume ~10 MHz collisions, 3 x 10⁶ s/year running time: ⁶ of running.

- You measure $B_s \to D_s^{\mp} K^{\pm}$ and $\overline{B_s} \to D_s^{\mp} K^{\pm}$
 - How do you determine the flavour of the B_s at production?

• Are there intrinsic limits to this precision?

• How would you calibrate the wrong tag fraction?

- There is a potential large background from another B_s -decay.
 - Do you know which it could be?
 - With which detector technology would you remove this background?
- What is the formula to reconstruct the *B_s* meson decay time in an event in observable quantities?
 - Which subdetectors would you require to measure it?

Contents:

- 1. CP Violation
 - a) Discrete Symmetries
 - b) CP Violation in the Standard Model
 - c) Jarlskog Invariant and Baryogenesis

2. B-Physics

- a) CP violation and Interference
- b) B-mixing and time dependent CP violation
- c) Experimental Aspects: LHC vs B-factory
- 3. Rare B-Decays
 - a) Effective Hamiltonian
 - b) Lepton Flavour Non-Universality

